A review on gall karkatshringi

Kaur Barinder¹ and Singh Saurabh²*

¹Pharmacy School of Pharmaceutical Sciences, Lovely Professional University Phagwara Punjab, India.
²Ayurvedic Pharmacy School of Pharmaceutical Sciences, Lovely Professional University Phagwara Punjab, India.

Received 2 March, 2014; Accepted 22 December, 2014

Karkatashringi (Pistacia integerrima) is a well known medicinal plant which belongs to the family of Anacardiaceae. The plant is indigenous to India and is found in the outer ranges of the North-Western Himalayas at an altitude of 500 to 2500 m. The different parts of the plant like leaf, bark, root and galls are reported to contain the secondary metabolites. Among them, the galls are more used in folk medicines. They are used in various Ayurvedic formulation like the “Dasamularista”, “Chayavanaprasa” and “Shringyadi curna” which are used in the treatment of diseases like swasa (asthma), yakshma (tuberculosis), ajeerna (indigestion), hridayaroga (heart disease), jwara (fever) and yakrit roga (liver disorder). The secondary metabolites like alkaloids, tannins, terpenoids and flavonoids are reported in the galls. Beside them, minor constituents like crystalline hydrocarbon, gum mastic, resinous substance, crystalline acids are also present. The bark contains terpenoids and flavonoids. The root and leaves contain tannins and terpenoids. Tannin being the major chemical constituent shows the strongest astringent action of the plant. The effect of the plant is due to the presence of these different secondary metabolites that are responsible for pharmacological activities. The aim of this review is to highlight the description of plant in classical literature of Ayurveda as well as therapeutic properties and chemical constituents.

Key words: Karkatashringi, galls, secondary metabolites.

INTRODUCTION

Karkatshringi is a multibranched, single stemmed, deciduous tree of Pistacia integerrima which belong to the family of Anacardiaceae. This plant belongs to Amraka and it is a dioecious shedding tree. It is found in North-West Himalaya including the Siwalik ranges/ Rohitkhand from Indus to Kumaon between 500 to 2500 m. Altitudes (Anonymous, 2005). The plant is known as chakra, chandraspada, shikari in Sanskrit, kakra in Hindi. (Chopra and Chopra, 2006) Typical type of worms make horn shaped galls on the branches and leaves. (Vashist and Anil, 2012) These galls are pale greenish brown or pinkish, elongated, horn-shaped, hollow, twisted, curved or straight. When young they are coriaceous, but later become hard (http://www.indianmedicinalplants.info/Medicinal-Plants). This gall is caused by the insect Dasia aedifactor (Homoptera), (plant produce resin against insect) (http://www.ayurvedaconsultants.com/ayurvedaherbs). They make these galls by sucking juice from the leaves (Vashist and Anil, 2012). Then they are called...
karkatshringi (Vashist and Anil, 2012). Majorly, galls contains resins, pistaciencio acid, tetracyclic triterpenes, camphene, luteolin, pistacin, pistacinin, amino acids, dihydromavalic acids, sterols and tannins (Warrier et al., 1995). These galls are useful in asthma, cough, hiccough, dysentery, diarrhoea, ulcers, bronchitis, fever, irritability of stomach, leprosy, psoriasis, skin diseases, vitiated condition of tridosha, dyspepsia, inflammation, anorexia, pharyngitis, leucorrhoea and general debility. It is also very effective in children at the time of teething. In Pakistan, the galls of *Pistacia chinensis* var. *Integerrima* are used for the treatment of hepatitis and liver. It has been reported to have depressant, analgesic anti-inflammatory activities and hyperuricemic effect disorder (Ghias et al., 2011; Ansari et al., 1993).

REVIEW OF LITERATURE

Literature brush up reveals the different classical categorization of Karkatshringi. Different Acharayas (Ancient scholars) kept it in the different categories according to their own knowledge. Some confusion arises because of all the names related to Karkatika, Karkatkhya, Vakra, Visanika etc. which are generally accepted as Karkatshringi.

