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Nonlinear transient analysis of functionally graded curved panels is carried out employing a higher-
order C0 finite element formulation. The element consists of nine degrees-of-freedom per node with 
higher-order terms in the Taylor’s series expansion which represents the higher-order transverse cross 
sectional deformation modes. The formulation includes Sanders’ approximation for doubly curved 
shells considering the effects of rotary inertia, transverse shear and moderately large rotations in the 
von Kárman sense. A realistic parabolic distribution of transverse shear strains through the shell 
thickness is assumed and the use of shear correction factor is avoided. The accuracy of the formulation 
is validated by comparing the results with those available in the literature. The transient dynamic 
responses of the functionally graded shell panels are investigated by varying the volume fraction index 
using a simple power law distribution. Material properties are assumed to be temperature-independent 
and graded in the thickness direction according to a simple power law distribution in terms of the 
volume fractions of the constituents. Heat conduction between ceramic and metal constituents is 
neglected. Effects of different panel geometry parameters, boundary conditions and loadings are 
studied. 
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INTRODUCTION 
 
Functionally graded materials (FGMs) are heterogeneous 
composite materials usually made from a mixture of 
metals and ceramics. The material properties of FGM are 
graded but continuous and are controlled by the variation 
of the volume fraction of the constituent materials. The 
concept of FGM was first proposed by Koizumi (1993). 
Functionally graded materials have the advantage of their 
ability to withstand high temperature gradients unlike fibre 
matrix composites, which show mismatch of mechanical 
properties across an interface of two discrete materials 
bonded together and resulting in debonding at high 
temperatures in some cases.  

In FGMs, the ceramic material provides high tempe-
rature resistance due to its low thermal conductivity  while  
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the ductile metal component provides structural strength 
and fracture toughness. 

Functionally graded materials are now being strongly 
considered as a potential structural material for future 
high-speed spacecraft. They are widely applied where 
the operating conditions are severe, for example, wear 
resistant linings for handling large heavy abrasive 
exchanger tubes, thermoelastic generators, heat engine 
components etc. FGMs can also be used to eliminate or 
control the thermal deformation (Wetherhold et al., 1996). 

Nonlinear dynamic responses of composite plates and 
shells were studied by many researchers including Nath 
et al. (1985), Civalek and Ülker (2005), Civalek (2006). 
Intensive researches were reported in the available 
literature on the analysis of FGM. Elastic problem of thick 
walled functionally graded (FG) tubes was studied by 
Fukui and Yamanaka (1992). Fuchiyama and Noda 
(1995) investigated the transient heat transfer and 
transient thermal stresses in  FG  plates  using  the  FEM.  
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Praveen and Reddy (1998) investigated the nonlinear 
transient thermoelastic behavior of functionally graded 
ceramic-metal plates and found that, in general, the 
response of plates with material properties between 
those of ceramic and metal is not intermediate to the 
responses of the ceramic and metal plates. Pseudo-
dynamic thermoelastic response of FG ceramic-metal 
cylinders was studied by Praveen et al. (1999) using the 
finite element method. Aboudi et al. (1999) developed a 
Cartesian co-ordinate based higher-order theory for 
FGMs, which circumvents the problematic use of the 
standard micromechanical approach, based on the 
concept of a representative volume element, commonly 
employed in FG composites. Reddy (2000) obtained 
Navier’s solutions and finite element results based on the 
third-order shear deformation theory for functionally 
graded plates. 

Woo and Meguid (2001) carried out nonlinear analysis 
of FG plates and shallow shells subjected to transverse 
mechanical load and a temperature field. Nonlinear 
bending response of FG plates subjected to transverse 
loads in thermal environments was investigated by Shen 
(2002) employing a mixed Galerkin-perturbation tech-
nique. Bhangale and Ganesan (2006) carried out static 
analysis of simply supported functionally graded and 
layered magneto-electro-elastic plates. Large deflection 
behavior of FG plates under pressure loads was invest-
tigated by GhannadPour and Alinia (2006).  Panda and 
Ray (2006) and Ray and Sachade (2006) analysed the 
FG plates integrated with the piezoelectric fiber-
reinforced composite layer. 

