
 

Vol. 12(1), pp. 30-36, January-June 2021 

DOI 10.5897/JMER2020.0530 

Article Number: 5FD5AC066271 

ISSN 2141–2383 

Copyright © 2021 

Author(s) retain the copyright of this article 

http://www.academicjournals.org/JMER 

 

 
Journal of Mechanical Engineering 

Research 

 
 
 

Full Length Research Paper 
 

Physics of deactivation of gyroscopic inertial forces 
 

Ryspek Usubamatov1* and Marek Bergander2 

 
1
Department of Automation and Robotics, Kyrgyz State Technical University, Bishkek, Kyrgyzstan. 

2
Magnetic Development, Inc. Madison, CT, USA. 

 
Received 19 May, 2019; Accepted 15 January, 2020 

 

This new study on effects of gyroscope demonstrates the action on the spinning disc that the eight 
interrelated inertial torques system generated by its rotating masses. The physics behind this inertial 
torques manifest the action of the resistance and precession torques, which physics are described and 
explained. The latest research on the gyroscopic properties revealed the deactivation of the inertial 
torques that contradicts the principles of classical mechanics. Practical tests of the blocking of the 
gyroscope motion around one axis displays the deactivation of inertial torques acting around the axis 
of the load torque. In this condition, the gyroscope with one side support turns down under the action 
of its weight and frictional forces produced by the action of the precession torque and weight of the 
movable components. The precession torque is presented by the change in the angular momentum, 
while other inertial torques is deactivated. These phenomena present the new unknown gyroscopic 
effect that needs a deep study and explanation. This work considers the attempt to describe the 
physics of the deactivation of the gyroscopic inertial torques around two axes and the action of the 
precession torque in a case of the gyroscope motion around one axis. 
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INTRODUCTION 
 

Beginning from the eighteen century, gyroscopic 
problems were studied by famous, outstanding, and 
ordinary scientists that developed separate mathematical 
models for the action of inertial torques which manifest 
gyroscopic effects. However, their analytical approaches 
could not describe their physics on a full scale. The 
reason for this fact is that gyroscopic effects should be 
further described by the terms of the principles of the 
kinetic and potential energies developed in the middle of 
the nineteenth century. In-depth studies on gyroscopic 
effects started in the twentieth century with intensification 
on the work of machines and mechanisms. Since then, 
numerous published articles dedicated to gyroscopic 
effects contain simplifications, assumptions, and 
corrections of  the  mathematical models with  the  aim  to 

get results that should match with practical tests 
(Armenise et al., 2010; Deimel, 2003; Greenhill, 2010; 
Scarborough,  2011). The inertial forces acting on a 
gyroscope and motions are expressed by wrong 
analytical models and explanations of the physics of 
gyroscopic effects (Ferrari, 2006; Weinberg, 2011). For 
solutions to engineering problems in relation to the 
rotating objects, the numerical modeling of gyroscopic 
motions is developed with the software that does not 
describe the physics of the processes due to the 
complexity of the forces acting on it (Klein and 
Sommerfeld 2008; Taylor, 2005; Gregory, 2006; 
Aardema, 2005). The latest research on gyroscopic 
effects discovered the action on the running gyroscope of 
the system of interrelated  inertial  torques  based  on  the  
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principle of kinetic energy and conservation law 
(Usubamatov, 2018, 2016). 

The mathematical models for the gyroscopic effects 
with the action of the system of interrelated inertial 
torques well-matches practical results. Nevertheless, 
deactivation of the inertial torques in a case that involves 
blocking of the gyroscope motion around one axis is not 
well described and explained (Usubamatov, 2015, 2018).  
The phenomena of the deactivation of inertial forces 
contradict the principle of physics hence the matched 
results of analytical and practical approaches do not 
guarantee their full proof (Peters, 2001; Taylor, 1996; 
Engineering ToolBox, 2004). This work represents the 
result of the solution for the motion of the gyroscope 
around one axis, explains the physics of the deactivation 
of the inertial torques, and the action of the precession 
torque on the gyroscope. Nevertheless, the proposed 
solution and conclusion cannot be accepted as the final 
truth; so researchers can present their own vision for the 
deactivation of gyroscopic inertial forcers. 
 
