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Surface roughness is an index which determines the quality of machined products and is influenced by 
the cutting parameters. In this study, the average surface roughness Ra (value) for aluminum after ball 
end milling operation has been measured. 84 experiments have been conducted using varying cutter 
axis inclination angle (φ degree), spindle speed (S rpm), feed rate (fy mm/min), feed (fx mm), and depth 
of cut (t mm) in order to find Ra. This data has been divided into two sets on a random basis; 68 training 
data set and 16 testing data set. The training data set has been used to train different adaptive neuro-
fuzzy inference system (ANFIS) models for Ra prediction. And testing data set has been used to validate 
the models. Better ANFIS model has been selected based on the minimum value of root mean square 
error (RMSE) which is constructed with three Gaussian membership functions (gaussmf) for each input 
variables and linear membership function for output. The selected ANFIS model has been compared 
with theoretical model and response surface model (RSM). This comparison is done based on RMSE 
and absolute average percentage error. The comparison shows that the selected ANFIS model gives 
better result for training and testing data. So, this ANFIS model can be used further for predicting 
surface roughness of aluminum for ball end milling operation. 
 
Key words: Ball end mill, adaptive neuro-fuzzy inference system (ANFIS), roughness prediction. 

 
 
INTRODUCTION 
 
The main objective of modern industries is to manu-
facture low cost, high quality products in short time. The 
selection of optimal cutting parameters is a very impor-
tant issue for every machining process in order to 
enhance the quality of machining products and reduce 
the machining costs (Cus and Zuperl, 2009). It is expec-
ted that the next decade machine tools will be intelligent 
machines with various capabilities such as prediction of 
self set up required parameters to reach to the best 
surface finishing qualities. Typically, surface inspection is 
carried out through manually inspecting the machined 
surfaces and using surface profilometers with a contact 
stylus.  As  it  is  a  post-process  operation,  it  becomes 
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both time-consuming and-labor intensive. In addition, a 
number of defective parts can be found during the period 
of surface inspection, which leads to additional 
production cost (Aykut, 2011). Milling process is one of 
the common metal cutting operations and is especially 
used for making complex shapes and finishing of 
machined parts. The quality of the surface plays a very 
important role in the performance of the milling as a good 
quality milled surface significantly improves fatigue 
strength, corrosion resistance or creep life. Surface 
roughness also affects several functional attributes of 
parts, such as contact causing surface friction, wearing, 
heat transmission, light reflection, ability of distributing 
and holding a lubricant, load bearing capacity, coating or 
resisting fatigue. Therefore the desired finish surface is 
usually specified and the appropriate processes are 
selected to reach the desiredsurface quality (Lou et al., 
1999).  



 
 
 
 
Unlike turning, face milling or flat end milling operations, 
predicting surface roughness for ball end milling by 
mathematical models is very difficult. In recent years, the 
trends are towards modeling of machining processes 
using artificial intelligence due to the advanced 
computing capability. Researchers have used various 
intelligent techniques, including neural network, fuzzy 
logic, neuro-fuzzy, adaptive neuro-fuzzy inference system 
(ANFIS), etc., for the prediction of machining parameters 
and to enhance manufacturing automation. Artificial 
neural network (ANN) and Fuzzy logic are two important 
methods of artificial intelligence in modeling nonlinear 
problems. A neural network can learn from data and 
feedback; however, understanding the knowledge or the 
pattern learned by it is difficult. But fuzzy logic models are 
easy to comprehend because they use linguistic terms in 
the form of if-then rules. A neural network with their 
learning capabilities can be used to learn the fuzzy 
decision rules, thus creating a hybrid intelligent system 
(John and Reza, 2003). A fuzzy inference system 
consists of three components. First, a rule base contains 
a selection of fuzzy rules; secondly, a database defines 
the membership functions used in the rules and, finally, a 
reasoning mechanism to carry out the inference 
procedure on the rules and given facts. This combination 
merges the advantages of fuzzy system and a neural 
network. 

In the present work, the adaptive neuro-fuzzy model 
has been developed for the prediction of surface 
roughness. The predicted and measured values are fairly 
close to each other. The developed model can be 
effectively used to predict the surface roughness in the 
machining of aluminum within the ranges of variables 
studied. The ANFIS results are compared with the RSM 
results and results from theoretical equations. 
Comparison of results showed that the ANFIS results are 
superior to others. This study attempts to design adaptive 
network-based fuzzy interface system (ANFIS) for 
modeling and predicting surface roughness in ball end 
milling aluminum. 
 
