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Hall effects on the steady hydromagnetic flow due to non-coaxial rotations of a porous disk and a fluid 
at infinity with slip condition at the boundary has been studied. An exact solution of the governing 
equations has been obtained. The combined effects of Hall current, slip condition and suction or 
blowing are examined. It is found that both the primary velocity and the secondary velocity decrease 
with increase in Hall parameter. The heat transfer characteristic has also been studied on taking 
viscous and Joule dissipation into account. It is found that the critical Eckert number for which there is 
no flow of heat either from the disk to the fluid or from the fluid to the disk increases with increase in 
either Hall parameter or slip parameter. 
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INTRODUCTION  
  
In an ionized gas where the density is low and the 
magnetic field is very strong, the conductivity will be a 
tensor. The conductivity normal to the magnetic field is 
reduced due to the free spiralling of ions and electrons 
about the magnetic lines of force before suffering 
collisions and a current is induced in a direction normal to 
both magnetic and electric fields. The phenomene well 
known in the literature, is called Hall effects. Due to the 
Hall current, a secondary motion ensues that the part of 
the flow takes place in the direction normal to both 
electric and magnetic fields. The study of 
magnetohydrodynamic flows with Hall currents has 
important engineering applications in the problem of 
magnetohydrodynamic generators and of Hall 
accelerators as well as in the flight magneto- 
hydrodynamic. The viscous incompressible flow due to 
non-coaxial rotations of a disk and a fluid at infinity has 
been considered by a number of researcher. Berker 
(1963) studied the viscous incompressive fluid between 
two parallel plates rotating  non-coaxially  with  the  same  
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angular velocity. The flow due to a disk and a fluid at 
infinity which are rotating non-coaxially at slightly different 
angular velocities has been studied by Coirier (1972). 
Erdogan (1972, 1973) studied the same problem in the 
case of a porus disk, when the disk and the fluid at infinity 
rotates with the same and slightly different angular 
velocities respectively. The flow of a simple fluid in an 
orthogonal rheometer has been studied by Rajagopal 
(1992). Murthy and Ram (1978) have studied the MHD 
flow and heat transfer due to eccentric rotations of a 
porous disk and a fluid at infinity. Chakrabarti et al. 
(2005)  considered the hydromagnetic flow due to a non-
coaxial rotation of a porous disk and the fluid at infinity 
with same angular velocity. Hydromagnetic flow due to 
eccentrically non-conducting rotating porous disk and a 
fluid at infinity have been studied by Guria et al. (2007a). 
In all these studies, the effects of Hall current are 
neglected. Hall accelerations and in flight MHD. Hall 
effects on the viscous incompressible conducting fluid 
under various geometry have been considered by Sato 
(1961), Sherman and Sutton (1965), Pop and 

Soundalgekar (1974), Gupta (1975), Debnath et al. (1979), 
Datta and Jana (1975, 1977a, 1977b) and Jana et al. 
(1977). Recently, Guria et al. (2007b)  have studied the 
Hall   effects   on  the  hydromagnetics  flow  due  to  non-  
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Figure 1. Geometry of the problem. 
 
 
 
coaxial rotations of a porous disk and a fluid at infinity. 
Hall effects on the MHD flow generated by a rotating disk 
have been analyzed by Maleque and Sattar (2005b). 
Hayat et al. (2008) studied the Hall effects on unsteady 
flow due to non-coaxially rotation of a disk and a fluid at 
infinity.  