Classical categories: Gana

Charaka: In Charak samhitā Karkatshringi is kept under the gana of (Bhedaniya, Angamardaprasamana, Svedopaga, Madhuraskanda) (http://www.ayurvedainfo.com/wiki/karkatshringiclassical_categories_gana), (Kasahara, Vikatanikahna and Madhura skandha) (Sharma, 1981), Charak interpreted it as the small variety of amalaki (Sharma and Bhagwan, 1996).

Sushruta: In Sushruta samhitā, Karkatshringi placed under the gana of (Vidarigandhadi, Adhibhagahara, Vatasamshama) (Sharma, 1981). It is important to note that sushruta classified it as a poison for a vegetable origin. Acharya Sushruta kept this plant in Visa khand. Similar confusion is apparent in the context of Gunja which is categorized under Mula visa (root poison). Charaka interpreted it as amalaka and the toxic symptoms are mentioned by Acharya Sushruta. Likewise, Dalhana’s comments add more confusion about its identification since Mesasringi, Ajasringi and Uttamarni are equated to Karkatshringi because, the Asclepiadaceae family may have the same synonyms (Jivanti).

Botanical description

Deciduous tree, up to 18 m high, barks dark grey or blackish. Leaves alternate, pinnate, 15 to 23 cm long, with or without terminal leaflet, leaflets 4 to 5 pairs, lanceolate, acuminate, sub-opposite, coriaceous, 7 to 12 cm long. Characteristic galls are produced on the leafy branches. Flowers small, reddish, unisexual, dioecious. Male panicles short, compact. Female flowers have long lax panicles. Drupe globose, wrinkled, rugose and grey when ripe.

Microscopic characters

Transverse section of mature root shows a wide zone of stratified cork, exfoliating at places, consisting of rectangular, thin-walled, tangentially elongated, radially arranged cells, upper few layers filled with reddish-brown contents, remaining cells colourless, cortex, a wide zone of rounded cells with fibre groups towards central and middle region, cells obliterated at places, endodermis barrel-shaped, slightly thickwalled, pericycle and phloem not distinct, xylem forms bulk of root consisting of vessels, fibres and parenchyma, medullary rays not distinct, vessels shows annular or pitted thickening, fibres thick-walled, elongated having a few simple pits. Powder-yellowish-brown, under microscope shows fragments of corks, xylem vessels and fibres.

Distribution

North-West Himalayas (Indus to Kumaon) at 350 to 2500 m. cultivated in Punjab plains.
Chemical constituents

Karkatshringi contains various important phyto-constituent for commercial value and therapeutic potential. Chiefly it contains resin two isomeric triterpenic acids-pistacienoic acids A and B, tannins, a triterpene alcohol-tirucallol, beta-sitosterol, tetracyclic triterpenes, pistacigerrimones A,B,C(galls); alpha-piene, beta-piene, camphene, dl-limonene,1:8-cinol, alpha- terpineol, beta- terpineol, aromadendrene, lactonic stearoptene, caprylic acid, alpha-d-pinene, alpha &beta-phallandrene,amino acids, dihydromalyalic acid, protein (seeds); hydrocarbons, sterols, triterpenoids(seeds oil), tannins (leaves,bark).

Pharmacological activities

Karkatashringi is an important medicinal plant whose galls are used in traditional medicines in India for the treatment of asthma, chronic bronchitis, phthisis, diarrhea, fever and other reported activities as antispasmodic, carminative, antimicrobial and anthelmintic.

Toxicology

Essential oil of gall has a depressant action on the central nervous system of guinea-pigs and white rats when given in sub-lethal doses. The animals become deeply unconscious in about an hour. Lethal doses (m.l.d0.1cc/100 gm body wt.) cause deep narcosis leading to death within a few hours. The oil has a slight irritant action on the skin and mucous membrane.

Therapeutic evalution

In a clinical trail Brihat talisadi churna in which Karkatashringi is one of the ingredients was found useful in the patients of productive cough when administered in the dose of 500 mg QID with honey as adjuvant.

