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In the present work, biodiesel prepared from Honge oil (Pongamia) was used as a fuel in C. I engine. 
Performance studies were conducted on a single cylinder four-stroke water-cooled compression 
ignition engine connected to an eddy current dynamometer. Experiments were conducted for different 
percentage of blends of Honge methyl ester with diesel at various compression ratios and at different 
injection timings.  Experimental investigation on the Performance parameters and Exhaust emissions 
from the engine were done. Artificial neural networks (ANNs) were used to predict the engine 
performance and emission characteristics of the engine. Separate models were developed for 
performance parameters as well as emission characteristics. To train the network compression ratio, 
blend percentage, percentage load and injection timings were used as the input variables whereas 
engine performance parameters and engine exhaust emissions were used as the output variables. 
Experimental results were used to train ANN. Results showed good correlation between the ANN 
predicted values and the desired values for various engine performance values and the exhaust 
emissions. Mean relative error values were less than 10 percent which is acceptable. 
 
Key words: Honge methyl ester, transesterification, emissions, epochs, artificial neural network. 

 
 
INTRODUCTION 
 
Agricultural sector of India is completely dependent on 
diesel for its motive power and to some extent for 
stationary applications. Increased farm mechanization in 
agriculture thus further increased the requirement of 
diesel. Nowadays due to the limited resources of fossil 
fuels, rising crude oil prices and the increasing concerns 
for the environment, there has been renewed focus on 
the vegetable oils and animal fats as an alternative fuel 
sources. The attractive features of the biodiesel are (i) 
since it is a plant derived fuel, its combustion does not 
increase the  current  net  atmospheric  levels  of  CO2,  a 
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greenhouse gas (ii) it can be domestically produced 
offering the possibility of reducing petroleum imports and 
(iii) it is biodegradable. Ramdas et al. (2004), Hossain 
and Davies (2010), Raheman et al. (2004), Kumar et al. 
(2006) and Suryawanshi and Deshpande (2004) 
observed that the use of vegetable oils have reduced the 
levels of particulate matter, HC, and CO compared with 
the diesel combustion. Various vegetable oils both edible 
and non-edible can be considered as alternative sources 
for diesel engines. In most of the developed countries 
sunflower, peanut, palm and several other feed stocks 
are used as alternative sources which are edible in the 
Indian context. Therefore in the developing countries like 
India, it is desirable to produce biodiesel from non-edible 
oils which can be extensively grown in the waste lands  of 
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the country. It has been reported that non edible oils 
available in India are Pongamia, Jathropa rubber seed 
etc. However the major disadvantage of vegetable oils is 
their high viscosity which leads to poor atomization, 
which in turn may lead to poor combustion, ring sticking, 
injector coking, injector deposits, injector pump failure 
and lubricating oil dilution by crank case polymerization. 
Deepak et al. (2008), Baiju et al. (2009) and Surendra et 
al. (2010) observed that converting vegetable oils into 
simple esters is an effective way to overcome all the 
problems associated with the vegetable oils. 
For a diesel engine, fuel injection timing is a major 
parameter that affects combustion and exhaust 
emissions. Proper ignition delay is necessary for ensuring 
proper pressure rise and peak pressure and hence 
maximum thermal efficiency, which in turn depends on 
the type of fuel also. Cenk et al. (2008) conducted 
experiments in a dual fuel CI (Compression ignition) 
engine to study the effect of injection timings on the 
exhaust emissions. They used ethanol blends with diesel 
and conducted experiments at five different injection 
timings. They observed that NOx and CO2 emissions 
increased and HC and CO emissions reduced for 
advanced injection timing. Nwafor (2007) carried out 
experiments on a single cylinder diesel engine with 
natural gas as the fuel. On advancing injection timing by 
5.5˚ the engine showed erratic performance and when it 
was reduced to 3.5˚ he observed a smooth performance 
especially at low load conditions. Fuel consumption was 
slightly increased whereas CO and CO2 emissions were 
reduced. 

