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This paper analyses transformer loss of life, attending to the realistic variability of both structural and 
functional parameters. The article begins with the modelling of load and ambient temperature profiles 
by means of chronological series theory. A simple additive model is proposed and validated with 
realistic data. Loss of life resulting from probabilistic functional and structural parameters is analysed 
through a sensitivity study. 
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INTRODUCTION 
 
This paper is devoted to load and ambient temperature 
(functional parameters) profiles modelling and to the sen-
sitivity study of thermal and loss of life models relatively 
to functional and structural parameters. In this research, 
the functional parameters modelling was based on rea-
listic data. It is not objective of this section to exhaustively 
apply time series theory  in  modelling  realistic  load  and 
temperature profiles. Such complete analysis is out of the 
scope of this work. The objective is based on data repre-
senting the load profiles of realistic distribution 
transformers and ambient temperature profiles, to obtain 
sufficient accurate models that will give physical support 
to the probabilistic models. Loads modelling and 
forecasting play a fundamental role in power systems 
planning and management. Due to its connection with 
weather characteristics, loads and weather modelling are 
joined subjects of some works (Asbury, 1975; Chong and 
Malhame, 1984; Sachedev et al., 1977; Srinivasan and 
Pronovost, 1975). Provided a transformer thermal model 
is chosen, deterministic hot-spot temperature can easily 
be computed, given the input profiles of load and ambient 
temperature. When analysing the time series represen-
tative of a given transformer load (or the time series of a 
localised ambient temperature), one can visualise a 
cycling (deterministic) behaviour (daily, weekly, monthly, 
seasonally) to which is superposed a random behaviour.  
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Such input profile structure will be reflected on conse-
quent hot-spot temperature profile: deterministic and 
random components. Apart from specific characteristics 
and improvements that transformer thermal model may 
reflect, the validity of deterministic input profiles is 
questionable, due to unpredictable (random) changes 
that realistic profiles do present. This fact determines a 
probabilistic analysis of the system, which is being 
discussed in this research. The objective of this section is 
to study loss of life sensitivity over given statistics of the 
inputs. Simulation results using thermal and loss of life 
models linearisation and direct Monte Carlo methods will 
be presented for Normal and Uniform distributions of both 
input variables. Thermal and loss of life models sensitivity, 
relatively to structural parameters, is also developed. 
Usually, it is assumed that model structural parameters 
are known without error. Some of these parameters are 
transformer specific ( R0∆Θ , hRo∆Θ , R), determined either 
from tests or from manufacturer’s catalogue data. And 
they do present some variability for a given transformer 
rated power, depending on the manufacturers, as 
presented on by Popescu (2008). Others, like n and m 
are difficult to determine with precision from tests, since 
they are closely related to transformer cooling conditions 
and geometry. The variability that these parameters do 
present in practice, is the basis of this study which objec-
tive is under a reference scenario of functional inputs to 
analyse models output (LOL) sensitivity, and models 
structural parameters, namely, R0∆Θ , hRo∆Θ ,  R, n, and 
m. 
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FUNCTIONAL PARAMETERS MODELLING 
 
Time series descriptive techniques 
 
Despite the diversity of approaches, methodologies and 
end-use applications, when studying realistic load and 
weather data profiles, one can always identify trends 
(deterministic) components, to which are superposed 
irregular (random) behaviours. Deterministic data can be 
described by an explicit mathematical relationship (a 
mathematical model). In as much as no unforeseen event 
in the future  will  influence  the  phenomenon,  producing  
the data set under consideration for identical experience 
conditions, the mathematical model will reproduce the 
same exact data set, no matter how many times the 
experiment is repeated. Random data values are unpre-
dictable in a future instant in time, and therefore must be 
described in terms of probability statements and 
statistical averages, rather than by explicit mathematical 
relationships. In practical problems, involving random va-
riables, one must not expect to obtain theoretical results, 
namely, a purely random variable. The main reason is 
that a random variable is a theoretical concept, which can 
not be reproduced (simulated) in practice; only samples 
of random variables can numerically be simulated. The 
statistics of samples only asymptotically (with the 
increasing length of the sample) tend to be random 
variable statistics. A random variable can be viewed as a 
sample of infinite length. Time series representative of 
load and ambient temperature profiles do present 
deterministic and random characteristics simultaneously 
(Figure 1). Such a data set, presenting concomitant time 
and random characteristics is referred to as a stochastic 
process. Time plot will often show the most important 
properties of a time series (Chatfield, 1975; Popescu et 
al., 2009a). It was predictable and can be visually 
confirmed that ambient temperature time series do exhibit 
a seasonal effect that, although not representative of the 
sample, is expected to be cyclic. Possible long-term 
trends will not be considered since, although might be 
present, the sample length is insufficient to allow this kind 
of analysis. A common model to describe  time  series  as 
the one represented on Figure 1 is the additive model of 
the form (Chatfield, 1975; Friedlander and Francos, 1996; 
Mastorakis et al., 2009b):  
 

trantt xxx += det ,                                                       (1) 
 
Where; tdetx  represents the deterministic cyclic com-

ponent and tranx  the random component. 

 
Most of the time series theory concerns stationary time 
series, which, intuitively, is a time series where no syste-
matic temporal variations in mean and variance occur. 
From the analysis of series residuals, after removing the 
seasonal effects  (and  trends  when  existent),  one  may  

 
 
 
 
conclude that it is possible to model residuals by means 
of a stationary stochastic process. Several approaches, 
methodologies and tests can be used to detect time 
series characteristics such as cyclic variations, stationary, 
randomness (Gutmann and Wilks, 1982; Popescu, 2006; 
Popescu et al., 2009; Ross, 1987). However, a complete 
and powerful tool is provided by the autocorrelation 
function. If xt and yt are two samples, length N of two 
stationary ergodic processes, an estimator of their 
correlation function, )(ˆ kxyρ  is, according to Chatfield 

(1975) and Popescu (2006): 
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with x  and y  representing the samples averages given 
by: 
 

� �==
= =

N

t

N

t
tt yyandx

N
x

1 1

1
,                                        (4) 

 
When xt ≡ yt, expression (4) represents the auto-
correlation function and expression (3), the autocova-
riation function. When the variable it refers to is clear, the 
estimator of the autocorrelation function will be denoted 
by xρ̂ (k) or simply by ρ̂ (k), and the estimator of the auto-
covariation by CÔVx(k) or simply by CÔV(k). The analysis 
of the corresponding sample autocorrelogram (plot of the 
autocorrelation coefficients as a function of time lag k) 
often provides fully insight into the probabilistic model 
that describes the data. The autocorrelation function is 
the measurement of correlation (link) between series data 
values at different time  and  distances  apart.   

For a random variable, correlation coefficients must be 
null for any lag k, but k = 0. It should be remarked that, 
mathematically, the maximal time lag k in (2) is limited to 
N/2, although (Chatfield, 1975) states that N/4 is the 
usual limit. Information contained in the sample time 
series may not always be sufficient to completely charac-
terise it. Figure 2a represents the autocorrelogram of the 
one-year time series of data represented on Figure 1. 
And although yearly cyclic variations are expected to 
occur, the autocorrelogram does not evidence them. 
However, by increasing the sample size to two years 
length, the respective autocorrelogram being represented 
on Figure 2b, clearly evidences an almost sinusoidal 
variation, which, although expected, should be confirmed 
with  a  longer  size  sample.  If  a  time  series  could   be  
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Figure 1. Annual time series representing daily maximal ambient temperatures. Data from 
2005. 

 
 
 

 
 
Figure 2a. Autocorrelogram of daily maximal ambient temperatures in 2005. 
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Figure 2b. Autocorrelogram of daily maximal ambient temperatures in 2004 and 2005. 