 
METHODOLOGY   
 
The mathematical model for the gyroscopic motions around one 
axis and use of the test stand with the technical parameters of the 
Super Precision Gyroscope “Brightfusion LTD” and conditions are 
presented in the published manuscript (Usubamatov 2018).The 
equations of the inertial torques Ti generated by the rotating 
masses of the spinning disc [11] are presented in the following 
expression: 
 
Ti = DiJωωx                                                                                     (1)                             
 
Where Di is the factor that depends on the type of inertial torque, 
that is, generated by the centrifugal, common inertial, Coriolis and 
the change in the angular momentum; J is the mass moment of 
inertia of the spinning disc; ω is the angular velocity of the disc; ωx 
is the angular velocity of the disc’s precession. 

Expression of the inertial torques (Equation 1) is used for the 
mathematical model of gyroscope motion around one axis in which 
the Euler’s differential equation is presented by the following 
expression (Usubamatov, 2018). 
 

 fpxxcrxctfx
x

x TTTTT
dt

d
J  ..


                                (2) 

 
where ωx is the angular velocity of the gyroscope around axes ox; 
Jx is the mass moment of inertia of the rotating components of the 
stand; T is the resulting torque generated by the weight of the 
gyroscope components, Tct.x,  Tcr.x, are inertial torques generated by 
the centrifugal, Coriolis forces acting around axis ox; Tfx  = TfA + Tfm 
is the frictional torques acting on gyroscope’s supports; TfA is the 
frictional torque generated by the weight of the gyroscope 
components and acting on the supports; Tfm is the frictional torque 
acting on the supports generated by the centrifugal forces of the 
centre of mass; Tfpx  = Tfin.y + Tfam.y is the frictional torque generated 
by the precession torques acting around axis oy. 

Practical tests of the gyroscope motion around one axis 
demonstrate its fast motion from upper location to down. It means 
the inertial torques generated by the rotating mass elements Tct.x, 
Tcr.x. Tin.y do not act but should act on the inertial torque generated 
by the center of mass. This statement is a logical solution  that  was  
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validated by the test. Thereafter, Equation 2 is presented by the 
following expression: 

  

yfamfx
x

x TTT
dt

d
J .


                                                           (3)                                                                 

 
The load torque T around axis ox is generated by the weight of 
gyroscope components and represented by the following 
expression:  

 

cos)2/( gGasaMlT                                                          (4)     

                                              
where M is the gyroscope mass; s is the axle mass; G is the mass 
of the counter-weight; g is the gravity acceleration; l is the distance 
of location of the gyroscope’s centre of mass; a is the axle length 
and the distance of location of the counter-weight’s center of mass; 
γ is the axle inclination angle, mr is resulting load mass, lm is 
location of resulting load mass (Usubamatov, 2018). 
Frictional torques generated by the weight of the gyroscope 
components and acting on the supports is represented by the 
following equations: 
 

 cos2cos2
)(

fd
Ag

d
gfGbsMTfA 

                              

    (5)                                                                    

 
where b is the mass of the centre beam; f is the frictional coefficient 
of supports; d is the diameter of the supports; δ = 45° is the angle of 
the beveled sliding bearing; l is the distance from the axis oy to the 
centre mass of the spinning rotor; g is the gravity acceleration; and 
other parameters are as specified above. 

The angular velocities of the gyroscope around axes generate 
the centrifugal forces produced by the resulting centre of mass and 
hence the frictional torque acting on the supports that is expressed 
by the following equation: 
 

 
2

cos2
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fd
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                                                            (6) 

 
where mr is the resulting centre of mass; lm is the distance of the 
location of the resulting centre of mass; all parameters are as 
specified above. 

The precession torque causes additional load on the supports 
thereby increasing the value of the frictional force of the supports. 
Hence, the frictional torques generated by the precession torques is 
represented by the following equation: 
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where h, τ, δ are the constructional parameters of the gyroscope’s 
stand, J is the mass moment of inertia of the spinning rotor, ω is the 
angular velocity of the spinning rotor, and other parameters are as 
specified above. 