 
LITERATURE REVIEW 
 
The quality of surface finish mainly depends on the 
interaction between the work piece, cutting tool and the 
machining system. Due to these reasons, there have 
been a series of attempts by researchers to develop 
efficient prediction systems for surface roughness before 
machining. Survey on previous surface roughness 
research reveals that most of the researches proposed 
multiple regression method to predict surface roughness. 
Some research applied neural network, fuzzy logic, and 
neural-fuzzy approaches. Optimization of surface 
roughness prediction model, developed by multiple 
regression method, with a genetic algorithm is presented 
in    some   journals.  Among   them,  statistical   (multiple  
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regression analysis) and artificial neural network (ANN) 
based modeling are commonly used by researchers. 
Mital and Mehta (1988) conducted a survey of surface 
roughness prediction models developed and factors 
influencing surface roughness. They found that most of 
the surface roughness prediction models are developed 
for steels. 

For the prediction of surface roughness, a feed forward 
ANN is used for face milling of aluminum alloy by 
Bernardos et al. (2003) high chromium steel (AISI H11) 
by Rai et al. (2010) and AISI 420 B stainless steel by 
Bruni  et al. (2008). Bruni et al. (2008) proposed the 
analytical and artificial neural network models.  Yazdi and 
Khorram (2010) worked for selection of optimal 
machining parameters (that is, spindle speed, depth of 
cut and feed rate) for face milling operations in order to 
minimize the surface roughness and to maximize the 
material removal rate using response surface 
methodology (RSM) and perceptron neural network. 
Munoz-Escalona and Maropoulos (2009) proposed the 
radial basis feed forward neural network model and 
generalized regression for surface roughness prediction 
for face milling of Al 7075-T735. The Pearson correlation 
coefficients were also calculated to analyze the 
correlation between the five inputs (cutting speed, feed 
per tooth, axial depth of cut, chip's width, and chip's 
thickness) with surface roughness. Zhanjie et al. (2007) 
used radial basis function network to predict surface 
roughness and compared with measured values and the 
result from regression analysis. Lu and Costes (2008) 
considered three variables, that is, cutting speed, depth 
of cut and feed rate to predict the surface profile in 
turning process using radial basis function (RBF). 
Experiments have been carried out by Brecher et al. 
(2011) after end milling of steel C45 in order to obtain the 
roughness data and model of ANN for surface roughness 
predictions. Aykut (2011) had also used ANN to predict 
the surface roughness of cast-polyamide material after 
milling operation. Khorasani et al. (2011) conducted a 
study to discover the role of machining parameters like 
cutting speed, feed rate and depth of cut in tool life 
prediction in end milling operations onAl 7075 by using 
multi layer perceptron neural networks and Taguchi 
design of experiment. On the other hand, Nabil and 
Ridha (2006) developed an approach that combined the 
design of experiments (DOE) and the ANN methods. 
Luong and Spedding (1995) also applied neural network 
technology for the prediction of machining performance in 
metal cutting. Back propagation neural network in turning 
operations was developed by Bisht et al. (2005) for the 
prediction of flank wear and by Pal and Chakraborty 
(2005) for predicting the surface roughness. Zhong et al. 
(2006) predicted roughness measures Ra and Rt of 
turned surfaces using a neural network. The 
determination of best cutting parameters leading to a 
minimum surface roughness in end milling mold surfaces 
used in biomedical applications was done by Oktem et al.  
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(2006). For their research, they coupled a neural network 
and a genetic algorithm (GA) providing good results to 
solve the optimization of the problem. Jesuthanam et al. 
(2007) proposed the development of a novel hybrid 
neural network trained with GA and particle swarm 
optimization for the prediction of surface roughness. The 
experiments were carried out for end milling operations. 
Lin et al. (2007) developed a surface prediction model for 
high-speed machining of 304L stainless steel, Al 6061-
T6, SKD11 and Ti-4Al-4V. For this purpose, the finite 
element method and neural network were coupled. Basak 
et al. (2006) developed radial basis neural network 
models when turning AISI D2 cold-worked tool steel with 
ceramic tool. Tsai et al. (1999) used in-process surface 
recognition system based on neural networks in end 
milling operation.  

Mahdavinejad et al. (2009), Roy (2005) and Jiao et al. 
(2004) used combination of adaptive neural fuzzy 
intelligent system to predict the surface roughness 
machined in turning process. Jiao et al. (2004) also used 
adaptive fuzzy-neural networks to model machining 
process especially for surface roughness. Roy (2006) 
and Chen and Savage (2001) designed adaptive 
network-based fuzzy inference system (ANFIS) for 
modeling and predicting the surface roughness in end 
milling operation. Roy (2006) used two different 
membership functions (triangular and bell shaped) during 
the hybrid-training process of ANFIS in order to compare 
the prediction accuracy of surface roughness by the two 
membership functions.  

