Full Length Research Paper

Hairy roots production of transgenic Catharanthus roseus L. plants with Agrobacterium rhizogenes under in vitro conditions

Mohsen Zargar¹, Farah Farahani¹* and Tahereh Nabavi¹

Department of Microbiology, Islamic Azad University, Qhom Branch, Qhom, Iran.

Accepted 24 July, 2010

Hypocotyl explants of *Catharanthus roseus* L. gave rise to callus at a frequency of 90% when cultured on Murashige and Skoog (MS) basal medium supplemented BA (31.1 µM) and NAA (5.4 µM) on dark conditions. The calli (8 weeks old) were placed onto half strength liquid MS medium that had been polluted by bacterial clones of *Agrobacterium rhizogenes*. Transgenic of calli regenerated hairy roots after 10 days of inoculation and they have grown after 8 weeks. Hairy roots of *in vitro* *C. roseus* L. plant which produces several important terpenoid indole alkaloid by infection with *A. rhizogenes*. Transformed hairy root increased and produced alkaloids, including vinblastine and vincristine, which are extracted and analyzed by High Performance Liquid Chromatography (HPLC) and used for anticancer and antimicrobial researches.

Key words: *Catharanthus roseus*, *Agrobacterium rhizogenes*, genetic transformation, hairy roots.

INTRODUCTION

An exceedingly large population relies on pharmaceuticals derived from plants. It is estimated that 75% of the world’s population is dependant upon plant-derived pharmaceuticals. The need for methods of increasing the production of plant-derived pharmaceuticals cost-effectively and with environmental consideration is becoming more important. Of particular interest are the pharmaceutically valuable alkaloids from the *Catharanthus roseus* (Gaines 2004). *C. roseus* (L.) Don. (Madagascar periwinkle) is a perennial tropical/subtropical plant belonging to the family Apocynaceae that produces more than 100 terpenoid indole alkaloids (TIAs) including two commercially important powerful cytotoxic dimeric alkaloids (vinblastine and vincristine) used in cancer chemotherapy (Magnotta et al., 2006; Moreno et al., 1995; Jaleel et al., 2007, 2008) and some other pharmaceutical compounds from this plant, e.g., ajmalicine (anti-hypertensive) and serpentine (sedative) are also of economical importance and roots of this plant are the main source of alkaloid ajmalicine (Jaleel et al., 2006). These two drugs are produced in small yields within the plant, which makes them expensive to produce commercially (Gaines, 2004; Taha et al., 2008). An increase in production of these pharmaceutical through hairy root culture will result in greater accessibility and affordability of product (Gaines, 2004). The distribution and accumulation of the alkaloids in *C. roseus* were studied by Reda (1978).

Metabolic engineering of this plant by genetic transformation may lead to enhancement of the production of specific alkaloid compounds at the whole-plants level (Choi et al., 2004; David et al., 1984). During the past two decades, we have witnessed a significant increase in the number of reports on the successful *Agrobacterium rhizogenes*-mediated genetic transformation of various plant species, variants and cultivars (Estrella et al., 2005).

In this study, production and growth hairy roots of transgenic callus with *A. rhizogenes* was investigated. The purpose of this research is production of hairy roots from transgenic callus that they have a high level of alkaloids than usual plants.

¹Corresponding author. Farahfarahani2000@yahoo.com. Tel: +9821-44122070, +98912-2778171.

Abbreviations: NAA, α-Naphthalen acetic acid; BA, 6-benzyladenine; MS, Murashige and Skoog.
Figure 1. Seedlings from *C. roseus* L. seeds on MS medium free hormone.

MATERIALS AND METHODS

Plant materials

Seed culture

Seeds of *C. roseus* were obtained from Research Center Mahallat and Shahre Rey. Seeds surface were sterilized under aseptic conditions of laminar flow hood, using 5% NaOCl (hypochlorite) for 30 min and were washed by sterile water for 3-4 times. Seeds to germinate into seedling were cultured on solid MS medium (Murashige and Skoog, 1962). The media was dispensed (25 ml) into each plastic petri dish (9 mm). All cultures were maintained under light (approximately 3 W/m² from cool-white fluorescent lamps with a 16/8 h light-dark photoperiod) at temperature 25°C.

Production of callus

Hypocotyl explants that were produced from 15-day-old periwinkle seedlings, approximately were cut into 0.7-1 cm long explants and cultured on MS agar medium supplemented with 6-Benzyladenine (31.1 µM) and α-Naphthalen acetic acid (5.4 µM). Each treatment consisted of 4 explants per dish with 20 replicates. All cultures were placed on dark conditions at 25-30°C for 8-12 weeks.