Many researchers studied dynamic behavior of FG 
structures in the past few years. Loy et al. (1999) investi-
gated the free vibration of simply supported FG cylindrical 
shells. Pradhan et al. (2000) studied the effect of different 
boundary conditions on the natural frequencies of FG 
cylindrical shells made up of stainless steel and zirconia. 
Influence of the volume fractions and the effects of confi-
gurations of the constituent materials on the parametric 
instability regions of FG plates were investigated by Ng et 
al. (2000). Han et al. (2002) pro-posed a numerical 
method for analyzing transient waves in FG cylindrical 
shells excited by impact point loads. Yang and Shen 
(2002) investigated the free and forced vibration charac-
teristics of shear deformable initially stressed FG plates 
in thermal environment.  

By considering the material properties of the consti-
tuents to be nonlinear functions of the temperature and 
graded in the thickness direction by power law 
distribution, Yang and Shen (2003) investigated the free 
vibration and parametric resonance of shear deformable 
FG cylindrical panels. Yang et al. (2003) presented a 
large amplitude vibration analysis of pre-stressed FGM 
laminated plates composed of a shear deformable FG 
layer and two surface-mounted piezoelectric actuator 
layers. Patel et al. (2005) carried out the free vibration 
analysis of FG elliptical and cylindrical shells using a 
higher-order theory. Nonlinear free vibration behavior  of  FG  

 
 
 
 
plates is investigated by Woo et al. (2006). Huang and 
shen (2004) studied the nonlinear vibrations and dynamic 
response of FG rectangular plates in thermal environ-
ments.  

A semi-analytical method was developed by 
Allahverdizadeh et al. (2008) for nonlinear free and 
forced axisymmetric vibration of a thin circular FG plate. 
A considerable amount of work was done on the develop-
ment of higher-order theories to study the static, dynamic 
and stability behavior of plates and shells. Many 
researchers developed higher-order theories in which the 
displacements of the middle surface would expand as 
cubic functions of the thickness co-ordinate and the 
transverse displacement was assumed to be constant 
through the thickness.  

This displacement field led to the parabolic distribution 
of the transverse shear stresses and, therefore, the use 
of shear correction factors could be avoided. To the best 
of the authors’ knowledge, however, limited literature is 
available related to the application of higher-order theory 
for studying the nonlinear transient behavior of FG curved 
panels and the authors attempt to fill this lacuna is first of 
its kind and new.  

Therefore, the geometric nonlinear transient analysis of 
FG curved panels is studied herein by using the higher-
order shear deformation theory (HSDT) developed by 
Kant and Khare (1997) and including the twist curvature 
while employing the finite element method. The 
nonlinearity used in the formulation is due to von Kárman. 
Material properties are assumed to be temperature-
independent and heat conduction between ceramic and 
metal constituents is neglected. 

 
 
Mathematical formulation 
 
Let us consider a shell element made of a FG material with the co-
ordinate system (x,y z) shown in Figure 1, and chosen such that the 
plane x-y at z = 0 coincides with the mid-plane. In order to 
approximate the three-dimensional elasticity problem to a two-
dimensional one, the displacement components u(x,y,z), v(x,y,z) 
and w(x,y,z) at any point in the shell space are expanded in 
Taylor’s series in terms of the thickness co-ordinates. The elasticity 
solution indicates that the transverse shear stresses vary 
parabolically through the element thickness. This requires the use 
of a displacement field in which the in-plane displacements are 
expanded as cubic functions of the thickness co-ordinate. The 
displacement fields, which satisfy the above criteria are assumed in 
the form as given by Kant and Khare (1997). 
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Where u, v and w are the displacements of a general point (x,y,z) in 
an element of the laminate along x, y and z directions, respectively. 

The parameters u0, v0, w0, xθ
and yθ

 are  the  displacements  and  



 
 
 
 

 
 
Figure 1. Spherical Shell panel and coordinate system. 
 
 
 

rotations of the middle plane, while 
*
0 ,u

 
*
0 ,v

 
*
xθ

 and 
*
yθ

 are the 
higher-order displacement parameters at the mid-plane. 

The present theory includes large displacements in the sense of 
von Kárman, which in particular imply that the first order derivatives 
of the tangential displacement components with respect to x, y and 
z are small so that their particular products can be neglected. 
The strain-displacement relations are as follows: (Reddy,1984 and 
Chandrashekhara, 1989) 
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Where xR  and yR
 are the radii of curvature of the shell along x 

and y directions, respectively, and xyR
 is the twist radius of 

curvature. 
Substituting Equation in Equation, linear strain terms are written as, 
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Where, 
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Figure 2. Cylindrical FG Shell panel. 
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1C  is a tracer by which the analysis can be reduced to that of shear 
deformable Love’s first approximation and 

0 0.5(1/ 1/ )x yC R R= −
 is the result of Sanders’ theory which 

accounts for the condition of zero strain for rigid body motion.      
 