 
 
 
described by a purely deterministic sinusoidal function of 
the form, then: 
 

tXxt ω= cos ,                                                            (5) 
 
Where; X and ω  are constants, its autocorrelation would 
evidence this cyclic variation, since for large sample 
lengths (N ��) it would tend to: 
 

tk ω=ρ cos)( .                                                            (6) 
 
Following the evidences of Figure 2 autocorrelogram and 
International Standards (IEC-354, 1991) suggestion, the 
deterministic component, xdet t , of model (1) was 
assumed to be given by a generic deterministic 
sinusoidal variation represented by: 
 

)cos(det xddt txxx ϕ+ω∆+= ,                                    (7) 
 

Where; dx , dx∆ and  xϕ  are constants. 
 
From the analysis of time series residuals (random 
component tranx ) in Figure 3a and respective autocor-
relogram in Figure 3b, one can extract clues towards its 
modelling.  The  interpretation  of  autocorrelogram   does  

require considerably experience in time series analysis 
and, according to Chatfield (1975) and Popescu (2008), 
this is one of the hardest aspects of time series analysis. 

Plot diagram of random component (Figure 3b) shows 
no evident cyclic or mean variations; as a first approxi-
mation, variable could be taken as random. However, a 
more accurate analysis shows that autocorrelogram re-
presented on Figure 3b is not typical of a random variable 
since it should be ρ (0) =1 and ρ (k)=0 for 0≠∀k . Apart 
from small amplitude and of high frequency (probably) 
cyclicvariations, one can find considerably high )(ˆ kρ  
values for initial time lags, k=1...6. 

To determine the best model that fits a given sample 
au-tocorrelation function, the methodology proposed by 
Box and Jenkins (1970) consists of comparing sample 
autocorrelation  function  with the theoretical  autocorrela- 
tion function of several models, and choosing the one 
which best agrees with the sample autocorrelation func-
tion. Most common models are the AutoRegressive mo-
dels (AR), the moving Average Models (MA) and mixed 
mo-dels such as AutoRegressive Moving Average 
models (ARMA) and Autoregressive Integrated Moving 
Average models (ARIMA). As far as the objective of this 
work is concerned, one will limit oneself to present the 
AR model. The process {Xt} is said to be AR of the  order,  
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Figure 3a. Random component; and respective autocorrelogram. 

 
 
 

 
 
Figure 3b. Random component of maximal ambient temperature in 2005. 
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m if given a purely random process {Zt} with null mean 
and variance 2

Zσ  (Chatfield, 1975; Popescu, 2009): 
 

tmtmtt Zx...xx +α++α= −−11 ,                                      (8) 
 

Where; 1α ... mα  are constants. 
 
For first order AR processes (also referred as Markov 
process [8]), the estimator of 1α  denoted by  1α̂ , is 
(Chatfield, 1975): 
 

( )01 ρ=α ˆˆ .                                                         (9) 
 
Autocorrelogram of Figure 3 is suspicious to correspond 
to a first order AR model since initial )(ˆ kρ  values appear 
to decrease geometrically (Chatfield, 1975; Popescu, 
2009). If time series tranx  is a sample of a first order AR 

process { tranX }, it must be: 
 

ttrandtrand ZXX +α= −11 .                                            (10) 
 

Using estimator (9) and sample tranx , the resulting zt 

sample (being zt a sample of the random variable, Zt) and 
corresponding autocorrelogram are represented on 
Figure 4.  

To determine whether Figure 4 corresponds to a 
sample autocorrelogram of a random variable ( ρ (k) = 0 
for k > 0) or not, confidence intervals must be deter-
mined. For large N values, being the sample auto-
correlation, )(ˆ kρ , normally distributed with Mastorakis et 
al. (2009b) andPopescu et al. (2009b): 
 

)()(ˆ kk ρ=µρ  and ))0(ˆ21(
1
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a ( )%1 Sα− confidence interval for )(ˆ kρ , being Sα  the 
significance level of the test, is given by: 
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For k > 0 being ( )Sα−Φ− 11  the  inverse  of  the  standar- 
 
dised normal distribution evaluated at ( )Sα−1 . Attending 
to (11), and that for a random variable it is ( ρ (k)=0 for 
k>0), probability expression (12) is traduced by the 
statement: 
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On Figure 4, limits of (13) with Sα =5% are also repre-

sented. If ( )%1 Sα− of the )(ˆ kρ  values, with k > 0, are 

within (13) limits, )(ˆ kρ is accepted as representative of 
the autocorrelation of a random variable and therefore, zt 
is accepted as a random variable. A second step for the 
complete modelling of time series xt, is the determination 
of random variable zt distribution function. This is 
achieved by testing the probability density functions (pdf) 
of theoretical (expected) random variables against the 
realistic (observed) pdf one obtains for zt. These tests are 
referred to as goodness-of-fit tests (Bendat and Piersol, 
1990; Gutmann and Wilks, 1982; Popescu, 2006; Ross, 
1987). A key element associated to statistical tests is its 
p-value. According to Ross (1987) test formulation, the p-
value represents the maximal significance level at which 
the hypothesis should be accepted. Its value measures 
the closeness of the observed pdf relatively to the 
theoretical pdf; the p-value will be as close to the unity as 
the observed pdf is close to the theoretical pdf. 
Justification to give relevance to AR models resides on 
their physical base. They represent memory systems in 
the sense that values at instant t are influenced by the 
memory of previous values at t-1,..., t-m. Due to earth 
thermal inertia, ambient temperature is expected to be a 
function of near past ambient temperatures; due to its 
correlation with ambient temperature similar behaviour 
can be expected on the load profiles of distribution 
transformers. 
 
 
Case studies 
 
Previously described techniques applied to four time se-
ries, representing maximal, MΘ , minimal, mΘ , average, 

avΘ , and half-amplitude amΘ  values of daily ambient 
temperature in the Dolj (RO) region from 2002 to 2005 
were: 
 

( ) 2/mMav Θ+Θ≡Θ and  ( ) 2/mMav Θ−Θ≡Θ .         (14) 
 
Samples length is, therefore, N = 365. In order to keep 
exposition as clear as possible, the previous generic 
notations x and z of §2.1 will be used, being 

amavmMzx ΘΘΘΘ≡ ,,,, . By means of discrete fourier 

transformer, parameters xdd xx ∆, , xϕ and of  deterministic 
model represented by (7) were determined (Mastorakis et 
al., 2009a; Popescu et al., 2009). Resulted random 
residuals, tranx , were analysed. Although respective 
autocorrelograms revealed the presence of an AR model, 
the histogram of tranx  amplitudes passed a Chi-Square 
test, regarding a Gaussian distribution. If model: 
 

+ϕ+ω∆+= )cos( xddt txxx N )ˆ,ˆ( xx σµ ,                 (15) 
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Figure 4a. Variable 
tranz . 

 
 
 

 
 

Figure 4b. Variable 
tranz ; respective autocorrelogram. 
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Table 1. Deterministic model parameters, random component 

tranx  first moment estimators and p-value, for ambient 

temperature time series. 
 