The aim of the present study is to discuss the 
combined effects of Hall current and the slip condition at 
the disk on the steady conducting viscous incompressible 
flow due to non-coaxial rotations of a porous disk and a 
fluid at infinity. An exact solution of the governing 
equations has been obtained. It is found that the primary 
velocity decreases and the secondary velocity increases 
with increase in either slip-parameter   or suction 

parameter S . The heat transfer characteristic of the 

problem has also been studied on taking viscous and 
Joule dissipation into account. It is found that the rate of 
heat transfer at the disk increases with increase in either 
Hall parameter m  or slip-parameter  . The non-

dimensional force X  exerted by the fluid on the disk 
decreases with increase in either slip parameter   or 

Hall parameter m . On the other hand, the force 
Y  

exerted by the fluid on the disk increases with increase in 
Hall parameter m  whereas it decreases with increase in 

slip parameter  . Both the forces X  and Y  decrease 

with increase in suction parameter S . 

 
 
METHODS 
 
Mathematical formulation and its solution  

 
Consider steady flow of a viscous incompressible conducting fluid 

occupying the space > 0z  and  is  bounded  by an  infinite  porous  

 
 
 
 
non-conducting disk at = 0z . The axes of rotation of the disk and 

that of the fluid at infinity to be in the plane = 0x . The disk and the 

fluid at infinity rotate about z  and 
'z -axes with the same uniform 

angular velocity  . The distance between the axes of rotation is 

l . A uniform magnetic field 
0B  is applied perpendicular to the disk. 

The boundary conditions of the problem are: 
  

 0, , at 0,
du dv

u y v x w w z
dz dz

                     (1) 

 

 0( ), , as ,u y l v x w w z                            (2) 

 

where , ,u v w are respectively the velocity components along ,x y  

and z -directions and 0(> 0)w  is the suction velocity at the disk 

and   is the coefficient of a sliding friction. 

The geometry of the problem (Figure 1) suggests that the velocity 
field in the flow is of the form: 

  

0( ), ( ), .u y f z v x g z w w                                  (3) 

 
The generalized Ohm's law, on taking Hall currents into account 
and neglecting ion-slip and thermo-electric effect (Cowling, 1957)  

 

0

( ) ( ),e ej j B E q B
B

 
                                                     (4) 

 

where j  is the current density vector, B  is the magnetic induction 

vector, E  is the electric field vector, e  is the cyclotron frequency 

and e  is the collision time of electron. 

We shall assume that the magnetic Reynolds number for the flow 

is small so that the induced magnetic field can be neglected. This 
assumption is justified since the magnetic Reynolds number is 
generally very small for the partially ionized gases. Assuming 

( , , )x y zB B B B , the solenoidal relation . = 0B  gives =zB  

constant 0= B , everywhere in the flow. Further, if ( , , )x y zj j j j  

be the components of the current density j , then the equation of 

the conservation of the charge = 0j  gives =zj  constant. This 

constant is zero since = 0zj  at the disk which is electrically non-

conducting. Thus = 0zj  everywhere in the flow. Again, for steady 

motion, the Maxwell's equation = 0E  gives 0xE

z





 and 

0
yE

z





. This implies that xE   constant and yE   constant 

everywhere in the flow. In view of the above assumptions, Equation 
4 gives: 

 

0( ),x y xj mj E vB                                                                 (5) 

  

0( ),y x yj mj E uB                                                                 (6) 



 
 
 
 

where = e em   is the Hall parameter. 

At infinity, the magnetic field is uniform so that there is no current 
and hence, we have  
 

0, 0 as .x yj j z                                                          (7) 

 
On the use of Equation 7, Equations 5 and 6 yield  
 

0 0, ( ),x yE B x E B y l                                                (8) 

 
everywhere in the flow. 

Substituting the above values of xE  and yE  in the equations (5) 

and (6) and solving for xj  and yj , we get: 

  

0
2

[ ( )],
1

x

B
j g m l f

m


   


                                                      (9) 

 

0
2

[( ) ].
1

y

B
j l f mg

m


   


                                                    (10) 

 
Substituting Equation 3 and using Equations 9 and 10, the Navier-

Stokes equations along x  and y  directions become: 

 
2

2

0 2

1df p d f
w x

dz x dz





    


 

 

 
2

0

2
( ) ,

(1 )

B
l f mg g

m




    


                                          (11) 

 
2

2

0 2

1dg p d g
w y

dz y dz





    


 

 

 
2

0

2
( ) .