The predicted surface roughness values obtained from 
ANFIS were compared with experimental data and 
multiple regression analysis. The comparison indicated 
that the adoption of both membership functions in ANFIS 
achieved better accuracy than multiple regression 
models. Dweiri et al. (2003) used neural-fuzzy system to 
model surface roughness of Alumic-79 workpiece in CNC 
down milling. Reddy et al. (2009) also used ANFIS to 
prediction surface roughness of aluminum alloys but for 
turning operation. The response surface methodology 
(RSM) was also applied to model the same data. The 
ANFIS results are compared with the RSM results and 
comparison showed that the ANFIS results are superior 
to the RSM results. Kumanan et al. (2008) proposed the 
application of two different hybrid intelligent techniques, 
adaptive neuro fuzzy inference system (ANFIS) and 
radial basis function neural network- fuzzy logic (RBFNN-
FL) for the prediction of surface roughness in end milling. 
Cabrera et al. (2011) investigated the process 
parameters including cutting speed, feed rate and depth 
of cut in order to develop a fuzzy rule-based model to 
predict the surface roughness in dry turning of reinforced 
PEEK with 30% of carbon fibers using TiN-coated cutting 
tools. 

Some other prediction models like response surface 
methodology (RSM), statistical methods and multiple 
regression, etc., have been used in a wide range of 
literatures.   Wang   and   Chang   (2004)   analyzed    the 

 
 
 
 
influence of cutting condition and tool geometry on 
surface roughness using RSM during slot end milling 
AL2014-T6. Mathematical polynomial models using RSM 
for surface roughness prediction in terms of cutting 
speed, feed and axial depth of cut for end milling was 
developed by Alauddin et al. (1995) for 190 BHN steel 
and by Lou et al. (1999) for end milling of EN32. Many 
years ago, Taraman and Lambert (1974) also used 
response surface methodology for prediction of surface 
roughness.  

Ozcelik and Bayramoglu (2006) present the 
development of a statistical model for surface roughness 
estimation in a high-speed flat end milling process under 
wet cutting conditions. Huang and Chen (2001) used 
multiple regression models to predict the surface 
roughness of machined parts in turning operation. Feng 
and Wang (2002) focused on developing an empirical 
model for the prediction of surface roughness in finish 
turning. Ahmed (2006) developed an empirical surface 
roughness model for commercial aluminum, based on 
metal cutting results from factorial experiments. 
Brezocnik et al. (2004) proposed genetic programming to 
predict surface roughness in end milling of Al 6061. 

To achieve the desired surface finish, a good predictive 
model is required for stable machining. From the 
literature review, it was observed that majority of the work 
in the area of artificial intelligence application has been 
for turning and flat end or face milling operation. Due to 
this fact and also considering the importance of ball end 
milling operation for machining of aluminum which is 
widely used in applications like structural, cryogenic, food 
processing, plastic molding, oil and gas process 
industries, etc., the ANFIS and RSM model are 
developed in this research. This model will help the 
manufacturing industries in predicting the desired surface 
roughness in selecting the right combination of cutting 
parameters.  
 
 
METHODOLOGY 

 
Experimental setup and design of experiment 
 
The experiment was performed by using a vertical milling machine 
shown in Figure 1. The workpiece tested was an aluminum plate of 
size 9×1×4 cm. A two-flutecarbide ball end mill cutter of 8 mm 
diameter was selected as the cutting tool. The cutter linear 
movement direction has been shown in Figure 2. Some samples 
are machined with various input parameters and then the 
experimental data was used to create fuzzy rules and their 
processing via neural networks. Then the results of this model are 
compared with the real surface roughness. A total of 84 
experiments were planned and carried out. The design of 
experiments was carried out considering parameter variations 
around the cutting tool provider recommendations and the machine 
tool capabilities. In order to detect the average surface roughness 
(Ra) value, experiments were carried out by varying the cutter axis 
inclination angle (θ) spindle speed (S rpm), the feed rate along y-
axis (fy mm/min), feed along x-axis (fx mm) and the depth of cut (t). 
For each of the experiments, three sample readings were taken and 
their average value was considered. 
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Figure 1. Experimental setup. 

 
 
 

 
 
Figure 2. Ball end mill operation. 

 
 
 
Surface roughness 
 
There are various surface roughness amplitude parameters such as 
roughness average (Ra), root-mean-square (RMS) roughness (Rq), 
and maximum peak-to-valley roughness (Ry or Rmax), which are 
used in industries (Bernardos and Vosniakos, 2003). Surface 
roughness average parameter (Ra) is the most extended index of 
product quality and has beenused in this study. The average 
roughness (Ra) can be defined as the area between the roughness 
profile and its mean line, or the integral of the absolute value of the 
roughness profile height over the evaluation length. Therefore, the 
Ra is specified by equation (1): 
 

 
 
Where Ra is the arithmetic average deviation from the mean line, L 
is the sampling length and Z the coordinate of the profile curve. 

In this study, a Taylor Hobson Talysurf (Surtronic 25) has been 
used for measuring Ra. The distance that the stylus travels is 

sampling length L (Figure 3); it ranges from 0.25 to 25 mm for 
selected instrument. In this study, sampling length was 0.8 mm. 
 