Formulations and preparations

Karkatshringi is one of the major ingredients of various type of Ayurvedic formulations like Shringiadi chura, Karkatadi chura, Balachaturbhadra churna, Brihat talisadi churna, Devadarvayadi kwath churna, shatavaryadi ghrit, chayanprash-awaleha, Dashmularista, Kanta karyavaleha, Siva gutika and khadiradi gutika used in various therapeutic purposes.

Substitues and adultrants

Galls produced on the plants viz. Rhus succedanea, Garuga pinnata, Terminalia chebula are also used and sold under the name Karkatshringi.

Research work done

1. Oil extracted from P. chinensis exhibited central nervous system (CNS) depressant activity (Sharma, 1981).
2. The crude methanolic extract of P. integerrima bark evaluated for antipyretic activity (The crude methanolic extract of Pistacia integerrima bark evaluated for antipyretic activity, Sharma and Bhagwan, 2011).
3. Phytochemical investigation of the galls of P. Integrerrima (Ahmad et al., 2010).
4. Ethyl gallate isolated from P. integerrima Linn. inhibits cell adhesion molecules by blocking AP-1 transcription factor (Mehla et al., 2011).
5. Pharmacological basis for use of P. integerrima leaves in hyperuricemia and gout (Ahmad et al., 2008).
6. Analgesic and anti-inflammatory effects of P. integerrima extracts in mice (Ahmad et al., 2010).
7. Propagation of pistachio rootstock by rooted stem cuttings (Almehdi et al., 2002).
8. Phylogenetics and reticulate evolution in Pistacia (Anacardiaceae) (Phylogenetics and reticulate evolution in Pistacia (Anacardiaceae) (Yi et al., 2008).
9. Analgesic, anti GIT motility and toxicological activities of P. integerrima Stewart ex Brandis bark in mice (Ismail et al., 2012).
10. Hepatoprotective effects of berries lyceum, gallium aparine and P. integerrima in carbon tetrachloride treated rats (Khan et al., 2008).
11. Pharmacognostical studies on the south Indian market sample of Karkatshringi (Kadukkaipoo)- (Gaertn. Leaf gall) (Santha et al., 1991).

Observation

The profile of the medicinal plant (Karkatshringi) which is present in ancient and modern text carried little confusion related to the synonym of plant. Ancient scholar (Sushruta) kept the plant in poisonous category (Visha khand). They also mentioned the uses of plant in respiratory disorders viz. asthma, hicough, cough etc. After reviewing the various research articles on the basis of preclinical studies it possess the properties mentioned in Ayurvedic texts and shows some other significant properties like: antipyretic, analgesic, anti-inflammatory, antioxidant, hepatoprotective, antimicrobial, GIT motility and toxicological, hyperuricemia and gout (Table 1).

CONCLUSION

The multipurpose medicinal plant (P. integerrima), is the unique source of various types of compounds having...
Table 1. Ayurvedic properties.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasa</td>
<td>Tikta (Pungent)</td>
</tr>
<tr>
<td>Veerya</td>
<td>Ushna (Hot)</td>
</tr>
<tr>
<td>Vipaka (Post digestion effect)</td>
<td>Katu (pungent)</td>
</tr>
<tr>
<td>Effect on tridosha</td>
<td>Pacifies Kapha and Pitta</td>
</tr>
</tbody>
</table>