(1 )

B
g m l f f

m




    


                                         (12) 

 

The boundary conditions for ( )f   and ( )g   are  

 

(0) (0)
(0) , (0) ,

df dg
f g

dz dz
                                             (13) 

 

( ) , ( ) 0.f l g                                                                  (14) 

 
On the use of infinity condition (14) (Erdogan, 1977), Equations 11 

and 12 yield 
 

21
0 ,

p
x

x


 


                                                                       (15)           

 

21
0 .

p
y

y


 


                                                                       (16) 

 
Using   Equations   15   and   16,   Equations  11  and   12   become  
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0

df
w g

dz
     

 

 
22
0

2 2
( ) ,

(1 )

Bd f
l f mg

dz m





    


                                    (17) 

 

   0 ( )
dg

w l f
dz

     

 

 
22
0

2 2
( )

(1 )

Bd g
g m l f

dz m





    


.                                    (18) 

 
Introducing  
 

2
2 0 0, ,

B w
z M S




  


  

 
                                        (19) 

 
and combining Equations 17 and 18, we have  
 

2 2 2

2 2 2
1 0,

1 1

d F dF M mM
S i F

dd m m

  
      

   
                        (20) 

 
where  

 

( ) 1 .
f g

F
l




 


                                                                      (21) 

 

The corresponding boundary conditions for ( )F   are  

 

(0)
(0) 1 and ( ) 0,

dF
F F

d



                                             (22) 

 

where  is a slip parameter. 

 
The solution of Equation 20 subject to the boundary conditions (22) 
is  

 

exp
2

( ) ,

1
2

S
i

F
S

i

  



  

  
    
  
 

   
 

                                              (23) 

 
where  

 

1
2 2 22 2

2

2 2

1 4
, 16 1

1 12 2

M mM
S

m m
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
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       
      
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2
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S

m

 
   
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                                                                    (24) 
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Figure 2. Variations of 
f

l
 and 

g

l
 for 1S  , 0.5m   and 0.05  .  

 
 
 
Using Equation 21 and on separating into a real and imaginary 
parts, Equation 21 yields  

 

2

2

2 2

1

1
2

S

f e

l S

 


  

 
  
 

 
  

   
 

  

1 cos sin ,
2

S
    

   
      

   
                               (25) 

 

2

2
2 21

2

S

g e

l S

 


  

 
  
 


  

   
 

  

1 sin cos .
2

S
    

   
      

    
                                (26) 

 
The solutions given by Equations 25 and 26 are valid for both the 

suction ( > 0S ) and the blowing ( < 0S ) at the disk. If 0   and 

0m   then the equations (25) and (26) coincide with the Equation 

5 of Murthy and Ram (1978). Further if 0  , 0S   and 
2 0M  , then Equation 21 is reduced to Equation 13 of Erdogan 

(1976). 

RESULTS AND DISCUSSION 
 
Equations 25 and 26 show that there exists a single-deck 
boundary layer near the disk and the thickness of this 

layer is of the order of 

1

2

S
O 

   
  

   
. The thickness of 

this boundary layet decreases with an increase in either 

suction parameter S  or magnetic parameter 2M  

because  , as shown in the Equation (24), decreases 

with an increase in either suction parameter S  or 

magnetic parameter 2M . On the other hand, the 
boundary layer  thickness increases with an increase in 
Hall parameter m  as   decreses with an increse in Hall 

parameter m . To  study the combined effects of Hall 

current and slip condition on the steady flow of a 
conducting viscous fluid due to non-coaxial rotation of a 
porous disk and a fluid at infinity, the dimensionless 

velocity components /f l  and /f l  are plotted 

against in Figures 2 to 5 for several values of Hall 
parameter m , slip parameter   and suction parameter 

S . Figure 2 shows that the primary velocity /f l  

increases while the secondary velocity /g l  decreases 

with an increase of magnetic parameter 2M . It is 

observed from Figure 3  that  the  primary velocity /f l  
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Figure 3. Variations of 
f

l
 and 

g

l
 for 

2 5M  , 1S   and 0.05  .  