 [ ]Cxd
0  [ ]Cxd

0∆  [ ]radxϕ  [ ]Cx
0µ̂  

2000: MΘ  20.935 7.109 2.829 0.000 

mΘ  12.395 5.384 2.657 0.000 

avΘ  16.233 6.237 2.753 0.000 

amΘ  4.275 1.009 -2.969 0.000 

2003: MΘ  20.027 6.803 2.821 0.000 

mΘ  12.455 5.339 2.733 0.000 

avΘ  16.247 6.067 2.783 0.000 

amΘ  3.789 0.777 3.125 0.000 

2004: MΘ  21.011 6.283 2.733 0.000 

mΘ  12.975 4.699 2.531 0.000 

avΘ  16.993 5.465 2.647 0.000 

amΘ  4.021 0.963 3.243 0.000 

2005: MΘ  22.111 6.797 2.810 0.000 

mΘ  14.011 4.639 2.606 0.000 

avΘ  18.059 5.687 2.725 0.000 

amΘ  4.051 1.223 -3.082 0.000 

    

 [ ]Cx
0σ̂  )(tCV tx [p.u.] p-value[%] 

2002: MΘ  3.529 0.169 53 

mΘ  2.084 0.167 40 

avΘ  2.435 0.145 77 

amΘ  1.567 0.366 52 

2003: MΘ  3.368 0.169 22 

mΘ  2.356 0.187 90 

avΘ  2.485 0.154 32 

amΘ  1.505 0.395 97 

2004: MΘ  3.162 0.152 9 

mΘ  2.183 0.169 11 

avΘ  2.331 0.136 75 

amΘ  1.395 0.345 83 

2005: MΘ  3.527 0.158 81 

mΘ  2.654 0.188 75 

avΘ  2.728 0.150 47 

amΘ  1.512 0.375 8 

 
 
 
 
Where; 0ˆ =µx is valid, xt can be considered as a non-
stationary random variable, which mean is time 
dependent, )(t

txµ , according to: 
 

)cos()( xddx txxt
t

ϕ+ω∆+=µ                                  (16) 
 
and which standard deviation, generically denoted 
by )(t

txσ , results, in fact, in a time independent 

(stationary) function: 
 

xx t
t

σ=σ ˆ)( .                                                              (17) 
 
From (16) and (17) one can obtain the variation 
coefficient, )(tCV

tx : 
 

)cos(
ˆ

)(

)(
)(

xdd

x

x

x
x txxt

t
tCV

t

t

t ϕ+ω∆+
σ=

µ
σ

≡ ,               (18) 

 

which mean value, )(tCV tx , is: 
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From )(tCV tx  values one can realise the degree of xt 

concentration around its mean ( )t
txµ . Deterministic 

model parameters, dd xx ∆,  and xϕ , estimators of 

residuals first moment, xµ̂  and xσ̂ , mean value of 

variation coefficient, txCV , and p-value from the Chi-
Square test are resumed in Table 1 for the 4 analysed 
years. 

For these four analysed years, the model reproduces 
very well each year, although the number of considered 
years is insufficient to draw generalised conclusions or 
forecasts for the coming years. All samples passed with 
relatively high p-values Chi-square tests, regarding the 
hypotheses of being Gaussian distributed. From the low 
values of txCV one can conclude that random component 

tranx  is relatively concentrated around the deterministic 
component. The histograms and respective theoretical 
probabilistic density functions (pdf) of  a  Gaussian  
distribution with parameters xµ̂ and xσ̂  are represented 
on Figures 5 and 6. 

A deeper analysis of tranx  residuals with respective 
autocorrelation functions revealed the presence of possi-
ble first order of AR models. The resulted zt variables, 
once the first order AR model was removed, were 
studied. All passed a randomness test with  a  confidence 
level of 5%. Concerning the probabilistic distributions, in 
some cases zt variable gets closer to the Gaussian  distri- 
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Figure 5a. Histogram and respective Gaussian pdf for random component of MΘ and mΘ . 

 
 
 

 
 
Figure 5b. Histogram and respective Gaussian pdf for random component of MΘ ; Data from 2005. 
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Figure 6a. Histogram and respective Gaussian pdf for random component of avΘ  and amΘ . 

 
 
 

 
 
Figure 6b. Histogram and respective Gaussian pdf for random component of avΘ  ; Data from 2005. 
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Table 2. Random component tranz  first moment estimators and p-value, for 

ambient temperature time series. 
 

 [ ]Cx
0σ̂  [ ]Cx

0σ̂  p-value[%] zx σσ ˆ/ˆ [p.u.] 

2002 : MΘ  0.000 2.556 43 1.381 

mΘ  0.000 1.613 78 1.289 

avΘ  0.000 1.612 7 1.505 

amΘ  0.000 1.361 4 1.153 

2003: MΘ  0.000 2.447 12 1.373 

mΘ  0.000 1.963 3 1.203 

avΘ  0.000 1.752 64 1.416 

amΘ  0.000 1.330 7 1.131 

2004 : MΘ  0.000 2.373 14 1.333 

mΘ  0.000 1.742 70 1.255 

avΘ  0.000 1.672 1 1.393 

amΘ  0.000 1.211 75 1.149 

2005 : MΘ  0.000 2.390 75 1.473 

mΘ  0.000 1.982 19 1.336 

avΘ  0.000 1.753 87 1.555 

amΘ  0.000 1.281 99 1.185 

 
 
 
bution, while in other cases, gets far from the Gaussian 
distribution, even failing a Chi-square test at  5%  level  of 
confidence. These results indicate that more elaborate 
models are required to fully model these time series. First 
moment estimators, zµ and zσ̂ , of zt variables, as well as  
the p-value of the Chi-square test concerning a Gaussian 
distribution, are represented on Table 2. 

By comparing xσ̂  and zσ̂  values,  one  concludes  that 
the taking into consideration the first order AR model 
reduces the variance level of random component 
( zσ̂ < xσ̂ ). However, it is 1ˆ/ˆ ≈σσ zx , meaning that 
supplementary information carried by the AR model is 
quite reduced. 

Although the model is traduced by: 
 

+ρ+ϕ+ω∆+= −10ˆ)cos( txdt xtxxx N )ˆ,ˆ( xx σµ          (20) 
 

Where; 0ˆ =µz  results more precise for some of the 
analysed time series, the model traduced by:  
 

+ϕ+ω∆+ )cos( xdd txx  N )ˆ,ˆ( xx σµ ,                        (21) 
 
Where; 0ˆ =µx  can describe in a more generic way, 
although less accurate, the time series  representative  of 

maximal, minimal, average and half-amplitude values of 
daily ambient temperatures of analysed years. 

A similar analysis was performed for the load profiles of 
two distribution transformers, denoted by ES1 and BI1. 
Available data include daily maximal, KM, minimal, Km, 
average, Kav, and half-amplitude, Kam, load factor for the 
2003, 2004 and 2005 years, being, analogously to 
ambient temperature: 
 

( ) 2/mMav KKK +≡  and ( ) 2/mMav KKK −≡ .           (22) 
 
During this period, no structural network changes 
occurred in the network. As an example, maximal and 
minimal load factor values of ESI transformer, relatively 
to 2005, are represented on Figure 7. The loads served 
by this transformer are mainly of the residential type with 
a small component of industry. 

Similar to ambient temperature modelling, the previous 
generic notations x and z will be used, being 

amavmM KKKKzx ,,,, ≡ . 
Deterministic cyclic component was assumed to follow 

also a sinusoidal variation as represented on (7) and 
resulted residuals, tranx , were studied. Table 3 resumes 
obtained values for deterministic model parameters, 

dx , dx∆ and xϕ , estimators of residuals first moment, xµ̂   
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Table 3. Deterministic model parameters, random component tranx  

first moment estimators and p-value, for ESI distribution transformer. 
 

 dx  [p.u.] dx∆  [p.u.] xϕ  [rad] 

2003: MK  0.611 0.053 -0.029 

mK  0.277 0.016 0.292 

avK  0.443 0.034 0.025 

amK  0.165 0.023 -0.157 

2004: MK  0.582 0.055 0.115 

mK  0.273 0.016 0.571 

avK  0.426 0.037 0.209 

amK  0.156 0.023 -0.042 

2005: MK  0.602 0.035 -0.932 

mK  0.281 0.016 -0.773 

avK  0.440 0.025 -0.879 

amK  0.157 0.009 -1.089 

 
 xµ̂  [p.u.] xσ̂ [p.u.] 

txCV  [p.u.] p-value [%] 

2003: MK  0.000 0.045 0.074 47 

mK  0.000 0.025 0.086 0 

avK  0.000 0.033 0.074 35 

amK  0.000 0.018 0.104 15 

2004: MK  0.000 0.049 0.085 59 

mK  0.000 0.026 0.095 19 

avK  0.000 0.035 0.079 11 

amK  0.000 0.019 0.121 85 

2005: MK  0.000 0.040 0.065 25 

mK  0.000 0.018 0.061 12 

avK  0.000 0.024 0.053 0 

amK  0.000 0.019 0.118 67 

 
 
 
and xσ̂ , and p-value from the Chi-square test regarding a 
Gaussian distribution of the residuals. 