Table 2. Vernacular names.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Language</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English</td>
<td>Crab's claw</td>
</tr>
<tr>
<td>2</td>
<td>Hindi</td>
<td>Kakdashingi, Kakarsingi, Kakra, Kakatasingi</td>
</tr>
<tr>
<td>3</td>
<td>Punjabi</td>
<td>Kakar, Kakarshingi, Drek, Gurgu, Kakkeran, Kakkrangehi, Kakala, Kangar Masna, Sumak, Tungu, Tanbari, Shne, Karkarshingi</td>
</tr>
<tr>
<td>4</td>
<td>Bengali</td>
<td>Kakra, Kakarshingi, Kandashringi</td>
</tr>
<tr>
<td>5</td>
<td>Gujarati</td>
<td>Kakadasingi, Kakra, Kakarshingi</td>
</tr>
<tr>
<td>6</td>
<td>Marathi</td>
<td>Karkadasingi, Kakra, Kakarsingi, Kakadshingi</td>
</tr>
<tr>
<td>7</td>
<td>Malayalam</td>
<td>Karkatasingi, Karkktakasingi</td>
</tr>
<tr>
<td>8</td>
<td>Tamil</td>
<td>Karkata, Singi, Kakatashingi</td>
</tr>
<tr>
<td>9</td>
<td>Telgu</td>
<td>Kakarashingi, Kakatakashruni, Kakarasimga</td>
</tr>
<tr>
<td>10</td>
<td>Assam</td>
<td>Kakiarshingi</td>
</tr>
<tr>
<td>11</td>
<td>Oriya</td>
<td>Kakadashrungi, Kakadashingi,</td>
</tr>
<tr>
<td>12</td>
<td>Urdu</td>
<td>Kakrasinghi, Kakra</td>
</tr>
</tbody>
</table>

Table 3. Identity, purity and strength.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Identity, purity and strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foreign matter not more than 2 per cent</td>
</tr>
<tr>
<td>2</td>
<td>Total Ash Not more than 11 per cent</td>
</tr>
<tr>
<td>3</td>
<td>Acid-insoluble ash Not more than 2 per cent</td>
</tr>
<tr>
<td>4</td>
<td>Alcohol-soluble extractive Not less than 9 per cent</td>
</tr>
<tr>
<td>5</td>
<td>Water-soluble extractive Not less than 16 per cent</td>
</tr>
</tbody>
</table>

diverse chemical structures. Very little work has been done on the biological activity and plausible medicinal applications of these compounds and hence extensive investigation is needed to exploit their therapeutic utility to combat diseases. The present results therefore, offer a scientific basis for the traditional use of the various extracts of \textit{P. integerrima} (Tables 2 and 3).

ACKNOWLEDGEMENT

This review was supported by Prof. M.G. Chauhan former Dean IAMPS Gujarat Ayurved University Jamnagar Gujarat India.

Conflict of interest

Authors have none to declare.

REFERENCES

Almehdi AA, Parfitt DE, Chan H (2002). Propagation of pistachio...
Anonymous (2000). The Ayurvedic Formulary of India, Ministry of
Health and Family Welfare, Department of ISM&H, Govt. of India,
New Delhi, Part-2. p 330.
Anonymous (2001). The Ayurvedic Pharmacopeia of India, Ministry of
Health and Family Welfare, Department of ISM&H, Govt. of India,
Anonymous (2005). The Database on Medicinal Plants used in
Ayurveda, published by Central Council for Research in Ayurveda
and Siddha, Govt. of India, New Delhi. p 169. Available at:
http://www.businesshorizons.com/english/products/product-
detail.asp?code=HRDBA59025&subject_id=1
galls and their effect on the central nervous system. Int. J.
Pharmacogn. 31(2):89-95.
pp. 377-378.
Ghias UAR, Taj ur Rehman, Qaisar M (2011). Phytochemical screening
Analgescic, anti GIT motility and toxicological activities of Pistacia
integerrima Stewart ex Brandis bark in mice. J. Med. Plants Res. 6(14):2827-2831.
Hepatoprotective effects of Berberis lycium, Galium aparine and
Pistacia integerrima in carbon tetrachloride (CCL4) treated rats. JPMI
22(2):91-94.
Mehla K, Balwani S, Kulshreshta A, Nandi D, Jaisankar P, Ghosh B
(2011). Ethyl gallate isolated from Pistacia integerrima Linn. Inhibits
cell adhesion molecules by blocking AP-1 transcription factor. J.
Ethnopharmacol. 137(3):1345-52.
Farmacognostical studies on the South Indian market sample of
karkatasingi (kadukkaipo) - terminalia chebul (gaertn. Leaf gall).
Varanasi pp. 132-137.
Plants, A Compendium of 500 species, Volume. 4. p 304.
reticulate evolution in Pistacia (Anacardiaceae). Am. J. Bot. 95:241-
251.