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In this paper, we will attempt to derive an analytical representation of velocity field for the concept of an 
internal air flow inside a vortex tube machine of Hilsch-Ranque type. The basic assumption here is that 
the flux field is assumed to be steady and incompressible. Τhe vector which denotes instantaneous 
velocity, for the description of the flux field via Lagrangian stand point, will be expressed in a 
cylindrical coordinate system with orthonormal basis in the center line of the cross section of this 
vortex tube. We also assume here, that the aforementioned flux field varies only in radial direction, 
hence velocity vector is actually an one-dimensional damped circular helix trajectory with variable 
pitch. 
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INTRODUCTION 
 
This vortex tube machine was firstly invented in 1931 by 
a Frenchman Physicist named Georges J. Ranque when 
he was studying processes in a dust separated cyclone 
(Fulton, 1950; Reynolds, 1962). The patent and idea was 
abandoned for several years until 1947, when a German 
engineer Rudolf Hilsch modified the design of the tube 
(De Vera, 2010; Eiamsa-ard and Promvonge, 2007). 
Particularly, R. Hilsch improved the initial design of this 
device by constructing a number of tubes and published 
experimental data with respect to their operation 
(Guillaume and Jolly, 2001). Since then, many 
researchers have tried to find ways to optimize its 
efficiency. 

The vortex tube is actually a mechanical device that 
separates a compressed gas into hot and cold streams. It 
has no moving parts (Hilsch, 1947). Pressurized gas is 
injected    tangentially     into     a    swirl   chamber     and 

accelerated to a high rate of rotation. Due to 
the conical nozzle at the end of the tube, only the outer 
shell of the compressed gas is allowed to escape at that 
end. The remainder of the gas is forced to return in an 
inner vortex of reduced diameter within the outer vortex 
(Gutsol, 1997; Hilsch, 1947). There are different 
explanations for the effect and there is debate on which 
explanation is best or correct. 

What is usually agreed upon is that the air in the tube 
experiences mostly "solid body rotation" which means 
that angular velocity of the inner gas is the same as that 
of the outer gas. This is different from what most consider 
standard vortex behavior - where inner fluid spins at a 
higher rate than outer fluid. The behavior of "solid 
body rotation" is probably due to the long length of time 
during which each parcel of air remains in the vortex – 
allowing   friction  between  the  inner  parcels  and  outer
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parcels to have a notable effect (Sibulkin, 1961). Besides 
during the vortex stretching procedure the angular 
momentum of the fluid matter stays invariant. 

This vortex tube machine was firstly invented in 1931 
by a Frenchman Physicist named Georges J. Ranque 
when he was studying processes in a dust separated 
cyclone (Fulton, 1950; Reynolds, 1962). The patent and 
idea was abandoned for several years until 1947, when a 
German engineer Rudolf Hilsch modified the design of 
the tube (De Vera, 2010; Eiamsa-ard and Promvonge, 
2007). Particularly, R. Hilsch improved the initial design 
of this device by constructing a number of tubes and 
published experimental data with respect to their 
operation (Guillaume and Jolly, 2001). Since then, many 
researchers have tried to find ways to optimize its 
efficiency.  

The vortex tube is actually a mechanical device that 
separates a compressed gas into hot and cold streams. It 
has no moving parts (Hilsch, 1947). Pressurized gas is 
injected tangentially into a swirl 
chamber and accelerated to a high rate of rotation. Due 
to the conical nozzle at the end of the tube, only the outer 
shell of the compressed gas is allowed to escape at that 
end. The remainder of the gas is forced to return in an 
inner vortex of reduced diameter within the outer vortex 
(Gutsol, 1997; Hilsch, 1947). There are different 
explanations for the effect and there is debate on which 
explanation is best or correct. 

What is usually agreed upon is that the air in the tube 
experiences mostly "solid body rotation" which means 
that angular velocity of the inner gas is the same as that 
of the outer gas. This is different from what most consider 
standard vortex behavior - where inner fluid spins at a 
higher rate than outer fluid. The behavior of "solid 
body rotation" is probably due to the long length of time 
during which each parcel of air remains in the vortex - 
allowing friction between the inner parcels and outer 
parcels to have a notable effect (Sibulkin, 1961). Besides 
during the vortex stretching procedure the angular 
momentum of the fluid matter stays invariant. 

The chief characteristic of this peculiar device is 
separation of the introduced air into hot and cold 
fractions. His interest lay in its potentialities as a 
refrigerating unit, but apparently he was unable to 
develop it satisfactorily (Eckert and Hartnett, 1955; 
Lewellen, 1962; Linderstrom–Lang, 1967). His work 
attracted rather widespread interest and, as a result, a 
number of relevant publications have appeared. 

Some further investigations by Physicists and 
Engineers have been actually of particular significance, 
because they reported measurable mass separation gas 
mixtures and discussed theories of operation (Ahlborn 
and Gordon, 2000; De Vera, 2010; Piralishili et al., 2005). 
However, no explanations have been attempted. Most of 
other reports have mainly dealt with the application of the 
tube to refrigeration (Ahlborn et al., 1996; Gao et al., 
2005; Eckert and Hartnett, 1955; Khodorkov et al., 2003). 
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Until today, there is no single theory that explains the 
radial temperature separation. However, the operating 
cost of this machine is generally low and its applications 
are indeed various (Tassios, 2006). 