On Figure 7, time series representative of  MK   "looks" 

much more disperse than the mK  time series, which is a 
common fact in the three analysed years. Minimal values 
of distribution transformer load profiles are very well 
defined by (usually) night loads, corresponding  to  "base"  
equipment which is almost constant if no structural 
changes or accidents occur in the transformer network, 
while maximal values traduce temporary overloads due to 

residential/industrial activity. From txCV values, repre-
sented on Table 3, one realises that load profiles are 
much more concentrated around respective deterministic 
components, than ambient temperature profiles are. 
Globally, results resumed on Table 3 can be considered 
as good although residuals from mK in 2003 and avK  in 
2005 can not be considered to follow a Gaussian distribu-
tion. In fact, from the study of the autocorrelation function, 
one realises the presence of higher frequencies than the 
fundamental   frequency   (annual)   on    the    deterministic   
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Figure 7. Annual time series representing daily maximal (denoted with +) and minimal (denoted with -) load factor of 
distribution transformer ESI. Data from 2005. 

 
 
 
nistic sinusoidal model (7). This was an expected occur-
rence since load profiles are constrained to a much great 
diversity of factors than ambient temperature profiles 
are. One can detect, for example, the increasing 
appearance of a second harmonic (bi-annual) reflecting 
the increase in loads due to air-conditioning equipment 
during summer period. However, one should recall the 
purpose of this work: to give a physical justification for 
theoretical load and ambient temperature profiles used 
in following simulations and not fully modelling these 
profiles. The histograms and respective theoretical pdf’s 
of Gaussian distributions, with parameters xµ̂ and xσ̂ , 
reproduced on Table 3 are represented on Figures 8 and 
9, for the 2005 data set. 

The great dispersion of KM time series relatively to Km 
time series can be visualised by the  limits  of  histograms 
represented on Figure 8. The hypothesis that random 
component tranx  of time series representative of load 
profiles could be modelled by an AR model did not give 
as good results as with ambient temperature profiles. 
This fact is due, in part, to the already referred presence 
of other cyclic (bi-annual) variations in xran which were 
not taken into consideration on the deterministic model 
(7). Results are resumed on Table 4. 

Results obtained with the second analysed distribution 
transformer, referred as BI1, are resumed on Table 5, 
where zµ̂ values were omitted since it is zµ̂ = xµ̂ = 0 for all  

samples. 
This transformer serves an area where loads are of 

residential and industrial types, in similar proportions. 
Residuals 

tranx after removing the deterministic cyclic 

variation are not as normally distributed as residuals 
resulting from the ESI load profiles; in the 12 presented 
samples, 3 of them even fail the respective chi-square 
test. This fact does not invalidate the generic model 
represented by (20). Since 2004 is the year which data 
give the worst results, meaning lower p-values on the chi-
square test for a Gaussian distribution of residuals, 
histograms of 

tranx  residuals and respective theoretical 

pdf’s are represented on Figures 10 and 11. Although not 
passing the Chi-square test, the statistical distribution of 
random component 

tranx  relativeley to 2004  KM,  Km, Kav,  

and Kam, values, is not far from a Gaussian distribution as 
can be visualised on Figures 10 and 11. 

Although more elaborated models are required to fully 
model the load profiles of distribution transformers, it has 
been shown that (21) can be considered as a good 
generic model. 
 
 
Global model 
 
On this section a global model to represent the whole set 
of maximal, minimal and average  temperatures  (or  load  
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a) 

 
 

Figure 8a. Histogram and respective Gaussian pdffor random component tranx of KM and Km. 

 
 
 

 
b) 

 
 

Figure 8b. Histogram and respective Gaussian pdffor random component tranx of KM ; ESI 

transformer and data from 2005. 
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a)  
 
Figure 9a. Histogram and respective Gaussian pdffor random component tranx  of amK  (a) and avK . 

 
 
 

 
b)  
 
Figure 9b. Histogram and respective Gaussian pdffor random component tranx  of amK ; ESI transformer 

and data from 2005. 
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Table 4. Random component 
tranz first momment estimators and p-

value, for ESI load profiles. 
 

 [ ]Cz
0µ̂  [ ]Cx

0σ̂  p-value[%] zx σσ ˆ/ˆ [p.u.] 

2003: MK  0.000 0.033 5 1.417 

mK  0.000 0.011 11 1.987 

avK  0.000 0.017 12 1.819 

amK  0.000 0.015 24 1.097 

2004 : MK  0.000 0.034 15 1.455 

mK  0.000 0.022 0 1.183 

avK  0.000 0.022 0 1.620 

amK  0.000 0.018 53 1.075 

2005 : MK  0.000 0.032 6 1.223 

mK  0.000 0.011 84 1.427 

avK  0.000 0.016 56 1.337 

amK  0.000 0.015 11 1.155 

 
 
 

Table 5. Deterministic model parameters, random components tranx    and tranz  first 

moment estimators and p-values, for BI1 distribution transformer. 
 

 
dx [p.u.] dx∆ [p.u.] 

xϕ [rad] xµ̂ [p.u.] xσ̂ [p.u.] 

2003: MK  0.351 0.075 -0.196 0.000 0.035 

mK  0.166 0.014 -0.147 0.000 0.015 

avK  0.258 0.046 -0.189 0.000 0.023 

amK  0.093 0.033 -0.206 0.000 0.017 

2004 : MK  0.375 0.068 -0.088 0.000 0.037 

mK  0.188 0.011 0.545 0.000 0.015 

avK  0.282 0.039 -0.001 0.000 0.027 

amK  0.095 0.031 -0.238 0.000 0.019 

2005 : MK  0.391 0.071 -0.019 0.000 0.033 

mK  0.201 0.016 0.091 0.000 0.015 

avK  0.296 0.043 -0.001 0.000 0.022 

amK  0.097 0.029 -0.051 0.000 0.011 

 
 

txCV [p.u.] p-value [%] [ ]Cz
0σ̂  p-value[%] zx σσ ˆ/ˆ [p.u.] 

2003 MK  0.102 63 0.033 51 1.118 

mK  0.083 31 0.012 1 1.307 

avK  0.089 61 0.017 21 1.236 

amK  0.171 5 0.016 14 1.028 
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Table 5 contd. 
 

2004 MK  0.095 6 0.027 0 1.387 

mK  0.085 5 0.015 0 1.195 

avK  0.101 0 0.023 0 1.264 

amK  0.191 0 0.018 0 1.068 

2005 MK  0.081 21 0.019 0 1.726 

mK  0.079 0 0.011 1 1.546 

avK  0.078 9 0.014 0 1.915 

amK  0.116 88 0.009 4 1.263 

 
 
 

a) 
 

 
Figure 10a. Histogram and respective Gaussian pdf for random component xran of KM (a) and Km. 

 
 
 
factors) along the year, will be described. The model is 
based on the previously studied avx and xam time series  
 
Where; kx ,Θ≡ and is defined s a linear combination of 
these two: 
 

amGavt xxx α+= ,                                                (23) 

 
being Gα  a real number and  [ ]1,1−∈αG . 