 
FG material properties 
 
The panels considered (Figures 1 and 2) in the present analysis are 
assumed to be of uniform thickness h. It is also assumed that the 
panel is made from a mixture of ceramic and metals and the 
material composition is continuously varied such that the top 
surface (z = h/2) of the panel is ceramic rich, whereas the bottom 
surface (z = -h/2) is metal rich. Thus, the effective material property 
P (such as Young’s modulus, Poisson’s ratio, mass density etc.) 
can be expressed as 
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Where jP
 and jV

are the material property and volume fraction  of 
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the constituent material j, respectively, satisfying the volume 
fraction of all the constituent materials as, 
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For a panel with the reference surface at its middle surface, the 
volume fraction can be written as  
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In which, n characterizes the material variation through the panel 
thickness, which is referred to as volume fraction index 

and 0 n≤ ≤ ∞ . 
Material properties for a FG solid with two constituent materials are 
given by, 
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Where cP
 and mP

 refer to the corresponding properties of the 
ceramic and metal constituents, respectively. By using these 
material properties, the stresses can be determined as, 
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Equation can also be written as, 
 

{ } [ ]{ }Qσ ε=                                                  11   
 

Where [ ]Q  is effective stiffness coefficient matrix given by the 
relation, 
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cQ
 and mQ

are the effective stiffness coefficient matrices for 
ceramic and metal constituents, respectively.  

 
 
 
 
Finite element formulation 
 
In the present study, an eight-noded Co

 element is employed with 

nine degrees of freedom viz., u0, v0, w0, xθ
, yθ

, 
*
0 ,u

 
*
0 ,v

 
*
xθ

 and 
*
yθ

 at each node. The displacement fields { }u  at any point on the 
mid-surface is given by 
 
{ } [ ]{ }u N d=                                                                13 
                      

Where [ ]N  and { }d  are the interpolating function and 

displacement vector, respectively, associated with node i . 
The virtual work equation for nonlinear dynamic equilibrium in 

Lagrangian co-ordinate system at time t t+ ∆  may be written 
(Bathe et al., 1975) as 
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Where  
{ }T
d

 is the generalised displacement,δ  denotes its 

variation, 
�[ ]ρ  is the mass matrix and {s} is the stress vector. 

The generalised vectors of the mid-surface strain ε  can be 

separated into linear 
{ }Lε

 and nonlinear 
{ }NLε

 parts as given by 
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In Equation, [ ]LB
 is the linear strain-displacement matrix and 

[ ]NLB
 is the nonlinear strain-displacement matrix. 

The governing equilibrium equation in the finite element form is 
written as (Naidu and Sinha, 2006) 
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Where  { }R  is the external force vector and { }F
 is the internal 

nodal force vector, 
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Figure 3. Load-displacement variation of SS plates for different values of n. 

 
 
 

{ } [ ]{ }t

A

F B s dA= �
                                          20 

And 
0{ } [ ]{ }t t

A

R N q dA+∆ = �
   21                                                         

 
In which {q0} is the external applied load. 
In the above equations, [S] is the matrix of second Piola-Kirchoff 

stresses, 
[ ]Lk

 and 
[ ]NLk

 are elastic and stress stiffness matrices 
of an element, respectively, [m]  is the inertia matrix and {s} is the 
stress vector of an element given by, 
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Solution procedure 
 
The transient response of the system is calculated by using the 
Newmark method (Bathe et al., 1975). The solution of nonlinear 
equilibrium equation, Equation (16) is implemented through an 
incremental iterative procedure. Equation (16) can be written as, 
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The index i indicates the number of iteration step. 
In the present study, the modified Newton-Raphson iterations are 
applied to achieve the equilibrium at the end of each time step. 

Boundary conditions 
 
The following two boundary conditions are used in the present  
analysis: 
(i)   Simply supported boundary (SS): 
 

* *
0 0 0 0,y yv w vθ θ= = = = =

 at x = 0, a; 
* *

0 0 0 0,x xu w uθ θ= = = = =
 at y = 0, b.  

(ii) Clamped boundary (CC): 
* * * *

0 0 0 0 0 0,x y x yu v w u vθ θ θ θ= = = = = = = = =
 at  

x = 0, a and y = 0, b. 
 