The modified equation for the gyroscope motion (Usubamatov, 
2018) is represented by the following:  
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where all parameters are as specified above (Usubamatov, 2018). 

 
 
Case study and practical tests  

 
Substituting the gyroscope stand data (Usubamatov, 2018) and the 
coefficient of friction f = 0.16 into Equation 8 gives the following 
expression: 
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Simplification of Equation 9 yields the following result: 
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The right component (7.5792783504×10
-7 2

x ) of Equation 10 has 

the small value of high order that can be neglected. Following the 
steps of computing are the same as represented in the cases 
studied (Usubamatov, 2018) and all comments are omitted. 
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t = 2.205 s                                                                                       (23) 

 
From the above, the obtained result is less than the time computed 
when the combined precession torque acts on the condition 
(Usubamatov, 2018) (t = 2.205 s) < (t = 2.24 s) and closer to the 
time of the tests (t = 2.10 s). This implies that the free turn of the 
running gyroscope generates only the precession torque of the 
change in angular momentum. 



Usubamatov and Bergander          33 
 
 
 

 
 

Figure 1. Vectorial diagram of the velocities and 
acceleration of the gyroscope with spinning disc. 

 
 
 
RESULTS AND DISCUSSION 
 
The inertial torques acting on the spinning disc (Equation  
1) contains two variable components ω and ωx in which 
the product ωωx = εy represents the acceleration around 
axis oy. The angular velocity of the spinning disc ω 
around axis oz is accepted as constant and does not 
change the value. The precession angular velocity of the 
gyroscope ωx around axis ox is variable. The running 
gyroscope under the action of the external torque rotates 
around three axes ox, oy, and oz. These motions express 
the work of the potential energy of the gyroscope weight 
and kinetic energy of the spinning disc along axes of 
motions. The kinetic energy of the spinning disc is 
expressed by the action of the change in the angular 
momentum around axis oz and by the action of the 
inertial torques generated by the centrifugal, common 
inertial, and Coriolis forces around axes ox and oy. The 
action of all inertial torques around the axes is 
interrelated. The vectorial diagram of the angular 
velocities, acceleration of the spinning disc and the 
gyroscope around axes are presented in Figure 1. All 
rotational motions of the gyroscope around axes are in 
the counter-clockwise directions if considered from the 
tips of the co-ordinate axes. 

The blocking of the running gyroscope from turning 
around   the   axis   oy   causes    rotation    to    stop   the 

acceleration and rotation around this axis, that is, ωωx = 
εy = 0. Since the angular velocity of the spinning disc ω is 
constant, the angular velocity of the precession around 
axis ox is an absence (ωx = 0). This implies that all inertial 
torques (Equation 1) have the zero values Ti = 0, that is, 
they are deactivated formally for the accepted condition 
and should be proven physically. The gyroscope starts to 
turn down under the action of the gyroscope weight and 
frictional forces acting on the supports that confirmed the 
practical tests. 

The new condition of the gyroscope motion around axis 
ox with the high angular velocity should generate the new 
values of inertial torques and frictional forces generated 
by the rotating mass of the spinning rotor. However, 
practice demonstrates their absence, except the action of 
the precession torque, which is conducted according to 
the principles of classical mechanics. Other inertial 
torques generated by the rotating mass elements of the 
spinning disc are deactivated, and at the first sight, acted 
in contradiction to the laws of physics. 

Analysis of the external and inertial torques acting on a 
gyroscope yields the following outcomes: The torques 
acting on the gyroscope and its motions around three 
axes are results of the work of potential and kinetic 
energies. The potential energy is expressed by the 
location of the gyroscope weight. The kinetic energy is 
expressed  by the spinning of the disc around axis oz and  
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Figure 2. Vectorial diagram of the components of in the angular 
momentum of the spinning disc. 