 
Adaptive neuro-fuzzy inference system (ANFIS) 
 
Adaptive neuro-fuzzy inference system is a fuzzy inference system 
implemented in the framework of an adaptive neural network. By 
using a hybrid learning procedure, ANFIS can construct an input-
output mapping based on both human-knowledge as fuzzy if-then 
rules and approximate membership functions from the stipulated 
input-output data pairs for neural network training. This procedure 
of developing a FIS using the framework of adaptive neural 
networks is called an adaptive neuro fuzzy inference system 
(ANFIS). There are two methods that ANFIS learning employs for 
updating membership function parameters: 1) backpropagation for 
all parameters (a steepest descent method), and 2) a hybrid 
method consisting of backpropagation for the parameters 
associated with the input membership and least squares estimation 
for the parameters associated with the output membership 
functions. As a result, the training error decreases, at least locally, 
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Figure 3. Surface roughness. 

 
 
 

 
 
Figure 4. Calculation of mean line and roughness. 

 
 
 
throughout the learning process. It applies the least-squares 
method to identify the consequent parameters that define the 
coefficients of each output equation in the Sugeno-type fuzzy rule 
base. The training process continues till the desired number of 
training steps (epochs) or the desired root mean square error 
(RMSE) between the desired and the generated output is achieved. 
This study uses a hybrid learning algorithm, to identify premise and 
consequent parameters of first order Takagi-Sugeno type fuzzy 
system for predicting surface roughness in ball end milling.  
 
 
Response surface method (RSM) 

 
The response surface method (RSM) is a dynamic and foremost 
important tool of design of experiment (DOE). RSM was 
successfully applied for prediction and optimization of cutting 
parameters by Bernardos and Vosniakos (2003) Mukherjee and 
Ray (2006). In this study, RSM was used to fit linear and second 
order polynomials on experimental data with 95% confidence level 
by minitab software. 

 
 
Theoretical equations 
 
In Figure 4, a representative element of the ideal roughness profile 
after ball end milling operation has been shown. Using equations 
(2) to (8), the theoretical values of Ra can be calculated. The 
theoretical Ra depends on feed fx and tool nose radius R. Here, “a” 
is the mean line height. Ab area below mean line and Aa is the area 
above mean line. 
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The representative element with length “f” of the curve or surface 
profile is symmetric with respect to z-axis and surface profile with 



 
 
 
 
length f=fx/2 is repeated over the whole surface for gradual feed of 
fx in each pass.  
 
 
Pearson correlation coefficient  
 
A correlation is a statistical technique which can show if, and how 
strongly, pairs of variables are related. The main result of a 
correlation is called correlation coefficient (or r). Correlation 
coefficients measure the strength of association between two 
variables. There are several correlation techniques but the most 
common one is the Pearson product-moment correlation coefficient. 
The correlation r between two variables is expressed as equation 
(9): 
 

                                         9 
 
Where n is the number of observations in the sample, xi is the x 

value for observation i,  is the sample mean of x, yi is the y value 

for observation i,  is the sample mean of y, Sx is the sample 

standard deviation of x, and Sy is the sample standard deviation of 
y.  
 
 
Significance of Pearson's correlation coefficient r with P-value 
 
The correlation coefficient is a number between -1 and 1. In 
general, the correlation expresses the degree that, on an average, 
two variables change correspondingly. If one variable increases 
when the second one increases, then there is a positive correlation. 
In this case the correlation coefficient will be closer to 1. If one 
variable decreases when the other variable increases, then there is 
a negative correlation and the correlation coefficient will be closer to 
-1. The P-value is the probability, if this probability is lower than the 
conventional 5% (P<0.05), the correlation coefficient is called 
statistically significant. Both r and P-value have been calculated 
using the software Minitab-16. 

 
 
RESULTS AND DISCUSSION 
 
The ANFIS models have been developed as a function of 
machining parameters using 68 train data presented in 
Table 1. The fuzzy logic toolbox of MATLAB 7.0 was 
used to train the ANFIS and obtain the results. Different 
ANFIS parameters were tested as training parameters in 
order to achieve the perfect training and the maximum 
prediction accuracy. Table 2 shows 48 different 
architectures of ANFIS. From Table 2, the best-
responding model of neuro-fuzzy system was found that 
have three Gaussian curve built-in membership functions 
(gaussMF) in input functions and linear output functions. 
It is shown that the predicted error (RMSE) for the 
training data is 9.9854 ×10

-5
 and for the test data it is 

1.146. The 5 inputs and 1 output and their final fuzzy 
membership functions are shown in Figure 5. A total of 
243 fuzzy rules were used to build the fuzzy inference 
system. Gaussian membership functions (gaussmf) were 
used to train ANFIS because it achieved the lowest 
training error of 9.9845 × 10

-5
 at 10 epochs, as  shown  in 
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the training curve in Figure 6. 