 
RESULTS AND DISCUSSION 
 
Comparison studies 
 
In order to establish the correctness of the present 
formulation, the results obtained herein are compared 
with those available in the existing literature. 

First, linear static analysis of a simply supported square 
plate of Aluminum-Zirconia with a = 0.2m and thickness 
0.01m is carried out. This problem was earlier solved by 
Reddy (2003).  The Young’s modulus, Poisson’s ratio 
and density of Aluminum are 70 GPa, 0.3 and 2707 
kg/m3, respectively and the same for Zirconia are 151 
GPa, 0.3 and 3000 kg/m3, respectively. The plate is 

subjected to a uniformly distributed transverse load 0q . 

The non-dimensional load parameter is  ( )4
0 / / mQ q a h E=   
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Figure 4. Comparison of transient response of a SS square plate. 

 
 
 
and the non-dimensional displacement parameter is 

/w w h= . The results obtained by the present formu-
lation are compared with those of Reddy (2003) and also 
with the FSDT results of the authors. Figure 3 shows the 
variation of non-dimensional response of FGM shell 
panels. The material of the FG shell panels considered in 
the present study is Aluminum-Zirconia. The Young’s 
modulus, Poisson’s ratio and density for Aluminum are: 
70 GPa, 0.3 and 2707 kg/m3, respectively and the same 
for Zirconia are: 151 GPa, 0.3 and 3000 kg/m3, 

respectively. The center displacement and the time are 
expressed in the non-dimensional form as 

2
0/( )mw wE h q a=  and

2/( )mt t Em a ρ=
, respectively. 

The values of displacement and velocity at the initial con-
ditions are assumed as zero for obtaining the nonlinear 
dynamic response. The values of constants δ  and α  in 
the Newmark’s integration are taken as 0.5 displace-
ments for various load parameters and volume fraction 
index n. The present HSDT results are observed to be 
lower than those of the FSDT. It is evident from Figure 3 
that the results obtained using FSDT are agreeing well 
with those of Reddy (2003). 

Thereafter, a simply supported square plate is 
considered with the geometrical and elastic properties as 
specified in the earlier problem for carrying out nonlinear 
transient analysis.  This  problem  was  solved  earlier  by 

Praveen and Reddy (1998). The FGM plate is subjected 
to a uniformly distributed load of -106 N/m2 and time step 
considered is 0.00001 s. Due to the biaxial symmetry, 
only one quarter of the plate is modeled for the analysis. 
A 2 ×  2 uniform mesh is used in the quarter plate model. 
The non-dimensional center displacement parameter is 

2
0/( )mw wE h q a=  while the non-dimensional time 

is
2/( )mt t Em a ρ=

. Figure 4 shows the transient non-
dimensional displacement vs. non-dimensional time 
graph for different values of volume fraction index n. The 
results are compared with those of Praveen and Reddy 
(1998) and found to be in good agreement. 
 
 
Numerical results for the transient response of FGM 
shell panels 
 
In this section, we use the above formulation to 
investigate the effect of various parameters like curvature 
(R/a), volume fraction index n, side to thickness ratio 

(a/h), aspect ratio ( /a bβ = ), boundary conditions 
(clamped and simply supported) and loading types 
(uniformly distributed and sinusoidal) on the transient and 
0.25, respectively. The time step selected, based on the 
convergence study, is 1 ms. 

Figures 5 and 6  show  the  effect  of  curvature  on  the 
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Figure 5. Effect of curvature on the transient response of SS-FG cylindrical panels 

(
,x yR R R= = ∞

). 
 

 

-5

5

15

25

0 10 20 30 40 50
Non-dimensional time

N
on

-d
im

en
si

on
al

 d
is

pl
ac

em
en

t

R/a=3
R/a=5
R/a=10
R/a=50
R/a=100

 
 
Figure 6. Effect of curvature on the transient response of SS-FG spherical panels 

 
 
 
transient response of simply supported FGM cylindrical 

( ,x yR R R= = ∞ ) and spherical ( x yR R R= =
) shell panels 

subjected  to   uniformly   distributed   load,   respectively. 

 Other parameters are kept constant and are given 

as 1n = , / 1a b = , and / 20a h = . It is observed from 
Figures 5 and 6 that the transient displacements increase 
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Figure 7. Effect of volume fraction index n on the transient response of SS-FG cylindrical 
panels. 
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Figure 8. Effect of volume fraction index n on the transient response of SS-FG 
cylindrical panels. 