The cross sectional area with a plane parallel to axis 
zz΄ of this aforementioned hook-up is represented in 
Figure 1. 

As concerns the instantaneous velocity distribution, the 
following relationship holds: 
 

erfV

 )(

                                                          (1) 
 

where the quantity RRrf :)(  denotes a real single-

valued continuous function 
 
 

PRESENTATION OF THE MATHEMATICAL 
FORMALISM 
 

According to elementary Analytical Geometry, the 
transform relations from cylindrical to Cartesian 
coordinates hold: 
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where  e


  denotes  the unit vector  being collinear to the 

component:  V  at a Cylindrical Coordinate System and 

in fact is able to be written out equivalently with respect to 
its own projections at the Cartesian Coordinate System 
Οxyz, as follows:   
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Moreover, the unit vector which is collinear to the radial 

component: rV
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  can be also written out as  
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Hence, it follows: 
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The cross sectional area with a plane parallel to axis zz΄ of this aforementioned hook – up is represented in 

figure 1: 
 
 

 
 

 
Fig.1 cross – section with a plane parallel to axis zz΄   
 
 
As concerns the instantaneous velocity distribution, 
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Figure 1. Cross–section with a plane parallel to axis zz.΄   

 
 
 

 
 
Fig. 2 motionless local cylindrical system customized at the «eye» of the maximum vortex 
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Figure 2. Motionless local cylindrical system 

customized at the «eye» of the maximum 
vortex 
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Since the flux field that we examine is primarily assumed 
to vary only in the radial direction, it implies that velocity 

component V  is identically zero (Figure 2). 
Nevertheless, the generic transform relations read 
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Hence, the one-dimensional instantaneous velocity at the 
vortex tube emerges via the following representation: 
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In this paper, we will make a specific implementation for a 
characteristic rational function, particularly for the 
homographic one, that is 
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It is also known from elementary Calculus, that Equation 
(6) can be exhibited equivalently in the following form: 
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where R,  

So we can deduce:  
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If we keep track of  the  equation  above,  we  can  

pinpoint  that  if 0 , then the   range  of  the  function: 

)(rf  does not occur  any local extrema. 

 
Thus, the instantaneous velocity at the vortex tube, in 
Cartesian coordinates can be recaptured via the following 
representation: 
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Thus, we can figure out 
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The corresponding boundary conditions for the particular 
original problem are: 
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Concurrently, the position vector components in 
Cartesian Ccoordinates are: 
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function. 
In the sequel, according to Lagrangian formalism we 

deduce: 
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Hence, with the latter two equations in hand in 
accordance with the set of Equation (9) we can 
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DESCRIPTION OF THE STREAM AND VORTEX LINES 
 
It is known from elementary Vector Calculus that the 
following invariant vector identity holds true, for an 

infinitesimal part of an arbitrary stream line sd

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Ηence,  we  can result to the following statement 
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Besides, the vortex lines of any flow pattern are defined 
by the following set of equations 
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Thus, according to the definition of the angular velocity 
we infer 
 

zyxzyx

zyxddzdydx

 




)(

                            (18A) 
 
In continuing, according to the definition of the curl of a 
vector function in cylindrical coordinates we can also 
deduce 
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Next, by considering a right-hand circular helix of pitch 

equal to: b2  the drawn from the origin position vector 
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The corresponding arc length being traced by an arbitrary 
trip of position vector is given by the integral: 
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It is also known from Differential Geometry that all curves 
which have both the same curvature function and same 
torsion function are congruent. 

Hence the following conjunction holds 
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On the other hand, according to Lagrangian formalism for 
the fluid motion along an arbitrary stream line of the flux 
field that we study the following equality holds: 
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By operating the material derivatives at both members of 
Equation (22) we obtain 
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We emphasize that the above relationship holds along 
any stream line of the investigated flux field. 
Besides, the following implication also holds: 
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In the sequel, if we consider the unit vector  ne
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

  is referred to as 

principal normal vector), it implies that: 
 

dtdt

ds(t)

ds(t)

rdrd






)22(.eqn

 


dt

tds

tds

rd
e

dt

tds
t

)(

)(

)(




 
 


)(tds

rd
et




 
 

rd

tds

et


)(1


                                                               (25A) 
 

Next, by differentiating both members of the latter 
equality with respect to variable s  we can figure out 
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Moreover, it is known from Differential Geometry that the 
following relationship holds: 
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Hence, we can eventually result to the following 
statement: 
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Thus, Equation (23) can be equivalently represented in 
the following rephrased form 
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Alongside, from Vector Calculus the following identity 
holds: 
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where V  denotes the algebraic rate of vector V


 

regardless of its circumstantial orientation. 

Hence, by considering an element of length sd


along 

an arbitrary stream line and operating the dot product in 
Equation (28) it implies: 
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The arc length whose endpoints define this orientated 

segment is traced by a trip of position vector )(tr and is 

given by the integral: 
 


t

drs
0

)(' 

                                                         (31) 
 

We also observe that Equation (30) has been derived 
without the distinction between inviscid and viscous flow 
patterns and holds for stream lines network for both 
states of flow. 