 
 
 
gyroscope rotation around axes ox and oy. Analysis of 
the action of torques around three axes enables the 
formulation of the following principles: 
 
(i) The kinetic energy of the spinning disc maintains its 
motion around axis oz; 
(ii) The external load torque generates the inertial torques 
acting around axis ox and oy that express the work of the 
potential and kinetic energies of the gyroscope around 
axes ox and oy; 
(iii) The kinetic energy of the spinning disc is redistributed 
along the axes proportionally to the ratio of angular 
velocities of the gyroscope by the principle of energy 
conservation. 
 
Kinetic energies of the gyroscope along the axes of 
motions are manifested by the action of the angular 
momentums. The vectorial diagram of the angular 
momentums of the spinning disc and their changing at a 
starting condition under the action of the external torque 
on the gyroscope is represented in Figure 2.  

The action of the external load torque T around axis ox 
on the spinning disc leads to the change in the location of 
the vector of the angular momentum H on the small angle 
γx represented by the vector H1. The value of H1 is less of 
than that of H on the value of the change in angular 
momentum ΔHx. The latter is acting around axis oy and 
changes in the location of the vector H on the angle γy. 

The value of the new vector H2 is less than the vector H 

on the value of the ΔHy. The action of the torques ΔHx 
and ΔHy is simultaneous and expresses the changes in 
the values of the angular momentum of the spinning disc 
around axes ox and oy. This simple example 
demonstrates the redistribution of the value of the 
angular momentum of the spinning disc along the axes 
ox and oy of the rotation by the principle of the 
conservation of the angular momentum. These principles 
are confirmed by the following  statements. The  absence 

of the spin of the gyroscope’s disc means the absence of 
its kinetic energy and hence the inertial torques around 
axes. The gyroscope rotates around the axes under the 
action of the system of the inertial torques that consumes 
the part of the potential and kinetic energies of the 
spinning disc. The total value of the kinetic energies of 
the gyroscope about the axes is constant according to 
principles of energy conservation. The interrelations of 
the kinetic energies along the axes indirectly expresses 
the ratio of the angular velocities ωy = (4π

2
 + 17) ωx of 

the motions around the axes for the gyroscope of the 
horizontal location (Usubamatov, 2016). The absence of 
the rotation of the gyroscope around axis oy (ωy = 0) 
means ωx = 0, that is, the absence of kinetic energies 
and the inertial torques acting around these axes. The 
angular velocities ωy and ωx express the kinetic energies 
of the gyroscope rotation which are parts of the kinetic 
energy of the spinning disc. 

From the previous discussion, the angular velocity ωx 
of the gyroscope is the result of the action of the resisting 
resulting torque (ΣTr  = (Tct.x + Tcr.x + Tin.y + Tam.y) and 
external torques T and Tfx. The angular velocity is a 
component of the inertial torques, and when its value ωx = 

0, it means the resulting torque ΣTr = 0 is absent.  Thus, 
the spinning rotor rotates around axis ox acting under 
action only the external load and frictional torques. The 
ratio of angular velocities around two axes ωy = (4π

2
 + 

17)ωx is not maintained. This is the reason that the 
rotation of the spinning disc under the action of the 
external loads around axis ox does not generate new 
inertial torques that demonstrates the practical tests. 

The values of the torques computed by the theoretical 
Equation 2 and practical Equation 3 for horizontal 
position (γ =0) of the gyroscope enable demonstration of 
the true mathematical model. Substituting the components 
of inertial torques (Usubamatov, 2018) load and frictional 
torques into right side Equations 2 and 3 gives the values 
of  the  resulting  torques.  For  Equation  2,  the  resulting 



 
 
 
 
torque is as follows: 
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For Equation 3, the resulting torque is presented by the 
right side of Equation 8. The data obtained above (Case 
study and practical tests), while computing the angular 
velocity ωx of the gyroscope around axis ox by Equation 
14 for the time of turn until horizontal position, t = 1.47 s, 
ωx = 0.373846 rad/s, and substituting into Equations 24 
and 8 give the ensuing results. The resulting torques 
computed by Equations  24 and 8 are as follows 
respectively: 
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Equation 26 demonstrates that the value of the inertial 
torques generated by the centrifugal and Coriolis forces is 
bigger than other components and resulting torque acting 
in the clockwise direction. It is impossible because the 
inertial torques is constraining torques. This result 
validates that the mentioned inertial torques are 
deactivated when the gyroscope motion is around one 
axis. The precession torque is presented by the change in 
angular momentum (Tam), which is the last component of 
Equation 24. The precession torque (Tin) of the common 
inertial force is not included in Equation 24; its value 
dramatically increases the time of the gyroscope turn and 
does not validate the time of the practical test. 