Manufacturers and engine application engineers 
usually want to know the performance of a C. I engine for 
various proportions of blends, for various compression 
ratios and at different injection timings. This requirement 
can be met either by conducting comprehensive tests or 
by modeling the engine operation. Testing the engine 
under all possible operating conditions and fuel cases are 
both time consuming and expensive. On the other hand, 
developing an accurate model for the operation of a C. I 
engine fuelled with blends of biodiesel is too difficult due 
to the complex nature of the processes involved. As an 
alternative, engine performance and exhaust emissions 
can be modeled by using artificial neural networks 
(ANNs). This modeling technique can be applied to 
estimate the desired output parameters when enough 
experimental data is provided.  

In the present work, experimental investigations of the 
performance and emissions of the diesel engine were 
conducted for different proportions of blends of Honge oil 
methyl ester with diesel at different injection timing and 
for different compression ratios. In the later part of the 
work, ANN models have been developed for predicting 
the performance parameters and emissions 
characteristics using those experimental results. 

Pongamia pinnata (Honge) is one of the forest based 
tree borne  non-edible oil  with  a  production  potential  of 

 
 
 
 
135,000 metric tons per year in India. It is capable of 
growing in all types of lands (sandy and Rocky). It grows 
even in salt water and can withstand extreme weather 
conditions with a temperature range of 0 to 50°C. The oil 
content is around 30 to 40%. It is a fast growing medium 
sized tree which grows to a height of around 40 ft and its 
flowers are pink, light purple, or white. Pods are elliptical, 
3 to 6 cm long and 2 to 3 cm wide thick walled and 
usually contains a single seed. Seeds are 10 to 15 mm 
long, oblong and light brown in color. A thick yellow–
orange to brown non edible oil is extracted from the 
seeds. The comparison of properties of Pongamia oil with 
diesel is presented in Table 1. Since the high viscosity of 
Pongamia oil poses problems in pumping, atomization 
etc, it is very essential to reduce the viscosity by 
transesterification. After transesterification process, the 
viscosity of the Pongamia oil was found to be reduced to 
5.6 mm

2
/s from 41.06 mm

2
/s  which is nearer to the 

diesel value. Prepared Pongamia ester was then blended 
with diesel in various proportions (10, 15, 20 and 25%) by 
volume and used as fuel for running the engine. By 
blending operation it was observed that there was not an 
appreciable change in the properties except the calorific 
value. By measurement calorific values of the blends 
were found to be 40.78, 40.06, 39.76 and 39.12 MJ for 
10, 15, 20 and 25% blends respectively. 
 

 
EXPERIMENTAL SETUP 
 

The performance test was conducted in a single cylinder four stroke 
diesel engine. Figure 1 shows the photograph of the experimental 
setup used for conducting experiments. It consists of a single 
cylinder four stroke water cooled compression ignition engine 
connected to an eddy current dynamometer. The compression ratio 

can be varied from 12:1 to 18:1. An AVL flue gas analyzer is used 
to measure NOx, UBHC and CO in the engine exhaust. A smoke 
meter is used to measure the smoke intensity in the engine 
exhaust. The specifications of the engine are shown in Table 2. 

Experiments were conducted initially by using neat diesel at 
various loads and then using Honge methyl ester blends. 
Experiments were repeated by changing the compression ratios 
and injection timings. Matrix of the experiments conducted is as 

shown in Table 3. 
 

 

RESULTS AND DISCUSSION 
 

Engine performance 
 

Brake thermal efficiency (BTE) 
 

Figures 2 and 3 indicate the variation of BTE with 
compression ratios and injection timings respectively. 
Results indicated 20%  blend  of  Honge  methyl  ester in 
diesel has maximum efficiency.  Efficiency was found to 
be decreasing for higher blend proportions. This may be 
due to the decrease in the calorific value of the blend for 
increased blend proportions. On increasing the 
compression ratios, BTE was found to be increased for 
Honge ester blends. In the existing variable  compression
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Figure 1. Experimental set up. 

 
 
 

Table 1. Properties of Pongamia oil and neat diesel. 

 

S/No. Properties Pongamia oil Diesel 

1. Flash point (°C) 263 49 

2. Specific gravity 0.912 0.83 

3. Acid value(mg/KOH) 1.52 - 

4. Kinematic viscosity(mm
2
/s) 41.06 2.4 

5. Kinematic viscosity after transesterification 5.6 - 

6. Calorific value (MJ/kg) 34 41.86 

 
 
 

Table 2. Specifications of the engine. 