Three Gaussian membership functions (gaussmf) were 
used for each input. Figure 7 shows the comparison 
between the experimental and predicted values by the 
ANFIS training data. The model developed by ANFIS is 
tested using the testing data and the predicted results are 
presented in Table 3. 16 sets of data were used for test 
the model. The predicted surface roughness values with 
the actual experimental values of surface roughness 
were plotted and shown in Figure 8. 

Equation 10 is the response surface equation 
developed by RSM. It can be used for predicting surface 
roughness. Test data set has been used for verifying this 
equation and predicted results have been summarized in 
Table 3. The results using the theoretical equations (2) to 
(8) for 16 test data sets also have been listed in Table 3: 

 
Ra = 1.35355 + 0.0874799 φ + 0.000887986 S - 
0.101501 fy + 7.92503 fx - 6.14303 t - 0.00320667 φ

2
 - 

1.20701 × 10
-07 

s
2 

+ 0.00122325 fy
2 

+ 9.91836 fx
2 

+ 
10.5552 t

2 
+ 8.53234×10

-06
φS - 9.68995 × 10

-04
φfy + 

0.1357 φfx + 0.00848098 φt + 3.41726 × 10
-05

Sfy - 
0.00576076 Sfx- 2.94529 × 10

-04
St - 0.101860 fyfx + 

0.0719970 fyt- 12.5766 fxt 10. 

 
It has been mentioned earlier that in this study, an 
ANFIS, RSM and theoretical equations have been used 
for predicting surface roughness. The root mean squired 
errors and absolute mean percentage of errors have 
been calculated for each of the aforementioned models 
and summarized in Table 4. It can be observed from 
Table 4 that the prediction results for surface roughness 
are more accurate in ANFIS model if both training and 
testing data are considered. So, finally, the ANFIS model 
can be suggested as the best prediction model and can 
be used further for surface roughness prediction using 
ball end milling operation on aluminum.  

The results listed in Table 3 are found to be within 
acceptable limits for the ANFIS model. Larger deviation in 
prediction for surface roughness that occurred in few of 
the cases may be due to inhomogeneity in work piece 
composition, small discrepancy in tool setting/work piece 
setting and tool or machining condition.  Figure 9 show 
the relationship between ANFIS predicted roughness and 
different input parameters. In Figure 9a and b, it can be 
observed that low spindle speed S and low feed rate fy 
near 0° inclination angle of the spindle axis gives better 
surface finish. Feed fx leads to deteriorate surface quality 
at low inclination angle. Figure 9c suggests fx is kept at a 
medium level cutter axis vertical to the machining 
surface. At low depth of cut, surface quality seems worse 
in Figure 9d. Figure 9e and f shows that for medium level 
of speed feed rate fy and feed fx has low impact on 
surface finish. Graph in shows Figure 9g abnormality at 
lower depth and higher speed. On the other hand, from 
Figure 9h, it is observed that higher feed rate in both 
direction results in increased surface roughness. Figure 
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Table 1. Training data set. 
 

SL Inclination 
angle (φ) 

Speed 
S (rpm) 

Feed fy 

(mm/min) 
Feed fx 

(mm) 
Depth of 

Cut t (mm) 
Avg. Ra 

(experimental) 
Ra (theoretical 

equations) 
Ra 

(ANFIS) 
Ra 

(RSM) 