Different media preparation

MS medium: The basal medium used throughout the experiments consisted of MS inorganic salts, 100 mg/l myo-inositol, 0.4 mg/l thiamine, 3% sucrose, and 4 g/l agar. The pH of the different culture media (seed culture, callus production and hairy roots formation) were adjusted at 5.8 using 0.1 N NaOH or HCL, then autoclaved at 121°C and the pressure was 1.2 Kg cm² for 20 min. (Taha et al., 2008).

Agrobacterium medium: LB agar medium was used as a complete medium for *A. rhizogenes* strain. It consists of (g/l): 5 g glucose, 10 g Bacto-peptone, 10 g Bacto-yeast extract, 5 g NaCl, 7 g agar and 960 ml water. The pH was adjusted at 7.7-7.5, after autoclaving the medium was dispensed (15 ml) into each plastic petri dish.

Bacteria culture

A. rhizogenes R1000 (that were cultured into LB agar medium) was used for inoculation with callus explants. The bacteria for growth and multiplication were cultured into LB agar medium.

Callus inoculation with bacteria

The bacteria were inoculated into half strength liquid MS basal medium before callus explants were placed into the tube. After 30 min of incubation, callus explants were placed onto solid MS basal medium and co-cultivated. After 48 h of inoculation, callus explants were rinsed three times with half strength liquid MS basal medium supplemented with 800 mg/l cefataxime.

Hairy roots culture medium

For hairy roots production, callus explants (after inoculate), were transferred onto solid MS basal medium (free hormone) with 400 mg/l cefataxime and placed on dark conditions.

RESULTS AND DISCUSSION

Seed growth

Sterile seeds of perwinkle plant (that were placed onto MS medium) were germinated after 5 days of culture and the seedling (approximately 35 - 45 mm long) was produced after 15 days of culture (Figure 1).

Callus formation

Hypocotyl explants of *C. roseus* seedlings formed callus
on the cut edges after 7 - 10 days of culture. The callus of growth during 8 weeks.

Hairy roots process

Callus-explants cultures maintained on MS basal medium (free-hormones) formed hairy roots on after 10 days of inoculation. The hairy roots had a suitable growth and 8 - 9 cm long after 8 weeks (Figure 2).

Investigation of morphology of natural and transgenic callus

After gene transformation, morphology investigation of periwinkle plant callus has shown that cultural media of callus has not changed after gene transformation and it has been that same as MS, as well as, cultural media of non-transgenic callus has been contented with plant growth regulators (NAA and BA), But there was no rooting in non-transgenic callus. Although, transgenic callus has been cultured in media without hormone. They did rhizogenesis and produced hairy roots (Figure 3). The observations have demonstrated that gene transferring is *A. rhizogenes* to plant, because after trans-fragment T (T-DNA) from plasmid of *Agrobacterium* to gene plant that plants derived from hairy roots retained the Ri T-DNA (Choi et al., 2004) and it makes phyto-hormones (auxin and cytokinin) itself and it does not need hormone, again. The mechanism had been shown in plant through hairy roots production with suitable growth in periwinkle plant callus after gene transformation. Hairy roots increased during culture on MS medium free hormone (Figure 4). Alkaloids produced from hairy roots regenerated, extracted with soluble and analyzed by high performance liquid chromatography (HPLC). The important alkaloids were vincristin and vinblastin that were used for antimicrobial and anticancer researches. The soil-borne plant pathogen *A. rizogenes* causes production of transformed hairy roots (is a pathological syndrome of dicotyledonous plants) at the infection site in plants (Giri et al., 2001; Choi et al., 2004; Tanaka et al., 2004; Wang et al., 2001), Hairy roots are characterized by high growth rate and genetic stability (Choi et al., 2004). In recent years production of transgenic plants of *C. roseus* by *A. rhizogenes* has been developed (Zarat and Verpoorte, 2007; O'keefe et al., 1997; Taha et al., 2008; Hughes et al.,
REFERENCES

Taha HS, El-Bahr MK, Self-El-Nasr MM (2008). In vitro studies on Egyptian Catharanthus roseus (L.) G. Don.: 1- Calli production, direct

2004; Brown et al., 2009; Guillon et al., 2002; Tanaka et al., 1994).

Figure 4. Mean number of hairy root regenerated during culture period.