From avx and xam definition, (14) and (22), one can 

realise that the chosen Gα range, determines (23) to 
model variables from minimal to maximal values 
according to: 
 

MtmG xxx ≤≤�≤α≤− 11                                   (24) 
 

If both avx and xam time series can be assumed to follow a 
deterministic and random components according to  (21),



018      J. Mech. Eng. Res. 
 
 
 

b) 
 

 
Figure 10b. Histogram and respective Gaussian pdf for random component xran of KM ; BI1 transformer 
and data from 2004 

 
 
 

a) 
 

 
Figure 11a. Histogram and respective Gaussian pdf for random component Xran of K(a) and Kam. 
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b) 
 

 
Figure 11b. Histogram and respective Gaussian pdf for random component Xran of K(a); BI1 
transformer and data from 2004. 

 
 
 
and attending to (23), xt model will also result with 
deterministic and random components: 
 

trantt xxx += det                                                         (25) 
with: 
 

)cos(det xdd txxx ϕ+ω∆+=                                       26) 
 

),0( xtran Nx σ=                                                        (27) 
 

Each of the parameters dx , dx∆ ,  and xϕ  can  be  analy-  
tically determined and result as: 
 

damGavd xxx ˆˆˆ α+=                                                       (28) 
 

( ) ( ) )cos(222
amxavxdamdavGdamdavd xxxxx ϕ−ϕ∆∆α+∆α+∆=∆         (29) 

 

      π±
ϕ∆α+ϕ∆
ϕ∆α+ϕ∆

=ϕ
)cos()cos(

)sin()sin(

amxamavxav

amxamavxav
x

dd

dd

xx

xx
arctg    (30) 

 
and  
 

( ) ( ) ),,(222
randrandamav amGavxxx xxCoV α+ασ+σ=σ          (31) 

Where; ),,(
randrand amGav xxCOV α denotes the cova-riance  

(covariance function (3) with null time lag, k=0) between 
the random components 

randavx and 
randamG xα . If profiles 

perfectly fitted model represented by (21), random 
components  

randavx and 
randavx would result as random 

variables and therefore uncorrelated from each other. 
Under this condition, (31) could be replaced by: 
 

( ) ( )22
amav xxx ασ+σ≈σ .                                        (32) 

 
Since (21) is only an approximate model of profiles 
evolution, covariation between random components 

randavx and 
randamx is considerably. Since correlation is an 

image of covariation but normalised by variables 
respective variations, the strength of the link between 

randavx  and 
randamx  results clearer if correlation values are 

represented instead of covariation (Figure 12). 
The usefulness of this global model resides on 

modelling compactness it traduces; by means of Gα  

parameter 11 ≤α≤− G , this single model is able to 
reproduce ambient temperature (or load factor profiles) 
models  previously  derived,  from   minimal   to   maximal 
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Figure 12. Correlation between random components
randavx  and 

randamx . 

 
 
 

Table 6. ESI deterministic and random correlation for 2004 data set. 
 

Ambient temperature 
ESl Load Profile 

Deterministic Random 
Maximal Average Minimal Maximal Average Minimal 

Deterministic 
 

Maximal -0.471 -0.715 -0.771    
Average -0.569 -0.793 -0.841 
Minimal -0.636 -0.843 -0.885 

Random Maximal  -0.074 -0.089 -0.087 
Average  -0.111 -0.135 -0.135 
Minimal  -0.112 -0.143 -0.143 

 
 
 
values. Numerical validation of this model is not 
reproduced here, since obtained values are in agreement 
with those reproduced on Tables 1, 3 and 5.  
 
 
Ambient temperature and load profiles correlation 
 
From the time evolution of load and ambient temperature 
profiles the distribution transformers are subjected to, one 
can infer a relationship between them. For the analysed 
cases, when ambient temperature drops, loads increase, 
and when ambient temperature increases, transformer 
loads decrease. The strength of this relationship between 
loads and ambient temperature is measured  by  the  cor- 

relation between them. Since models have a deter-
ministic and a random part (21), correlation coefficient 
between each of these components, will be determined, 
to evidence that correlation between time series is mainly 
due to their deterministic components; random compo-
nents are practically independent (uncorrelated) of each 
other. Correlation coefficients between transformer ESI 
load profile and 2004 ambient temperature are 
represented on Table 6.  

Correlation between deterministic parts is clearly stron-
ger than between random parts. The negative sign 
traduces the fact that, for the analysed data, models are 
inversely correlated;  the  ambient  temperature  increase 
implies   loads   decrease   and   vice-versa.    Correlation  



 
 
 
 
strength increases as walking towards maximal values, 
which means that loads, and in particular, maximal ones, 
are much more "sensitive" to maximal ambient tem-
perature than minimal ambient temperature. In fact, 
minimal loads along the year are almost constant and 
they traduce, in practice, a "base" load that is almost 
invariant with ambient temperature changes and depends 
most upon load characteristics of transformers distri-
bution network. Previous considerations about correlation 
result clearer on Figure 13a, where Table 6 deterministic 
and random correlation values are graphically 
represented. 

Although correlation coefficients are all negative, on  
Figure 13 correlation axis is in reverse order, so that 
graph visualisation results clearer. Similar relationship 
between deterministic and random correlation values can 
be obtained from BI1 transformer data (Figure 13b) and 
from 2003 and 2005 data sets (Figures 14 and 15). The 
con-stancy in the sign of correlation between random 
parts (all negatives in 2004 or all positives in ESI 2004) is 
an indication that random components randx  of these 
profiles still carry deterministic behaviours that were not 
removed by the assumed deterministic model (21). If 
profiles were perfectly modelled by (21), correlation 
between any random component would result as null.  
Attending to  the magnitude of correlation between 
deterministic parts and random parts and to results 
presented on the functional parameter modelling, it can 
be consider that, 
 

+ϕ+ω∆+= )cos( xddt txxx  N )ˆ,ˆ( xx σµ ,                    (33) 
 
is a generic sufficiently accurate model to traduce the 
load annual evolution of distribution transformers as well 
as ambient temperature. Also, simulated load and am-
bient temperature profiles with random components will 
be used, to study the sensitivity of transformer thermal 
and loss of life models presented on Popescu (2006b), to 
such functional parameters. 
 
 
FUNCTIONAL PARAMETERS SENSITIVITY 
 
Probabilistic formulation 
 
Input profiles 
 

System inputs, K and aΘ , are the transformer load and 
ambient temperature profiles which, by assumption, can 
be represented by an additive model of deterministic and 
random components, of the form: 
 

ranKKK += det  and ranaaa Θ+Θ=Θ
det

.                (34) 

 
In fact, possible correlation can occur between K and T. 
In this general case, a non-stationary model must be 
considered. In this work this increase in model complexity  
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will not be considered, since when the correlation exists, 
it derives, mainly, from a strong link between deter-
ministic components (that is concomitant sinusoidal load 
and ambient temperature variations) and a weakest link 
between corresponding random components, as shown 
in Figure 13. The objective of this study is, under sta-
tionary conditions, to determine, on the output variable 
(LOL), its deterministic and random components, based 
on the previously referred additive model. 
 