1 0 380 22 0.4 0.2 1.36 1.28 1.3601 1.785 

2 0 380 34 0.6 0.2 2.11 2.89 2.1098 3.164 

3 0 380 22 0.4 0.4 1.95 1.28 1.9500 1.111 

4 0 380 34 0.6 0.4 3.55 2.89 3.5500 2.160 

5 0 380 22 0.4 0.6 0.56 1.28 0.5601 1.282 

6 0 380 34 0.6 0.6 1.33 2.89 1.3301 2.000 

7 0 520 34 0.5 0.3 2.46 2.01 2.4600 1.472 

8 0 520 44 0.6 0.3 2.84 2.89 2.8400 2.054 

9 0 520 68 0.7 0.3 3.9 3.94 3.8997 3.096 

10 0 520 44 0.6 0.5 0.73 2.89 0.7300 1.608 

11 0 520 68 0.7 0.5 1.36 3.94 1.3599 2.744 

12 0 520 34 0.5 0.6 1.43 2.01 1.4301 1.280 

13 0 520 44 0.6 0.6 2.66 2.89 2.6599 1.701 

14 0 520 68 0.7 0.6 3.62 3.94 3.6200 2.885 

15 0 715 34 0.4 0.4 0.49 1.28 0.4898 0.559 

16 0 715 68 0.8 0.4 3.01 5.14 3.0104 3.275 

17 0 715 34 0.4 0.5 0.44 1.28 0.4400 0.615 

18 0 715 44 0.6 0.5 0.85 2.89 0.8499 1.342 

19 0 715 68 0.8 0.5 1.98 5.14 1.9801 3.073 

20 0 715 34 0.4 0.6 1.33 1.28 1.3300 0.883 

21 0 715 44 0.6 0.6 1.59 2.89 1.5898 1.430 

22 0 1020 22 0.4 0.6 0.98 1.28 0.9799 0.636 

23 0 715 34 0.8 0.4 3.07 5.14 3.0699 3.445 

24 15 380 34 0.4 0.3 1.35 1.28 1.3500 1.870 

25 15 380 68 0.8 0.3 5.11 5.14 5.1100 5.547 

26 15 380 34 0.4 0.5 1.65 1.28 1.6500 1.817 

27 15 380 44 0.6 0.5 3.71 2.89 3.7100 3.077 

28 15 380 34 0.4 0.6 1.61 1.28 1.6100 2.107 

29 15 380 44 0.6 0.6 3.71 2.89 3.7100 3.188 

30 15 380 68 0.8 0.6 4.43 5.14 4.4300 5.009 

31 15 520 34 0.4 0.4 1.61 1.28 1.6100 1.689 

32 15 520 68 0.8 0.4 5.23 5.14 5.2299 4.948 

33 15 520 34 0.4 0.5 1.27 1.28 1.2700 1.764 

34 15 520 44 0.6 0.5 3.05 2.89 3.0500 2.910 

35 15 520 68 0.8 0.5 5.18 5.14 5.1800 4.764 

36 15 520 34 0.4 0.6 1.39 1.28 1.3900 2.049 

37 15 520 44 0.6 0.6 3.99 2.89 3.9900 3.017 

38 15 715 34 0.4 0.3 1.79 1.28 1.7900 1.754 

39 15 715 44 0.6 0.3 2.07 2.89 2.0701 3.102 

40 15 715 68 0.8 0.3 5.69 5.14 5.6900 5.049 

41 15 715 34 0.4 0.4 1.25 1.28 1.2500 1.612 

42 15 715 68 0.8 0.4 5.49 5.14 5.4900 4.648 

43 15 715 34 0.4 0.6 1.53 1.28 1.5300 1.961 

44 15 715 68 0.8 0.6 5.07 5.14 5.0700 4.481 

45 15 520 34 0.6 0.4 3.55 2.89 3.5500 3.367 

46 30 380 34 0.4 0.3 1.81 1.28 1.8100 1.425 

47 30 380 44 0.6 0.3 3.37 2.89 3.3701 3.306 

48 30 380 68 0.8 0.3 5.19 5.14 5.1901 5.422 

49 30 380 34 0.4 0.5 1.45 1.28 1.4500 1.397 

50 30 380 44 0.5 0.5 1.5 2.01 1.5000 1.924 
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Table 1 contd. 
 

51 30 380 34 0.3 0.6 1.37 0.72 1.3700 1.126 

52 30 380 44 0.5 0.6 2.06 2.01 2.0600 2.173 

53 30 380 68 0.6 0.6 3.67 2.89 3.6703 3.078 

54 30 520 34 0.4 0.4 1.61 1.28 1.6100 1.274 

55 30 520 68 0.8 0.4 4.74 5.14 4.7402 4.853 

56 30 520 34 0.4 0.5 1.85 1.28 1.8500 1.361 

57 30 520 68 0.7 0.5 2.53 3.94 2.5301 3.616 

58 30 520 34 0.3 0.6 1.39 0.72 1.3900 1.167 

59 30 520 44 0.5 0.6 1.42 2.01 1.4200 2.101 

60 30 520 68 0.6 0.6 3.41 2.89 3.4100 3.040 

61 30 715 34 0.4 0.3 1.41 1.28 1.4100 1.351 

62 30 715 68 0.8 0.3 5.88 5.14 5.8799 4.966 

63 30 715 34 0.4 0.4 1.46 1.28 1.4600 1.222 

64 30 715 44 0.5 0.4 1.92 2.01 1.9199 1.725 

65 30 715 68 0.7 0.4 1.96 3.94 1.9601 3.499 

66 30 715 34 0.3 0.6 1.44 0.72 1.4400 1.216 

67 30 715 44 0.5 0.6 1.26 2.01 1.2600 1.992 

68 30 715 68 0.6 0.6 3.51 2.89 3.5100 2.978 
 
 
 
 

Table 2. Different ANFIS architecture. 
 