 
 
 

decreases whereas the secondary velocity /g l  

increases with an increase of Hall parameter m . It is 

seen from Figure 4 that the primary velocity /f l  

increases with an increase in slip parameter  . On the 

other hand, the secondary velocity /g l  increases near 

the disk while it decreases away from the disk with an 
increase in  . Figure 5 reveals that the primary velocity 

/f l  increases while the secondary velocity /g l  

decreases with an increase in suction parameter S . The 

components of the force exerted by the fluid on the disk 
along the x - and y -directions are: 

  

 
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2 2
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
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

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
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









  

         (27)                  

where   denotes the surface of the disk of radius 
0r , and 

(0)xz  and (0)yz  are the shear stresses on the disk given 

by: 
  

0

(0)xz
z

w u

x z
 



  
  

  
 

0

(0) .yz

z

w v

y z
 



  
  

  
                 (28)                               

 
Using Equations 3 and 28, Equation 27 becomes: 
  

2 2

0 0= (0) and = (0),X r f Y r g         (29) 

 

where  0f   and  0g  are obtained from Equations 25 

and 26. 
In the case of suction at the disk, Equations 27 give, on 

using Equations 23 and 24  
 

1

2
2

0

X
X

r l 


 

 
 
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Figure 4. Variations of 
f

l
 and 

g

l
 for 

2 5M  , 1S   and 0.5m  .  

 
 
 

 
 

Figure 5. Variations of 
f

l
 and 

g

l
 for 

2 5M  , 0.5m   and 0.05  .  
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Figure 6. Variations of X
 and Y

 for 
2 5M  , 1S  . 
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                             (30) 

 
Similarly, in the case of blowing at the disk, the 
corresponding forces are obtained by replacing  
 

1 1( > 0)S S S  in Equation 30. 

 

The numerical results of the non-dimensional forces X  

and Y  on the disk ( 0)   are shown in Figures 6 and 7 

against m   for  different  values of  slip  parameter   with 

2 5M   and 1S  . It is observed from Figure 6 that the 

dimensionless force X  decreases with increase in either 
  or m . On the other hand, it is observed that the force 
Y  increases with increase in m  when   is fixed, while 

for fixed values of m , it decreases with increase in  . It 

is seen from Figure 7 that both the forces X  and Y  
decrease with increase in suction parameter S . It is well 

known that suction causes reduction in the forces exerted 
by the fluid on the disk. 

The torque exerted by the fluid on the disk is given by  
 

[ (0) (0)] .yz xzM x y dS 



                  (31) 

 
Using Equations 28 and 29 in Equation 31, we get 

0M   . It means that the non-coaxial rotation of the disk 

and the fluid at infinity has no influence on the torque. 
 
 
Heat transfer 

 
We shall now determine the fluid temperature distribution 
T  and rate of heat transfer for the case of suction at the 
disk. The energy equation can be written for the problem 
under consideration is:  
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Figure 7. Variations of X
 and Y

 for 
2 5M   and 0.05  .  

 
 
 

2 22

0 2p

dT d T du dv
c w k

dz dz dzdz
 

    
       

     

 2 21
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where pc  is the specific heat at constant pressure, k  is 

the thermal conductivity of the fluid and the last two terms 
on the right hand side of (32) represent the viscous 
dissipation and the Joule dissipation respectively. The 
temperature boundary conditions are: 
  

at 0 and as ,wT T z T T z                         (33) 

 

where wT  is the constant temperature of the disk and T  

is the uniform temperature of the ambient fluid where we 

assume that >wT T . 