The deactivation of the gyroscopic inertial torques 
generated by the rotating mass elements occurs 
according to the physical principle of the kinetic energy 
conservation for the rotating objects. The kinetic energy 
of the spinning rotor along axis oz is conserved and the 
action of the external torque activates the change in the 
angular momentum at any conditions. The conducted 
analysis explains the physics  of  the  deactivation  of  the  
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inertial torques generated by the rotating mass elements 
of the spinning disc and confirms the principle of the 
conservation of its angular momentum. 

The phenomena associated with deactivation of the 
gyroscopic inertial torques are very difficult to perceive 
against the background of generally accepted knowledge 
of classical mechanics. Rejection of the deactivation of 
inertial forces is explained by the traditional examples in 
known publications that consider simple mechanisms and 
schemes of acting inertial forces on some objects. The 
work of a gyroscope is not a simple process and is the 
reason why the solutions for its acting inertial forces and 
motions by researchers could not be found for centuries. 
As presented above, explanation of the deactivation of 
the gyroscopic inertial torques is also not ordinary and 
needs deep analysis and comprehension. Nevertheless, 
the described physics of the deactivation of the inertial 
torques do not claim to be the ultimate truth in the area of 
dynamics of rotating objects. 

The numerous publications for computing the inertial 
forces acting on the spinning objects consider examples 
with motions of the object around one axis. These 
examples are suitable for the simple solution by the 
action of the change in angular momentum. The authors 
of these publications did not know about the complexity 
of the action of the inertial torques on spinning objects 
and about the deactivation of them but presented the 
correct solutions. However, the publications that consider 
the complex motions of the gyroscopic devices present 
wrong solutions for the action of the inertial torques. The 
action of the system of interrelated inertial torques should 
be used for solutions of the complex gyroscopic problems 
in engineering. A solution to such examples represents a 
good educational process in Engineering Mechanics 
which is part of the dynamics of rotating objects. 
 
 
Conclusion 
 
The present study on gyroscopic effects has brought 
breakthrough innovations in the area of the gyroscope 
theory. Newly defined interrelated inertial torques acting 
on a spinning disc of the gyroscope should be used in 
deriving the true mathematical models for the gyroscopic 
effects. An application of the new analytical solutions 
demonstrates the necessity to consider accurately the 
value of each component of the mathematical models for 
gyroscopic motions. The interrelated action of the inertial 
torques demonstrates unknown properties where one of 
them is the deactivation of the inertial torques generated 
by the rotating mass elements. 
    This phenomenon contradicts principles of physics and 
requires in-depth study and explanation of the nature of 
the deactivation of the part of the gyroscopic inertial 
torques. The torque of the change in angular momentum 
is acting constantly at any conditions of gyroscopic 
operation. These gyroscopic  properties can be explained  
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by the principle of energy conservation that is validated 
by the practical tests. 
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NOMENCLATURE 
 
a, d, h, ri, geometrical sizes of the gyroscope 
components; G, mass of the counter-weight; g, gravity 
acceleration; e, base of the natural logarithm; f, coefficient 
of sliding friction; I, index for axis ox or oy; J, mass 
moment of inertia of the rotor’s disc;  Ji,  mass moment of 
inertia of the gyroscope around axis I; l, distance 
between the gyroscope center mass and axis of the 
support; lm, distance between a gyroscope component 
center mass and axis of the support; s, mass of the axle; 
T, load torque; Tam.i, torque of the change in the angular 
momentum acting around axis I; t, time; M, mass of the 
gyroscope; α, δ, τ, constructional angles of the gyroscope 
stand; γ, angle of inclination of the rotor’s axle; ω, 
angular velocity of the rotor; ωi , angular velocity of 
precession around axis I; 
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