No. No. of membership function Function type Output function 
Error (RMSE) 

Training error Test error 

1 

2 

triMF 
Constant 0.52621 1.1201 

2 Linear 0.0015313 8.6738 

3 
trapMF 

Constant 0.67267 1.8066 

4 Linear 0.062238 32.5008 

5 
gbellMF 

Constant 0.44127 2.6083 

6 Linear 0.0017631 4.1674 

7 
gaussMF 

Constant 0.47684 2.4983 

8 Linear 0.0010401 11.4902 

9 
gauss2MF 

Constant 0.44438 14.6782 

10 Linear 0.0040477 15.409 

11 
piMF 

Constant 0.67038 2.7691 

12 Linear 0.062238 225.4342 

13 
dsigMF 

Constant 0.66458 3.4325 

14 Linear 0.0087274 65.9564 

15 
psigMF 

Constant 0.66458 3.4325 

16 Linear 0.0093929 63.1275 

      

17 

3 

triMF 
Constant 0.0044346 1.5592 

18 Linear 9.246×10
-5

 1.5502 

19 
trapMF 

Constant 0.055762 4.1632 

20 Linear 6.8203×10
-5

 1.7523 

21 
gbellMF 

Constant 0.0019349 1.4268 

22 Linear 1.9238×10
-4

 1.1749 

23 
gaussMF 

Constant 0.00063287 1.5905 

24 Linear 9.9845×10
-5

 1.146 

25 
gauss2MF 

Constant 0.058802 3.9327 

26 Linear 1.7924×10
-4

 1.5134 
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Table 2 cont. 
 

27 

 

piMF 
Constant 0.062843 2.5633 

28 Linear 9.2752×10
-5

 1.8044 

29 
dsigMF 

Constant 0.030196 4.168 

30 Linear 0.0021019 2.7252 

31 
psigMF 

Constant 0.030196 4.168 

32 Linear 6.6216×10
-4

 2.6197 

      

33 

4 

triMF 
Constant 9.5473×10

-6 
1.9769 

34 Linear 2.2411×10
-5

 1.8897 

35 
trapMF 

Constant 7.4861×10
-6

 2.5756 

36 Linear 3.8743×10
-5

 2.6091 

37 
gbellMF 

Constant 1.1209×10
-5

 1.8921 

38 Linear 5.5699×10
-4

 1.8935 

39 
gaussMF 

Constant 1.0605×10
-5

 1.8773 

40 Linear 1.3647×10
-4

 1.8018 

41 
gauss2MF 

Constant 7.4889×10
-6

 2.5885 

42 Linear 1.0873×10
-4

 2.6164 

43 
piMF 

Constant 7.9488×10
-6

 2.7837 

44 Linear 5.3625×10
-5

 2.8038 

45 
dsigMF 

Constant 7.5323×10
-6

 2.5586 

46 Linear 1.4076×10
-4

 2.5763 

47 
psigMF 

Constant 7.5323×10
-6

 2.5586 

48 Linear 1.4611×10
-4

 2.5695 

 
 
 

 
 
Figure 5. Final ANFIS model with 5 inputs and 1output. 
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Figure 6. Train of ANFIS up to 10 epochs. 

 
 
 

 
 
Figure 7. Comparison between the experimental and predicted values by the ANFIS training data. 
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Table 3. Summary of different models output with testing data set. 
 

SL 
Inclination 
angle (φ) 

Speed S 
(rpm) 

Feed fy 

(mm/min) 
Feed fx 

(mm) 
Depth of cut t 

(mm) 
Avg. Ra 

(experimental) 
Ra (from 

equations) 
MSE % error 

Ra (from 
ANFIS) 

RMSE % error RSM (Ra) MSE 
% 

error 

1 30 520 44 0.6 0.4 3.53 2.890 0.410 18.130 1.603 3.714 54.598 2.862 0.447 18.930 

2 30 380 68 0.7 0.5 4.09 3.940 0.023 3.667 2.637 2.112 35.531 3.731 0.129 8.785 

3 15 520 44 0.6 0.4 3.25 2.890 0.130 11.077 2.423 0.683 25.434 3.015 0.055 7.234 

4 30 380 68 0.4 0.6 1.19 1.280 0.008 7.563 1.661 0.221 39.538 2.028 0.701 70.378 

5 15 715 44 0.6 0.6 1.97 2.890 0.846 46.701 4.005 4.139 103.274 2.770 0.640 40.624 

6 0 380 44 0.8 0.6 2.06 5.140 9.486 149.515 1.178 0.778 42.811 3.409 1.820 65.484 

7 0 380 44 0.8 0.4 4.09 5.140 1.103 25.672 2.669 2.019 34.743 3.928 0.026 3.970 

8 0 715 44 0.6 0.4 1.37 2.890 2.310 110.949 0.543 0.684 60.372 1.465 0.009 6.956 

9 30 715 44 0.6 0.3 3.5 2.890 0.372 17.429 2.268 1.519 35.211 2.961 0.291 15.404 

10 0 380 44 0.8 0.2 3.03 5.140 4.452 69.637 4.822 3.209 59.125 5.291 5.111 74.609 

11 0 715 68 0.8 0.6 2.08 5.140 9.364 147.115 1.376 0.496 33.856 3.082 1.005 48.188 