 
Methodology 
 
The data acquisition frequency of a continuous type 
system must be carefully defined since it plays an 
important role on posterior analysis of data. Namely, the 
data acquisition set must represent faithfully the signal 
and, from this data set, one must be able to "rebuild" the 
original signal in a univocal way. The sampling theorem 
states that a continuous signal which Fourie Transform 
exists and is null out of the frequency interval [-f, f], 
should be sampled at a frequency fs such that: 
 

ffs 2>                                                                    (35) 
 
Reciprocally, if the sampling frequency is fs, no infor-
mation can be inferred from the sampled data  set,  about 
signal occurrences with frequencies above the Nyquist, 
fN, frequency, given by:  
 

2/sN ff = ,                                                              (36) 
 
Usually, in the case of long term forecasting, the acquisi-
tion period of data for analyses is long enough and there-
fore it is possible to neglect variables rapid fluctuations 
having a period of the same order of involved thermal 
time constants. Typically, it is �0=3 h and the windings 
constant   �w ≈ 5 to 10 min (Asbury , 1975; IEC-354, 
1991; Pierrat et al., 1996; Popescu, 2006a). Taking into 
account that input variables are approximately stationary, 
this simplification represents a second argument to 
consider a probabilistic stationary model, instead of a 
stochastic dynamic one. Both transformer thermal and 
ageing models, are strongly non-linear ones, which will 
determine the non-preservation of inputs statistical distri-
bution structure (Bendat and Piersol, 1990; Bendat and 
Piersol, 1993; Popescu, 2006; Popescu, 2008). Never-
theless, provided each mathematical transfor-mation can 
be defined as a one-to-one function (with inverse) of an 
input random variable which pdf is known, output variable 
pdf can be analytically determined, either directly with 
recourse of characteristic functions. However, this 
methodology is not suitable for the system under study, 
since some transformations do not have an analytical 
exact expression for its inverse function: 
 

)(xy ϕ= ,                                                                    (37) 
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a)  
 
Figure 13. Deterministic and random correlation between ambient temperature and ESI Data from 
2004. (Table 6 for ESI transformer). 

 
 
 

 
b) 

 
 
Figure 13. Deterministic and random correlation between ambient temperature and BIl. Data from 2004. 
(Table 6 for ESI transformer). 



Popescu and Popescu       023 
 
 
 

a) 
 

 
Figure 14a. Deterministic and random correlation between ambient temperature and ESI profiles. 
Data from 2003. 

 
 
 

b)  
 
Figure 14b. Deterministic and random correlation between ambient temperature and Bll profiles. Data 
from 2003. 
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a) 

 
 
Figure 15a. Deterministic and random correlation between ambient temperature and ESI profiles. Data 
from 2005. 

 
 
 

 
b) 

 
 
Figure 15b. Deterministic and random correlation between ambient temperature and Bll 
profiles. Data from 2005 



 
 
 
 
which must be determined numerically. 

The methodology used to estimate the stochastic out-
put variable LOL, once the random inputs K and aΘ are 
defined, is based on realistic characteristics of distribution 
transformers load profiles and ambient temperature ones. 
As already shown from the case studied, in a statistical 
sense, K and aΘ  can be considered as unimodal random 
variables concentrated around their modal values (mode) 
(Papoulis, 1984; Popescu, 2006) which means a reduced 
variation coefficient xCV . Under this condition, it will be 
assumed as valid the linearisation of (37) in the vicinity of 
its input expected value xµ , which first three terms are: 
 

( ) 2
2

2

][
)(

][
)(

xxxxx x
x
x

x
x
x

y
xx

µ−
∂
ϕ∂+µ−

∂
ϕ∂+µϕ≈ µ=µ= .         (38) 

 
From (39) one can obtain estimators for y moments, 
denoted by yµ̂  and yσ̂ , as functions of x moments, 

denoted by xµ and xσ . Second order estimators will be 
given by: 
 

( ) 2
2

2 )(
2
1ˆ xxxy xx

x σ
∂
ϕ∂+µϕ=µ µ=                                  (39)   
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∂
ϕ∂=σ µ=µ=            (40) 

 
The errors one commits by considering the first order 
estimators, against the second order ones, can 
approximately be bounded by: 
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xx

x
xx

x                       (41) 

 
If the linearisation of (37) is assumed to be valid, it will 
also lead to the preservation of input variable statistical 
structure. Being the x variable pdf defined, the output 
variable y will present a similar structure and its pdf can 
be determined, approximately, with recourse of its first 
moments, which estimators are given by (39) and (40). 
 
 
Approximate analytical model  
 
Linearisation error 
 
In order to evaluate the validity of the linearisation 
traduced by (38), the errors µε and 2σε , (39) and (40),  for  
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a range of xµ  and xσ corresponding to realistic values of 
distribution transformer load profiles, were studied: 

]5.1,1.0[∈µx  and ]8.0,01.0[∈σx . To xµ =0.1 p.u. cor-

responds a very low load, while xµ =1 p.u. corresponds to 
an overload of limited duration. The resulting variation 
coefficient ranges, approximately: [ ]8,007.0∈xCV . Nu-
merical results, presented on Figure 16, are determinant 
in concluding for the importance of second order 
estimators, as xCV increases, traducing the limits of 
linearisation procedure, based on first order estimators. 
 
 
Stationary normal inputs 
 
Considering that both system input variables are normally 
distributed, with parameters: 
 

~k N ),( kk σµ and ~aΘ N ),( kk σµ ,                      (42) 
 

Resulting that 
hsΘµ̂  will present an approximately normal 

distribution, which estimated parameters are:  
 

ahshs Θ∆ΘΘ µ+µ=µ ˆˆ ,                                                 (43) 
 

222 ˆˆˆ
ahshs Θ∆ΘΘ σ+σ=σ ,                              (44) 

 
since mutual independence between random parts was 
admitted. Under a probabilistic fonnulation, where time 
dependence does not exist and for stationary statistical 
distributions Vag is identical to LOL, and therefore 
(Popescu, 2008), being hsΘ  approximately Normal, LOL 
will result strictly as a lognormal distributed random 
variable: 
 

( )
	
	



�

�
�



�

σ
µ−−

πσ
= 2

2

ˆ2

ˆ)ln(
exp

2ˆ
1

)(
LOL

LOL

LOL

LOL
LOLpdf           (45) 

        
Where;   
 

( )98ˆ
6
2lnˆ −µ=µ ΘhsLOL  and  

hsLOL Θσ=µ ˆ
6
2lnˆ               (46) 

 
 
Stationary uniform inputs 
 
Input variables are considered to be uniformly distributed: 
 

~K U ],[ 21 KK  and ~aΘ  U ),(
aa ΘΘ σµ .                   (47) 

 
Their first moments are given by: 
 

2
12 XX

X
+=µ and 

32
12 XX

X
−=σ ,                          (48) 
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a) 

 
 

Figure 16a. First order linearisation error µε . 

 
 
 

 
b) 

 
 

Figure 16b. First order linearisation error 2σε .  



 
 
 
 

Table 7. Limits of 95% confidence intervals of Normal 
inputs simulated by Monte Carlo. 
 

 K aΘ  

Lower Upper Lower Upper 

µ̂  0.802 0.809 19.762 20.117 

σ̂  0.098 0.105 4.923 5.175 

γ̂  0.123 0.128 0.246 0.263 

 
 
 

Table 8. Input distribution parameters. 
 

kµ  kσ  CVK 
aΘµ  aΘσ  aCVΘ  

0.8 0.1 0.125 20 5 0.25 
 
 
 
and the resulting variation coefficient by: 
 

12

12

3
1

XX
XX

CVX +
−= ,                                               (49) 

 
with aKX Θ≡ , . In this case, analytic pdf of output 

variable LOL is unknown because hsΘ  is a bounded 
random  variable. 
 
 
Simulation results and analysis 
 
Simulation parameters and method 
 
The results presented were obtained considering a 
distribution transformer rated 630 kVA, 10 kV/400V with 
copper windings. When needed parameters were omitted 
on transformer data sheet, the ones proposed on IEC-
354 (1991) were assumed: KRo 55=∆Θ , KRhs 23=∆Θ , 

5=R , 8.0=n , 6.1=m . Input variables sample length is 
N = 3000 and were simulated from a Monte Carlo Method 
(Popescu et al., 2009a; Popescu, 2007; Rubinstein, 
1981). Histograms were  drawn,  considering  100  binary 
classes, for each variable. Table 7 represents the 95% 
confidence intervals of Normal inputs simulated by Monte 
Carlo. 