Furthermore, since sdsdesde tt


 , Equation 

(30) yields 
 

1

2

22 )(

2































sd

sd

dt

tsdV
grad

t

V




                      (32) 
 

where the unit vector: 
sd

sd




 varies only in direction, 

denoting indeed the orientation of each arc whose length 

gets rates from the range of the scalar function: 
)(ts

. 
Apparently, Equation (32) holds for any stream lines 

network   of  incompressible  flow  patterns  (internal  and 
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wake ones, as well as free turbulence). 

Apart from these, according to Lagrangian formalism 
for a fluid moving particle in a cylindrical coordinate 
system the following formulas for instantaneous velocity 
and acceleration also hold true: 
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dt

d
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                                     (33) 
 
The two above vector terms denote radial and transverse 
velocity components. 
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                (34) 

 
(The two above vector terms denote radial and 
transverse acceleration components). 

 
Equations (34) and (28) are indeed identically equivalent 
to one another as the interface of two phenomenological 
points of view for the inceptive original problem, (that is, 
the approach of a bundle of moving particles and the 
approach of a continuum medium) and must be assessed 
in association with Equation (17). 

Since we have focused on steady flux fields, by 
considering the geometry of the vortex tube as a 
succession of its cross sectional areas with planes 

parallel to axis 'zz  we can neglect the vorticity transfer in 
space and therefore the initial original problem 
substantially reduces to a superposition of two-
dimensional flux fields. 

Ιn two-dimensional flux fields the unit vector 
sd

sd




  can 

be represented as follows: 
 
Let us consider the generic form of a line in polar 

coordinates, defined by a point: ),( 11 r  on a stream line 

and another one: ),( 22 r  which is localized on the 

tangent line which passes from the point ),( 11 r , that is, 

 

     12212211 sinsinsin   rrrrrr           (35) 

 
Then, the specific line which passes through the pole: 

 0,0  as well as the point: ),( 11 r  has the form: 

 

  0sin 11  rr
                                            (36) 

 

Besides the corresponding tangent line on ),( 11 r  which 

obviously is normal to the above line, has also the form: 

 
 
 
 

  11cos rr 
                                                     (37) 

 

This latter equation, must be verified by the coordinates 

of the point ),( 22 r  

Then the magnitude sd


 is estimated as follows: 
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where the following equality holds: 
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Then it follows: 
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Hence, we eventually obtain: 
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Apparently, this latter equation holds along any cross-
section of the cylindrical solid boundary as well, since it 
consists in marginally a stream surface.   
 
 
DISCUSSION 
 

This paper was intended to derive an analytical 
representation of velocity field for the concept of   an 
internal viscous air flow inside a vortex tube machine of 
Hilsch-Ranque type. 

The basic assumption here is that the flux field is 
assumed to be steady and incompressible throughout. 
However, the compressibility of gases can be neglected if 
and only if the flow velocity is small as compared to the 
local acoustic velocity (Lions 1996, 1998). This actually 

implies that either the ratio 



 is considerably smaller 

than unity, or equivalently 1
2

Ma2

 . Therefore, all the 

mathematical results that occur on this work hold true 
only on the range of validity of the above two equivalent 
statements. 



 

 
 
 
 

We have also supposed, that the motivated flux field 
varies only in radial direction, hence velocity vector is 
actually one-dimensional vanished circular helix trajectory 
with obviously decreased pitch. 

This approach actually implies that the three 
dimensional vorticity transfers have been primarily 
neglected. 

On the other hand by means of Bernoulli equation in 
accordance with the presented mathematical formalism, 
one can also designate approximately the exact location 
where the static pressure changes sign along the tube as 
well as from wall to its centroid axis without neglecting 
the centrifugal effect (Arfken 1970; Farouk and Farouk, 
2007). 

In this case one can also take into account that if a 
conservative force shows no variation in one direction, 
then its component in that direction is the same 
everywhere (Arfken, 1970; Ladyzhenskaya, 1975). 
Therefore, with a proper choice of a Cartesian coordinate 

system the corresponding potential energy pE can be 

written out in the form: 
 

zyxEE pp  ),(
                                             (42) 

 
where  is a constant number 

In the sequel, the above relationship can be easily 
modified in cylindrical coordinates. Nevertheless, the 
convergence of stream lines and the vortex lines in three 
dimensional internal flow patterns has several times 
significant changes from the simplified  two dimensional 
flow field (Dafalias, 2003; Schlichting, 1979). Therefore, it 
could be investigated alternatively in the Euclidean or 
Cartesian space, by designing an isometric projection of 
the vortex tube machine and following CFD methods, 
since the geometry of this flow conductor is actually 
known from mathematical stand point.  

We can also pinpoint that CFD methods can be very 
effective for the examination of this phenomenon since 
any cross sectional area of   the interior boundary of this 
machine always constitutes indeed a positively 
orientated, not self–intersecting and continuously 
contracted curve. 
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