12 15 380 68 0.8 0.5 5.15 5.140 0.000 0.194 4.330 0.672 15.920 4.978 0.030 3.346 

13 0 520 34 0.5 0.5 0.38 2.010 0.397 45.652 1.113 0.072 19.377 1.133 0.061 17.893 

14 15 520 68 0.8 0.6 5.52 5.140 0.144 6.884 5.215 0.093 5.534 4.792 0.530 13.191 

15 30 520 44 0.5 0.5 2.03 2.010 0.000 0.985 1.349 0.463 33.527 1.856 0.030 8.585 

16 15 380 44 0.6 0.3 2.05 2.890 0.706 40.976 2.436 0.149 18.824 3.489 2.072 70.218 

 
 
 

9i and j shows the interaction effect of depth of cut 
with feed rate fy and feed fx on Ra. At low feed rate 
(fy), depth of cut is more or less consistent. For 
low feed, fx depth of cut should be higher for 
getting better surface quality. 

Table 5 presents the summary of correlation 
test between Ra (experimental) and different input 
parameters for training data set. It shows that feed 
rate fy (mm/min) and feed fx (mm) have a great 
positive correlation with Ra, and depth of cut t 
(mm) has a weak negative correlation with Ra. 
 
 
Conclusion  
 
In this research, an adaptive neuro-fuzzy system 
and RSM is applied to predict the surface 
roughness during ball end milling operation. The 

machining parameters were used as inputs to the 
ANFIS and RSM to predict surface roughness. 
The ANFIS model could predict the surface 
roughness for training data with an average 
percentage deviation of 0.003014% when 
Gaussian membership function is applied, while 
RSM model could predict the surface roughness 
for training data with an average percentage 
deviation 27.72% from training data set. The 
ANFIS model could predict the surface roughness 
for testing or validation data set with an average 
percentage deviation of 38.605%, while RSM 
model could predict the surface roughness for 
testing data with an average percentage deviation 
of 29.612%. But prediction results for surface 
roughness are more accurate in ANFIS model if 
training data are considered. For train data set, 
average percentage deviation from practical data 

is only 0.003014% for ANFIS model, while RSM 
model could predict the surface roughness for 
training data with an average percentage 
deviation of 27.722%. 

Engineered components must satisfy surface 
texture requirements and, traditionally, surface 
roughness (arithmetic average, Ra) has been used 
as one of the principal methods to assess quality. 
It is quite obvious from the results of the predictive 
models that the predicted accuracy was good and 
the predicted results matched well with the 
experimental values. As the correlation between 
the machining and the surface roughness is 
strongly dependent on the material being 
machined, there is an impending need to develop 
a generic predictive platform to predict surface 
roughness. The present investigation is a step in 
this regard. The proposed model is helpful in the
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Figure 8. Comparison between the experimental and predicted values by the ANFIS testing data. 

 
 
 

Table 4. Errors in different models.  
 

Model 
For training data  For testing data 

RMSE Absolute mean % of error  RMSE Absolute mean % of error 

Theoretical equation 0.934292 42.02314  1.364 43.884 

ANFIS 9.9845×10
-5

 0.003014  1.146 38.605 

RSM 0.630641 27.72202  0.900 29.612 

 
 
 

judicious selection of the various machining parameters 
to minimize surface roughness. Vibrations are 
unavoidable during the machiningoperation. Vibrations 
may result from the variation of cutting forces generated 
during the machining process. It can be caused due to 

sources inside or outside the machine tool. It is important 
to know the effects of vibrations on the characteristics of 
surface profile as vibration is responsible for degrading 
the surface finish. Further work can be done considering 
vibration as an input factor for developing a prediction
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Figure 9. (A)Surface plot of roughness Ra µm vs. Inclination angle φ and Spindle Speed S rpm; (B); Inclination angle φ and 
Feed rate fy mm/min. 
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Figure 9. (C) Inclination angle φ and Feed fx mm; (D) Inclination angle φ and Depth of Cutt mm; 
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Figure 9. (E)Spindle Speed S rpm and Feed rate fy mm/min; (F)Spindle Speed S rpm and Feed fx mm; 
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(G) Speed S rpm and Depth of Cut t mm Feed; (H)rate fy mm/min and Feed fx mm; 
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Figure 9. (I)Feed rate fy mm/min and (J)Depth of Cut t mm; Feed fx mm and Depth of Cut t mm. 

 
 
 

Table 5. Pearson correlation for different inputs with experimental Ra . 
 

Variable r P-value 

Inclination angle (φ) 0.156 0.203 

Speed S (rpm) 0.096 0.437 

Feed fy (mm/min) 0.722 0.000 

Feed fx (mm 0.788 0.000 

Depth of cut t (mm) -0.209 0.088 



 
 
 
 
model for surface roughness. 
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