In order to compare results from normal and uniform 
input distributions, random variables were simulated for 
similar expected and standard deviation values, on both 
sets of distributions (Table 8). 

Their respective histograms are represented in Figures 
17 and 18. Concerning uniformly distributed inputs, the 
bounds of their variation range are determined by (48), 
taking into account the same means and standard 
deviations of Table 8. 

Popescu and Popescu       027 
 
 
 
Results for normal and uniform inputs 
 
For normally distributed load and ambient temperature 
profiles, which parameters are represented on Table 
8, hs∆Θ , hsΘ  and LOL pdf’s results are represented in 
Figures 19 and 20(a), respectively; LOL cumulative 
distribution function (CDF) is represented on Figure 20b. 
For Uniform distributed input variables, corresponding 
variables are represented in Figures 20 and 21. 

In the figures, dots represent simulated values and 
lines represent Normal pdf’s (and subsequent lognormal 
ones, for LOL), which parameters are the corresponding 
variables second order µ̂ and µ̂  estimators, obtained 
from the linearisation procedure (39) and (40). 
 
 
Results analysis 
 
Estimators determined from the linearisation method, 
corresponding to hs∆Θ , hsΘ and LOL variables are 
represented in Table 9. 

These estimators are, by definition, independent of 
input distributions (Normal and Uniform). Table 10 
represents estimators obtained from the Monte Carlo 
method, for the variables hs∆Θ , hsΘ  and LOL, 
respectively for Uniform  and Normal distributions.  

Taking into account inherent errors of Monte Carlo 
methodology, these values can be considered as 
references. A general idea of  linearisation  precision  can 
be drawn out from deviations of, for example, 

hs∆Θ variable parameters; maximal deviations between 
Tables 9 and 10 values are 3%. Since these errors also 
include Monte Carlo inherent errors (Popescu et al., 
2009a; Rubinstein, 1981) (Table 11), one can consider 
that second order estimators are of sufficient precision. 

Comparison of Normal and Uniform parameters in 
Table 10 shows that LOL mean and standard deviation 
weakly depend upon input variables distribution. The 
strong non-linearity of LOL model leads to a great 
increase in LOL variation coefficient by reference to input 
variable ones. This tendency is more pronounced for nor- 
mal distributions than for uniform ones; this is due to the 
fact that normal random variables domain do not respect 
positive values). From this point of view, since minimal 
information is available, the choice of uniformly 
distributed variables, leads to better results according to 
maximum entropy principle (Papoulis, 1984; Pierrat et al., 
1997). On the other hand, Figures 20(a) and 20(b) show 
constrains associated to physical variables (bounded that 
linearisation and Monte Carlo methods sufficiently coin- 
cide for uniform and normal input variables, concerning 
CDF. The linearisation based on second order estimators 
allows the easily determination of LOL mean  and  standard 
mean and standard deviation, CDF and consequently, 
the probability of exceeding a certain level. 
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a) 

 
 
Figure 17a. Histograms of Normal K. 

 
 
 

 
b) 

 
 

Figure 17b. Histograms of Normal inputs aΘ . 
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a)  
 
Figure 18a. Histograms of  Uniform K inputs. 

 
 
 
 

b) 
 

 

Figure 18b. Histograms of  Uniform aΘ inputs. 
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a) 

 
 

Figure 19a. (a) hs∆Θ  pdf’s for Normal inputs. 
 
 
 

 
b) 

 
 

Figure 19b. hsΘ pdf’s for Normal inputs. 
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a) 

 
 
Figure 20a. LOL and pdf for Normal inputs.  

 
 
 

b) 
 

 
Figure 20b. LOL and CDF for Normal inputs. 
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a)  
 
Figure 21a. hs∆Θ pdf’s for Normal inputs. 

 
 
 

 
b) 

 
 
Figure 21b. hsΘ pdf’s for Normal inputs. 

 
 
 

Table 9. Second order LL, C and CV estimator values. 
 

 hs∆Θ  hsΘ  LOL 

µ̂  57.950 78.131 0.222 

σ̂  9.579 10.869 0.433 

VC
�

 0.163 0.137 1.957 
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Table 10. Estimators from Monte Carlo simulations for Normal and Uniform inputs. 
 

 Normal distribution Uniform  distribution 
 hs∆Θ  hsΘ  LOL hs∆Θ  hsΘ  LOL 

µ̂  58.268 78.209 0.236 57.835 77.835 0.211 

σ̂  9.656 10.870 0.477 9.536 10.767 0.406 

VC
�

 0.166 0.139 2.019 0.165 0.138 1.923 

 
 
 

Table 11. Monte Carlo errors propagation for Normal inputs. 
 

 hs∆Θ  hsΘ  LOL 

Lower Upper Lower Upper Lower Upper 

µ̂  57.524 58.208 77.286 78.327 0.281 0.419 

σ̂  9.391 9.935 10.602 11.203 0.000 1.681 

γ̂  0.161 0.173 0.135 0.145 0.000 5.971 

 
 
 
STRUCTURAL PARAMETERS SENSITIVITY 
 
This section objective is to study thermal and loss of life 
models  sensitivity  relatively   to   structural   parameters,  
namely, R0∆Θ , hRo∆Θ , R, n and m (Resende et al., 
1998).  
 
 
Methodology 
 
Functional inputs are the transformer load, K, and ambient 
temperature, aΘ , profiles which, by assumption, will be 
represented by the additive model of (34). The deter- 
ministic component of functional inputs will be considered 
stationary. In fact, this basic representation on functional 
input profiles will have no influence on structural  parame- 
meter sensitivity study, since these profileswill remain 
unchanged along the study. Both system functional input 
variables will be considered as normally distributed:  
 

~k N ),( kk σµ  and   ~aΘ N ),(
aa ΘΘ σµ .               (50) 

 
The values of two first variables moments are: kµ =1 

[p.u.], kσ = 0.1 [p.u.], 
aΘµ = 20°C  and 

aΘσ = 5°C.  These  

values will lead to corresponding variation coefficient 
values of: CVK =0.1 [p.u.] and 

a
CVΘ =0.25 [p.u.]. For the 

reference scenario, structural parameters will be 
considered as deterministic variables, which values are 
those proposed by IEC-354 (1991): 
 

550 =∆Θ R , KRhs 23=∆Θ , 5=R , 8.0=n 6.1=m .        (51)    
 
For this referential scenario, structural parameters will  be  

considered as random variables. Other possible distribu-
tion could be  envisaged,  depending  upon  the  available 
knowledge of parameters; due to its generality, it will be 
considered that structural parameters are random 
variables normally distributed: 
 

~0R∆Θ N ),( oiloil σµ , ~Rhs∆Θ N ),( hshs σµ , ~n N ),( nn σµ ,

~R N ),( RR σµ and ~m N ),( mm σµ                            (52)               
 
which first moment values are those represented on (51) 
and second moment values are imposed by limiting 
physical conditions: 
 

Ro∆Θ , hRo∆Θ ,  R, n, m>0, n<1 and m<2             (53) 
 
 
Procedure 
 
Using a Monte Carlo simulation method (Popescu et al., 
2008; Rubinstein, 1981), load and ambient temperature 
profiles are simulated and, under the referential scenario, 
output variable two first moments LOLµ and LOLσ  are 
determined. The model output sensitivity will be studied 
separately for each structural parameter. Therefore, five 
more simulations are performed where, one at the time, 
each structural parameter is considered as a random 
variable defined on (52), while the remain four, stay as 
deterministic ones; with this procedure, one is able to 
study output sensitivity due to each parameter, sepa-
rately. The variability of each parameter was incremented 
up to the limits imposed by physical conditions stated in 
(53). This variability can be measured through the 
variation coefficient, CV. The output variable sensitivity is 
measured through the LOL variation coefficient, in per 
unit values based on those obtained under the referential  
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Table 12. Structural parameter values. 
 