 

Engine  Four stroke, single cylinder, water cooled, constant speed diesel engine 

Rated power  3.2 KW 

Speed  1500 rpm 

Bore  87.5 mm 

Stroke  110 mm 

Compression ratio 12 to 18: 1 

Crank angle  sensor  Resolution 1
o
 

Engine indicator  For data scanning & interfacing with Pentium III processor  

swept volume  661cc 

 
 
 

Table 3 . Experimental conditions using Honge methyl ester blends 
 

S/No. Operating parameter Variations 

1 Engine Load (%) 0 25 50 75 100 

2 Honge methyl ester blend (%) 10 15 20 25  

3 Compression ratio 16 17.5 18   

4 Injection timing (ºbTDC) 24 27 30   

Fig 1. Schematic diagram of the Experimental set up 
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ratio engine set up, the maximum achievable 
compression ratio is 18. Efficiency was found to be 
maximum when  the  compression  ratio  was  18  and  is 

considered as best compression ratio for that 
experimental setup. Considering the variation with 
injection timings, for 27° bTDC, the BTE value was  found
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Figure 4. Variation of BSEC with compression ratio at full load for diesel and Honge methyl ester blends.  

 
 
 
to be maximum for all the blends. Experimental results 
indicated a decrease in BTE by 1.15 and 2.1% for 
advanced and retarded injection timings from the normal 
value for B20 for the best compression ratio. On 
advancing the injection timing there is an increase in the 
delay period which reduced the thermal efficiency. At 
retarded injection timing the delay period decreases 
which reduces the power because larger amount of fuel 
burns during expansion. 

 
 
Brake specific energy consumption (BSEC) 

 
Figures 4 and 5 showed the variation of BSEC for 
different compression ratios and injection timings. BSEC 
decreased with load for diesel as well as Honge methyl 
ester blends. For 20% blend the BSEC value was 
minimum compared with other blends, but higher than 
that for neat diesel. Also on increasing the compression 
ratios, BSEC values reduced. For 27° bTDC, BSEC value 
was found to be minimum, when compared with values 
for 24° and 30° bTDC as is evident that thermal efficiency 
is maximum at this injection timing. Advancing the 
injection by 3° increased BSEC by 2.9 %, and retarding 
the injection by 3° increased BSEC by 5.2%. 

 
 
Exhaust gas temperature 

 
Figures 6  and  7  showed  the  variation  in  exhaust  gas 

temperature with compression ratios and injection timings 
respectively.  For higher compression ratios, Texh 
increased and biodiesel blends showed higher values 
than that for neat diesel. In biodiesel operation the 
combustion is delayed due to higher physical delay 
period. As the combustion is delayed, injected Honge 
biodiesel fuel particles may not get enough time to burn 
completely before TDC, hence some fuel mixtures tends 
to burn during the early part of expansion, consequently 
after burning occurs and hence increase in the exhaust 
temperature.  

With respect to the injection timings, advanced injection 
timing showed lowest Texh showing efficient combustion. 
Advancing the injection timing has caused earlier start of 
combustion relative to TDC and hence complete 
combustion will take place and thus reducing the exhaust 
gas temperatures. Advancing the injection timing by 3° 
showed a reduction of Texh by 2.6% for B20 for best 
compression ratio. 
 
 
Emission characteristics 
 
NOx emission  
 
Figure 8 shows the variation of NOx with injection 
timings. NOx increased with the load for diesel as well as 
for biodiesel blends. NOx emission for biodiesel blends is 
higher than the neat diesel for all compression ratios 
since they contain inbuilt oxygen in their molecular 
structure. Also it increases with the increase in  the  blend
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percentage because of increased oxygen content in 
higher percentage blends. Lower compression ratios with 
retarded injection timing showed lesser emissions. On 
retarding the injection timings cylinder pressure and 
temperature decreased, since more fuel burns after  TDC 

and thus reducing NOx emissions. On retarding the 
injection by 3º from the normal value, NOx emission 
decreased by 4.8% for B20 at full load condition, which 
can be used as the combination for reducing the NOx 
emissions in a CI engine fuelled with Honge methyl  ester
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Figure 7. Variation of Texh  with injection timing at full load for diesel and Honge methyl ester blends. 
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Figure 8. Variation of NOX with injection timing for full load for diesel and Honge methyl ester blends.  