Introducing: 
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and using Equations 3, 19, 25 and 26, Equation 32 
become  
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The corresponding boundary conditions for ( )   are  

 

(0) 1 and ( ) 0.                                                  (36) 

 
The solution of Equation 35 subject to the boundary 
conditions (36) is: 
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If 0   and 0m  , then the above Equation 37 coincides 

with Equations 17 and 18 of Murthy and Ram (1978). The 

non-dimensional rate of heat transfer 
wq  at the disk 0   

is given by: 
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Equation 37 gives: 
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Since >wT T , it follows from Equations 38 and 39 that 

heat will flow from the disk to the fluid if: 
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On the other hand, heat will flow from the fluid to the disk 
if: 
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Table 1. Critical Ekart number Ec  for 
2 5.0M   and 1S  . 

 

\ m  0.0 0.5 1.0 1.5 

0.00 0.32680 0.32972 0.35278 0.38007 

0.04 0.47393 0.47099 0.48633 0.50789 

0.08 0.64850 0.63908 0.64455 0.65836 

0.12 0.85049 0.83397 0.82743 0.83147 
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It is clear from Equation 39 that there will be no flow of 
heat either from or towards the disk when  
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The values of the critical Eckert number Ec  are given in 

Table 1. It is observed that the critical Eckert number 
increases with increase in slip parameter   while it first 

decreases (except = 0 ) reaches a minimum and then 

increases with increase in m . The inequality (41) shows 

that heat may flow from the fluid to the disk even if the 
temperature of the disk is greater than that of the free-

stream temperature >wT T . The reversal of heat flow 

can be explained on physical ground. It is seen that if 
there is significant viscous dissipation near the disk then 
the temperature of the fluid near the disk may exceed the 
disk temperature. This will cause flow of heat from the 

fluid to the disk even though >wT T . It is interesting to 

note from Equation 37 that the thermal boundary layer 
has a double deck structure for 2SPr S   . The 

thickness of these layers are 
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On the other hand, for = 2SPr S  there is a single-deck 

thermal boundary layer with thickness of order of 
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. It is seen from (22) that the layer with thickness of 

order of 
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 decreases with increase in either S  or m . 

The values of the rate of heat transfer 
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 are 

given in Table 2 for  different  values  of    and  m .  It  is  
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Table 2. Rate of heat transfer 

0

10
d

d







 
  

 
 for = 0.025Pr , 

2 5M  , 1S   and 0.3Ec  .   

 

λ/m 0.0 0.5 1.0 1.5 

0.00 0.00205 0.00225 0.00374 0.00527 

0.04 0.00918 0.00908 0.00958 0.01023 

0.08 0.01343 0.01326 0.01336 0.01361 

0.12 0.01618 0.01601 0.01594 0.01598 

 
 
 
clear from the Table 2 that the rate of heat transfer at the 
disk increases with increase in slip-parameter . On the 

other hand, the rate of heat transfer first decreases 
(except = 0 ) reaches a minimum and then increases 

with increase in m . 

 
 
Conclusion 
  
The effects of both Hall current and slip condition on the 
steady hydromagnetic flow of a viscus incompressible 
conducting fluid due to non-coaxial rotations of a porous 
disk and a fluid at infinity is studied. An exact solution of 
the governing equations has been obtained. It is found 
that both the primary velocity and the secondary velocity 
decrease with increase in Hall parameter. It is also found 
that the primary velocity decreases and the secondary 
velocity increases with increase in either slip-parameter 
  or suction parameter S . It is observed that the critical 

Eckert number for which there is no flow of heat either 
from the disk to the fluid or from fluid to the disk 
increases with increase in either Hall parameter m  or slip 

parameter  . Further, it is observed that the rate of heat 

transfer at the disk increases with increase in slip-
parameter  . It is interesting to note that the non-coaxial 

rotations of a porous disk and fluid at infinity has no 
influence on the torque exerted by the fluid on the disk. 
S . The suction at the disk causes reduction in the forces 

exerted by the fluid on the disk. 
 