Set Ro∆Θ [0C] Rhs∆Θ [0C] R [p.u.] n m 

A µ =55, ∈σ [0;15] 23 5 0.8 1.6 

B 55 µ =23, ∈σ [0;6.5] 5 0.8 1.6 

C 55 23 µ =5, ∈σ [0;14] 0.8 1.6 

D 55 23 5 µ =0.8 , ∈σ [0;0.2] 1.6 

E 55 23 5 0.8 µ =1.6, ∈σ [0;0.4] 
 
 
 
scenario: 
 

ScenarioferencialLOL

LOL
LOL CV

CV
upCV

Re)(
.].[ = .                    (54) 

 
 
Simulation results and analysis 
 
The results presented were obtained considering a stan-
dardised distribution transformer rated 630 kVA, 10 
kV/400 V with copper windings and mean values of struc- 
tural parameters given by (51). Input variables sample 
length is N = 3000 and were simulated from a Monte 
Carlo Method (Popescu et al., 2009a; Rubinstein, 1981). 
In order to compare, separately, models sensitivity to 
each parameters, five set of input data were considered 
(Table 12). 

Simulation results are represented in Figures 22, 23 
and 24. LOL sensitivity to hRo∆Θ  and Rhs∆Θ parameters 
variability is important (Figure 22). 

In fact these are the thermal model parameters that 
represent the transformer cooling conditions which are 
fundamental on hot-spot temperature estimation and so 
loss of life. Results show the importance of standardising 
with variation coefficients below 5%, the values obtained 
from tests for these two parameters. Under this condition, 
LOL sensitivity to them becomes negligible. Output 
variable sensitivity to R parameter variability is negligible 
(Figure 23) since, even with an increase in transformer 
losses (which would increase LOL), this R ratio stays 
almost constant. Parameter R is fundamental to optimise 
transformer efficiency as a function of load variability and 
losses economical value but its importance is reduced on 
hot-spot temperature estimation, at least assuming (IEC-
354, 1991) thermal model. Parameter R is fundamental 
on economical models but its importance is reduced on 
thermal model. Sensitivity to n and m parameter is an 
important and actual subject since many discussions can 
be found on literature about these two parameters, for 
example Boteanu and Popescu (2008) and Zodeh and 
Whearty (1997). These parameters are of difficult 
measurement and therefore, one can find in specialised 
literature a great dispersion of measuring methodologies 
and correspondent obtained values. 

Conclusion 
 
The modelling of the time series representative of annual 
evolution of ambient temperature and transformer load 
showed that a non-complex additive model of deter-
ministic and random components could genetically model 
such time series. Good results were obtained considering 
the deterministic component as a time varying function 
represented by a constant value (mean annual value) to 
which a first order  sinusoidal  function  is  added  (annual 
added (annual cyclic variation). The model can easily be 
extended to daily, weekly or seasonally sinusoidal varia-
tions. Resulted residuals still denoted the presence of 
deterministic cyclic behaviours of higher than the first 
order but, generally, they could be approximated to ran-
dom variables closely following a Gaussian distribution. 

Most detailed models, such as the autorregressive 
models were experienced. They proved to mostly precise 
model some of the analysed time series but they could 
not be generalised for the analysed sample of profiles. 
The correlation between ambient temperature and 
distribution transformer load was also  analysed.  For  the 
studied cases, the results obtained by splitting this ana-
lysis into correlation between deterministic compo-nents 
and correlation between random components, showed 
that ambient temperature and distribution trans-former 
load were inversely correlated and that this correlation 
derives mainly from a strong link between deterministic 
components rather than from random com-ponents. Due 
to their relative values, corre-lation be-ween random 
components is practically negligible, compared to that 
between deterministic com-ponents. Due to the strongly 
non-linearity of transformer thermal and  loss  of  life  mo- 
dels the statistical structure of input variables (load and 
ambient temperature) is not preserved on the output 
variable (loss of life). Moreover, the analytical determi-
nation of output statistical pdf is not possible either 
directly either with recourse of characteristic functions, 
since some mathematical transformations do not have an 
analytical exact expression for its inverse. Since, in a 
statistical sense, load variable is of reduced variability, 
meaning concentrated around its mean, a second order 
linearisation of the model, valid in the vicinity of load mean, 
was developed. The linearised model  was  validated for 
two different pdf's  of  the  input  variables:  the  Gaussian
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a)  
 
Figure 22a. LOL sensitivity to hRo∆Θ  variability. 

 
 
 

b)  
 
Figure 22b. LOL sensitivity to Rhs∆Θ variability. 

 
 
 

 
 
Figure 23. LOL sensitivity to R variability. 
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a)  
 
Figure 24a. LOL sensitivity to n. 

 
 
 

 
b)  
 
Figure 24a. LOL sensitivity to m. 

 
 
 
and the uniform pdf’s. The input variables were simulated 
by a Monte Carlo method and results obtained from 
simulations are of good accuracy with those analy-tically 
estimated. Last study presented on this chapter refers to 
the sensitivity of transformer thermal and loss of life 
models, relatively to its structural parameters varia-bility. 
The existence of this variability has been shown on 
Borcosi et al. (2009:2008). The sensitivity was studied 
through the variability of output variable and was  
achieved by considering structural parameters as repre-
sented by random variables normally distributed. This 
statistical structure was chosen attending to its generality. 
Variables were simulated by a Monte  Carlo  method  and 

their mean values equalled those proposed by Inter-
national Standards. Respective variation values were the 
maximum ones allowed by parameters' physical 
constrains. Results showed that the transformer thermal 
and loss of life assembly model is practically insensitive 
to the variability of the parameters R, n and m. On the 

other hand, its sensitivity to rhs∆Θ  and mainly to ro∆Θ  
var-iability is important. Justification for this sensitiveness 
resides on the fact that these two parameters are those 
which values directly reflect the cooling conditions of the 
transformer and therefoe are determinant on thermal loss 
of life estimation. For this reason, the  study  showed  the  



 
 
 
 
importance of international standardisation of these 
parameters. If these parameters were  standardised  with 
variation coefficients below 5%, one could consider that 
loss of life sensitivity to them would be negligible. 
 
 
LIST OF MOST IMPORTANT SYMBOLS 
 
CVx, Variation coefficient of x; CÔVx, Estimator of Xt variable 

autocovariance (xt sample autocovariance); xyVÔC , estimator 

of covariance between Xt and Yt  Xt  variables (covariance 
between xt and yt sample); k, time lag on chronological series 
[times];  LOL, relative loss of life over a period [p.u.]; n, oil 
exponent depending upon transformer refrigeration method 
[dimensionless]; N, generic integer number [dimensionless]; m, 
hot-spot exponent depending upon transformer refrigeration 
method [dimensionless]; P (statement), probability of 
occurrence of statement between brackets [p.u]; R, loss ratio 
(rated load loss on windings to no-load loss) [p.u]; x, generic 
variable; x , arithmetic averages of xt; Xt, stochastic variable at 
instant t, with deterministic and random components; xµ , first 
moment (mean or expected value) of variable x [same 
dimension as x]; ρ̂ , estimator of Xt variable autocorrelation 

(autocorrelation of xt sample); xyρ̂ , estimator of correlation 

between Xt and Yt variables (correlation between xt and yt 

samples); 2
Zσ , second moment (variance) of variable x (the 

square of x dimension); aΘ , ambient temperature; R0∆Θ , top-

oil temperature rise referred to ambient temperature under rated 
load [K]; ω , angular frequency [rad s-1]. 
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