 
 
 
blends. 
 
 
Smoke, HC and CO emission 
 
Figures 9 to 11 showed the variation of smoke opacity, 
HC and CO emissions with injection timings. It was 
observed   that   these   emissions   decreased   with   the 

increase in injection advance from the normal value. For 
advanced injection timings these emissions were reduced 
since cylinder operating temperature was higher and 
hence improved reaction between fuel and oxygen. On 
advancing the injection by 3° the smoke opacity, HC and 
CO emissions reduced by 4.2, 10 and 20% respectively 
for the best compression ratio. For higher compression 
ratios there  was  a  further  decrease in  those  emission
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Figure 9. Variation of smoke with the injection timing at full for diesel and Honge methyl  ester  blends.  
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Figure 10. Variation of HC with injection timing at full load for diesel and Honge methyl ester blends. 
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Figure 11. Variation of CO with injection timing at full load for diesel and Honge methyl ester blends.  

 
 
 
values, indicating advanced injection timing together with 
increased compression ratio will reduce smoke, HC and 
CO emissions for CI engine fuelled with Honge methyl 
ester blends. 
 
 
Artificial neural networks 
 
Artificial intelligence systems are widely used as a 
technology offering an alternative way to tackle complex 
and ill-defined problems. Neural networks are a type of 
artificial intelligence systems that attempts to imitate the 
way the human brain works. They are nonlinear 
information processing devices, which are built from 
interconnected elementary processing devices called 
neurons. They are able to deal with nonlinear problems 
and once trained can perform prediction and 
generalization at high speeds. An ANN has the capability 
to relearn to improve its performance for the new 
available data. They differ from conventional modeling 
approaches in their ability to learn about the system that 
can be modeled without the prior knowledge of the 
process relationships. The prediction by a well-trained 
ANN is much faster than the conventional simulation 
programs or mathematical models as no lengthy iterative 
calculations are needed to solve differential equations 
using numerical methods.  

They have been used in diverse applications in control 
systems, robotics, pattern recognition, forecasting, 

medicine, power systems, manufacturing, optimization, 
signal processing social and psychological sciences. This 
technology is even used in various thermal systems. 
Prieto et al. (2000) used ANN for forecasting the 
condenser performance. Bechter et al. (2001) used ANN 
for modeling vapor compression pumps. Application of 
ANN to the C. I engines is of more recent progress. This 
has been used for the prediction of emissions from Diesel 
engines and gasoline engines. Arcaklioglu (2005) used 
ANN to predict the performance and emissions from a 
diesel engine where they considered engine speed, 
injection pressure and throttle position as the input 
parameters and engine torque, power, specific fuel 
consumption together with emissions as the output 
parameters. They observed a good correlation between 
the experimental and test values. The overall mean 
relative errors were within 10%. Cenk et al. (2007) used 
ANN for the modeling of a gasoline engine to predict 
BSFC, BTE, exhaust gas temperature and exhaust 
emissions. They observed that mean relative errors for 
the whole of training data and the test data were within 2 
to 7%. Mustafa et al. (2006) used ANN to model 
performance parameters and emissions of a biodiesel 
engine using Waste cooking oil as an alternate fuel. 

An ANN consists of massively interconnected 
processing nodes known as neurons. It receives the input 
from the other sources combines them in some way, 
performs generally a nonlinear operation on the result 
and   then  outputs   the   final   result.   Network    usually
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Figure 12. Schematic diagram showing the input and output variables for performance model. 

 
 
 
contains an input layer, some hidden layers and an 
output layer. Each neuron in the network accepts a 
weighted set of inputs and responds with an output. Such 
a neuron first forms the sum of weighted inputs given by 