 
REFERENCES 
 

Berker  R (1963). Hand book of fluid dynamics. Berlin. Springer.  VIII/3: 
87. 

Chakrabarty  A, Gupta  AS, Das  BK, Jana  RN (2005). Hydromagnetic 

flow past a rotating  porous plate in a  conducting fluid rotating about 
a non-coincident parallel axes. Acta.  Mecanica., 176: 107-119. 

Coirier J (1972). Rotations non-coaxiales d'un disque et d'un fluide 

l'infini. J.  Mechanique., 11: 317-340. 
Cowling TG (1957). Magnetohydrodynamics. Interscience, New York. 
 

 
 

 
 

 
 
 
 
Datta N, Jana RN (1975). Hall effects on free convection between 

vertical parallel plates.   Meccanica., 10: 239-245.. 
Datta N,  Jana RN (1977a). Hall efects on hydromagnetic flow  and heat 

transfer in a rotationg channel. J. Inst. Math. Appl., 19: 217-229. 
Datta N, Jana RN (1977b). Hall effects on hydromagnetic convective 

flow through a channel with conduting walls. Int. J. Eng.  Sci., 15: 

561-567. 
Debnath L, Ray SC, Chatterjee AK (1979). Effects of Hall current on 

unsteady  hydromagnetic flow past a porous plate in a rotating 

system. ZAMM, 59: 469-471. 
Erdogan ME (1977). Flow due to non-coaxially rotationsnof  a porous 

disk and a fluid at   infinity. Rev. Roum. Sci. Tech. Appl., 22: 171-178. 

Erdogan ME (1976). Flow due to eccentric rotating a porous disk and a 
fluid at infinity. Trans ASME J. Appl. Mech., 43: 203-204. 

Gupta AS (1975). Hydromagnetic flow past a porous flate with Hall 

effects. Acta Mech., 22: 281-287. 
Guria M, Das BK, Jana RN (2007a). Hydromagnnetic flow due to 

eccentrically rotating disk and a fluid at infinity. Int. J. Fluid Mech. 

Res., 34: 535-567. 
Guria M, Das S, Jana RN (2007b). Hall effects on unsteady flow of a 

viscous fluid due to   non-coaxial rotation of a porous disk and a fluid 

at infinity. Int. J. Non-Linear Mech.,  42: 1204-1209. 
Hayat T, Ellahi R, Asghar S (2008). Hall effects on unsteady flow due to 

non-coaxially rotating disk and a fluid at infinity. Chem. Eng. Comm., 

195: 958-976. 
Jana RN, Gupta AS, Datta N (1977). Hall effects on the hydromagnetic 

flow past an   infinite flat plate. J. Phys. Soc. Japan, 43: 1767-1772. 

Maleque KA, Sattar MA (2005b). The effects of variable properties and 
Hall current on steady MHD compressible laminar convective fluid 
due to a porous rotating disc. Int. J. Heat Mass Transf., 28: 4963-

4972. 
Murthy SN, Ram RPK (1978). MHD fluid and heat transfer due to 

eccentric rotations of a porous disk and a fluid at infinity. Int. J. Eng. 

Sci., 16: 943-949. 
Pop I, Soundalgekar VM (1974). Effects of Hall current on 

hydromagnetic flow near a  porous plate. Acta Mech., 20: 315-318. 

Rajagopal KR (1992). Flow of visco-elastic fluids between rotating 
disks. Theory Comput.  Fluid Dyn., 3: 185-206. 

Sato H (1961). The Hall effects in the viscous flow of ionised gas 

between parallel plates under transverse magnetic field. J. Phys. 
Soc. Japan, 16: 1427-1433. 

Sherman A,  Sutton  GN (1965). Engineering Magnetohy-drodynamics, 

McGraw-Hill, New  York. 
 
 
 
 
 
 
 
 
 
 
 