 
 
 
increase with the increase of curvature ratios ( )/R a . 

However, this effect is comparatively less when the /R a  
ratio exceeds 50.  By comparing the results of cylindrical 
and spherical shells from Figures. 5 and 6, it is also 
observed that spherical shell panels (Figure. 6) have 
more stiffness than cylindrical panels (Figure 5), as 
evident from the higher frequency and lower vibration 
amplitude of the transient response  curves  of  Figures  5  

and 6. Moreover, it is also observed from Figures 5 and 6 
that the frequency of the transient response decreases 
with the increase of /R a . This is due to the degradation in 
the shell stiffness with the increase of /R a , as mentioned 
above. 

Figures 7 and 8 present the variation of transient 
displacement with time for simply supported cylindrical 
and spherical shells, respectively, for  different  values  of 
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Figure 9. Effect of /a h  ratios on the transient response of SS-FG cylindrical panels. 
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Figure 10. Effect of /a h  ratios on the transient response of SS-FG spherical 
panels. 

 
 
volume fraction index n  keeping the other parameters as 

constant ( / 1a b = , / 10R a =  and / 20a h = ). The am-
plitude of vibration increases as n  increases, being the 
maximum for the metallic shells ( n = ∞ ) and the mini-
mum for the ceramic shells ( 0n = ). It is due to the fact 
that Aluminum (metal) has a much lower value of the 
Young’s modulus than that of Zirconia (ceramic). 

The effect of thickness on the nonlinear transient 
central displacements of the FGM cylindrical and 

spherical shell panels for different /a h  ratios is shown in 
Figures 9 and 10 respectively. Other parameters 

( / 1a b = , / 10R a =  and n = 1) are kept constant. It is 
observed from Figures 9 and 10 that the transient 
displacements  increase  and  the  response  frequencies 
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Figure 11. Effect of /a h  ratios on the transient response of SS-FG spherical panels. 
 
 

 
 

Figure 12. Effect of shell aspect ratios ( β = a/b) on the transient response of SS-FG 
spherical panels. 

 
 
decrease with the increase in /a h  ratio. Figures 11 and 
12 show the effect of shell aspect ratio ( β = a/b) on the 
transient response of simply supported FGM cylindrical 
and spherical shells subjected to uniformly distributed 
load, keeping the other parameters  unchanged  ( / 10R a = , 

a/h = 20 and n = 1). The displacements are reduced 

while the response frequencies are increased as β  (= 
a/b) increases from 0.5 to 2. 

Figures 13 and 14 present the variation of 
displacement with time for FGM cylindrical  and  spherical  
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Figure 13. Effect of boundary conditions on the transient response of cylindrical FG 
panels. 

 
 
 

 
 
Figure 14. Effect of boundary conditions on the transient response of spherical FG panels. 

 
 
 
shells, respectively, considering clamped and simply sup-
ported boundary conditions and keeping the remaining 
geometrical and material parameters as constants 
( / 10R a = , a/h = 20, a/b = 1 and n = 1). It is clearly seen 

that the displacements of clamped shells are much lower 
than those of the simply supported shells since the effec-
tive stiffness of the clamped shell is higher than that of 
the simply supported shell.  
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Figure 15. Effect of boundary conditions on the transient response of cylindrical FG 
panels. 

 
 
 
Finally, the effect type of loadings on the nonlinear tran-
sient behavior of simply supported FGM cylindrical and 
spherical shell panels is studied. Here, two types of 

loading, uniformly distributed (udl, 0q q= ) and sinusoidal 

loads ( ( ) ( )0 sin / sin /q q x a y bπ π=
) are applied on 

shell panels whose geometric and elastic properties are 

given by a/b=1, / 10R a = , a/h = 20 and n = 1. Figure 15 
shows the variation of transient displacement with time. It 
is evident from Figure 15 that both spherical and cylindri-
cal shell panels with uniformly distributed load has higher 
transient displacement than that when subjected to 
sinusoidal load maintaining the same load intensity.  
 
 
Conclusion 
 
The nonlinear transient behavior of FG shell panels is 
investigated by using a higher-order finite element formu-
lation. The finite element formulation developed here is 
validated from the good agreement of the authors’ results 
for plate and shell problems with those of earlier invest-
tigators from the published literature (Figures. 3 and 4). 
Numerical results show that the dynamic responses are 
significantly influenced by shell curvature, volume fraction 
index, thickness ratio, aspect ratio, boundary conditions 
and loadings.  
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