N= , where   where p and wi are the number of 
elements and the interconnection weight of the input 
vector Xi respectively and b is the bias for the neuron. 
The method of modifying the weights in the connections 
between network layers with the objective of achieving 
the expected output is called training a network. The 
internal process that takes place when a network is 
trained is called learning. The two types of training are 
supervised and unsupervised training. Supervised 
training is the process of providing the network with a 
series of sample of inputs and comparing the outputs with 
the expected responses. The training continues until the 
network is able to provide the expected responses. The 
weights will be adjusted according to learning algorithm 
till it reaches the actual outputs. Various training functions 
can be used to train the networks reach from a particular 
input to a specific target output. The error between the 
network output and the actual output, called as mean 
square error (MSE) is minimized by modifying the 
network weights and biases. When the error falls below a 
determined value or the maximum number of epochs 
have been reached the training process stops. Then this 
trained network can be used for simulating the system 
outputs for the inputs which have not been introduced 
before. Different algorithms are used for training the 
network. Of them most popular one is back propagation 
algorithm which has different variants. Back propagation 
algorithm with gradient descent and gradient descent with 
momentum are very slow for practical problems since 
they require a slow learning rate for stable learning. On 
the other hand conjugate gradient, Levenberg-Marquardt, 

Quasi–Newton are some of the fast learning algorithms. 
The performance of the network outputs is evaluated by 
mean relative error. Mean relative error which is the 
mean ratio between the error and the experimental 
values is given as mean relative error 

Error (MRE) = 1/N ). Where   Where N is the number of 
points in the data set, ai is the actual or experimental 
value and pi is the ANN predicted value. 
 
 

Artificial neural network modeling 
 

Steady state experimental data were used for ANN 
modeling. Independent models were developed for the 
performance parameters and the emission 
characteristics. For both the models around 70% of the 
data were used in the training set, 15% in the validation 
set and remaining 15% were employed for testing. Load 
percentage, blend percentage, compression ratio and 
injection timing were used as the input parameters and 
brake thermal efficiency (BTE), brake specific energy 
consumption (BSEC), and exhaust gas temperature (Texh) 
were the output parameters for performance model. 
Similarly load percentage, blend percentage, 
compression ratio and injection timing were used as the 
input parameters and NOx, Smoke, UBHC and CO 
emissions were used as the output parameters for the 
emission model. Schematic representation of the both 
models is shown in Figures 12 and 13.  

To ensure that each input provides an equal 
contribution in the ANN, inputs to the model were 
preprocessed and scaled into a common numeric range 
(-1, 1). Network with one hidden layer was used with the 
activation function in the hidden layer as tan sigmoid and 
linear in the case of output layer. Standard back- 
propagation algorithm, with trainlm  training  function  has
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Figure 13. Schematic diagram showing the input and output variables for emission model.  
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Figure 14. Variation of MSE with the number of neurons in the hidden layer for the 

performance model. 

 
 
 
been used for training the network. 

Initially network was trained by selecting randomly 
some number of neurons in the hidden layer. Then 
number of neurons were either increased or decreased 
so that MSE will be minimum. The number of neurons for 
which the MSE is minimum is selected as the optimum 
number of neurons in the hidden layer. In the case of 
performance model optimum number of neurons has 
been found to be 20 whereas as for the emission model it 
has been found to be 25. MATLAB 8 has been used for 
simulating the ANN model and the standard training 
functions defined in the neural network toolbox has been 
used in this work (Figures 14 and 15). 

Trained network was tested for performance. For 
evaluating the testing performance of the developed ANN 
model, a MRE of 5% has been taken as a limit for the 
performance model and 10% for emission model. These 
figures have been arrived based on the literature related 
to this work. Table 4 shows the network performance for 
the performance model. MRE for the training data were 
2.932, 2.681 and 2.192% for BTE, BSEC, Texh 
respectively where as for the test data these values were 
3.254, 2.723 and 2.558% respectively. Since the MRE 
values for the test data are well below the specified limit 
the developed model was found to be acceptable. Further 
the accuracy  of  the  prediction  for  different  parameters

Number of neurons in the hidden layer 
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Figure 15. Variation of MSE with number of neurons in the hidden layer for emission model.  

 
 
 

Table 4. Statistical values of the network for the performance model 

 

Variable MRE (Training) % Accuracy (Training) MRE (Test) % Accuracy (Test) 

BTE 2.932 91.3 3.254 87.5 

BSEC 2.681 89.2 2.723 86.7 

Texh 2.192 92.7 2.558 92.3 

 
 
 
has been listed in Table 4. The values are 91.3, 89.2, and 
92.7% for BTE, BSEC and Texh for the training data and 
87.5, 86.7, 92.3% for test data.  Figures 16, 17 and 18 
showed the plot of the experimental values and ANN 
predicted values for BTE, BSEC, Texh. These plots will 
indicate that there is a good correlation between the 
experimental and ANN predicted performance 
parameters. 

Similarly for the emission model MRE for the training 
and testing data are given in Table 5. For the training 
data the values were 7.401, 6.053, 6.72 and 6.083% for 
the emissions of NOx, smoke, UBHC and CO 
respectively where as for the test data they were 8.281, 
6.54, 6.83 and 9.29% respectively. The accuracy of the 
prediction for the various emissions is listed in the Table 
5. For the test data they are 81.5, 78.9, 78.9, 74.8% 
respectively. These are comparatively lesser than those 
obtained for the performance model. The increase in 
MRE and decrease in accuracy could be attributed to 
error made during the measurement of different emission 
parameters. However MRE for the emissions are within 
10% which is within the acceptable range. Figures 19, 20, 
21 and 22 showed the plot of the experimental and ANN 
predicted values for NOx, smoke, UBHC and CO 
respectively. These figures will show that there is a  good 

correlation between the experimental and ANN predicted 
values of emissions. 
 
 
Conclusions 
 
1. Brake thermal efficiencies of biodiesel engine run on 
Honge methyl ester blends are very close to diesel and 
20% blend with diesel has shown maximum efficiency for 
biodiesel operation for all compression ratios. An 
improvement in BTE was observed for higher 
compression ratios. It was observed that higher BTE 
values were obtained at 27°bTDC injection timing, 
whereas retarding or advancing the injection timing 
lowered BTE values. 
2. Brake specific energy consumption for biodiesel blends 
is more than that of diesel and decreased for higher 
compression ratios. With respect to the injection timings, 
advancing or retarding the injection timing from the 
normal value (27°bTDC) increased the BSEC values. 
3. Exhaust emissions smoke, CO, HC were reduced for 
Honge methyl esters when compared with diesel values 
for increased compression ratios and for advanced 
injection timings as noted by the other researchers. 
4.  NOx    emission    increased     for   biodiesel    blends

Number of neurons in the hidden layer 
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Figure 16. Experimental Vs ANN predicted values of BTE for the performance model.  
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Figure 17. Experimental Vs ANN predicted values of BSEC for the performance model. 

 
 
 
compared to that of diesel for all compression ratios. 
Further on retarding the injection timings from the normal 
value, a reduction in NOx emissions was observed which 
was similar to the observation of many researchers. 
5. ANN modeling was applied to predict the  performance 

and emission characteristics of a four stroke CI engine. It 
was observed that MRE of the test data for the 
performance and emission parameters were within 10%, 
which is acceptable. 
6. The   developed  ANN  model  has  been  found  to  be
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Figure 18. Experimental versus ANN predicted values of Texh for the emission model. 

 
 
 

Table 5. Statistical values of the network for emission model 

 

Variable MRE (Training) % Accuracy (Training) MRE (Test) % Accuracy (Test) 

NOx 7.401 88.3 8.28 81.5 

Smoke 6.053 89.3 6.54 78.9 

UBHC 6.72 88.6 6.83 78.9 

CO 6.083 87.3 9.29 74.8 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19. Experimental versus ANN predicted values of NOX for the emission model. 
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Figure 20. Experimental versus ANN predicted values of smoke for the emission model. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 21. Experimental versus ANN predicted values of UBHC for the emission 
model. 

 
 
 
useful for the prediction of engine performance and 
emission parameters. This reduces the experimental 
efforts and hence can serve as an effective tool for 

predicting the performance of the engine and emission 
characteristics under various operating conditions with 
different biodiesel blends. 
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Figure 22. Experimental versus ANN predicted values of CO for the emission model. 

 
 
 
Nomenclature 
 

ANN, artificial neural network 
BSEC, brake specific energy consumption (kJ/kWh) 
BTE, brake thermal efficiency  
bTDC, before top dead center 
CA, Crank angle (˚) 
MRE, mean relative error 
Texh, exhaust gas temperature (°C) 
TDC, top dead center 
HC, hydrocarbon 
CO, carbon monoxide 
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