Vol. 12(20), pp. 278-288, 25 July, 2018 DOI: 10.5897/JMPR2018.6587 Article Number: 34E6D3057868 ISSN: 1996-0875 Copyright ©2018 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR

Journal of Medicinal Plants Research

Full Length Research Paper

Plants and their metabolites against Streptococcus mutans

Landi B. O.¹, Di Pace B.² and Conceição A. O.^{3*}

¹Odontological Public Health Program, Una City Hall, Bahia and master student at Health Science Graduate Programe, State University of Santa Cruz, Ilhéus, Bahia, Brazil.

²Health Science Department, Faculty of Medicine, State University of Santa Cruz, Ilhéus, Bahia, Brazil. ³Biological Science Department, Faculty of Medicine, State University of Santa Cruz, Ilhéus, Bahia, Brazil.

Received 4 April, 2018: Accepted 9 July, 2018

Oral diseases represent a major public health problem, especially for economically marginalized communities with limited access to health services. In addition, the constant increase in bacterial resistance to many of the antibiotics contributes to worsen the problem. In this context, great importance had been given to natural compounds for the discovery of new drugs that contribute to the prevention and control of oral affection. The present study proposed a systematic review of articles that used the techniques of agar diffusion and broth dilution to measure the efficiency of plant samples against *Streptococcus mutans*, one of the main agents involved in the development of dental cavities. Families and plant species most used in the study, the concentration and polarity measurements of the samples used in the tests, the disk and well variants in the agar diffusion technique, as well as the most outstanding results presented by the articles are reported. The review highlights the bacteriostatic effect of natural products against *S. mutans* and strengthened parameters that could validate the best strategy for the identification of natural products with antimicrobial action, having as object the *S. mutans*. The agar diffusion test should not be neglected as screening test but scientific measurements should be taken into consideration to obtain plant extracts which are likely to undergo clinical usage against *S. mutans*.

Key words: Medicinal plant, plant extract, antimicrobial, qualitative technique, quantitative technique.

INTRODUCTION

It has been a while since the study of natural products against microorganisms has gained interest by researchers and pharmaceutical industry. The bacterial resistance and side effects of the antimicrobial drugs available in the market have contributed to this fact (Ramakrishna et al., 2011). Moreover, the ecological awareness, traditional knowledge appreciation, and lack of access of marginalized communities to pharmaceutical medicines make the rational search for new compounds still important (Rates, 2001; Halberstein, 2005; Pelkonen et al., 2014).

Tooth decay has been considered one of the most

*Corresponding author. E-mail: aoconceicao@uesc.br.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u>

Figure 1. Number of species by family reported in peer reviewed articles found in the literature between January, 1st, 2006 to December 31th, 2016.

prevalent disease in the world (Petersen, 2003) being *S. mutans* one of the greatest risk factor for its development (Nishikawara, 2006).Trying to solve the oral diseases problem, antibacterial effect study of natural products or their derivatives has been conducted (Kouidhi et al., 2015).

Two main techniques have been used in natural products against bacteria research: The agar diffusion (Kirby Bauer) technique, considered a qualitative method, and the broth dilution technique which is defined as quantitative or semi-quantitative method depending on the objective of the studies (Valgas et al., 2007). Both techniques have been used to pre-select plant species, initial concentration to be used, extraction solvents, or isolated molecules giving support to more specific methods related to mode of action of antimicrobial substances (Balouiri et al., 2016). Although the broth dilution is considered the gold test for antimicrobial resistance profile (Campana et al., 2011), agar diffusion has an important role in detection of subpopulation of bacteria with resistance to antimicrobials (Matthew, 2015) and it is considered an adequate and simple tool to evaluate bacterial resistance in clinical diagnosis (Schumacher et al., 2018). Therefore, the purpose of this paper is to review and compare different methodologies used to verify the antimicrobial effect of medicinal plants and their derivatives on S. mutans.

MATHERIALS AND METHODS

The study is characterized by a systematic review including peer reviewed articles published in international journals using as index "Periodicos CAPES" tool the (http://www.periodicos.capes.gov.br/index.php) which gives integrated access to international indexers such as PubMed, Web of Science, LILACS, SciELO, and SCOPUS. The criteria used to select the articles included: (1) "Plant extract," "Streptococcus mutans," and "medicinal plants" as key words; (2) English, Spanish, and Portuguese languages; (3) published between January, 1st 2006 and December, 31th 2016. Following selection, articles were classified by plant taxonomical classification (family and species), methodology approach (agar diffusion or broth dilution techniques), extract or substance unit measure (mg, %, etc.) used to standardize samples, solvents used for plant substances extraction such as apolar (hexane, benzene, chlorophorm, butane, and petroleum ether), aprotic polar (dichloromethane, ethyl acetate, and acetone/propane) and protic polar (ethanol, butane, methanol, and water), and isolated substances with anti-S. mutans activity. The criterion used to consider a "good result" for agar diffusion technique was an inhibition halo of \geq 18 mm since from the articles selected this diametre seemed to reflect sweetable concentrations in broth dilution. In the case of broth dilution, the minimal inhibitory concentration (MIC) values ≤100 µg/mL (Cos et al., 2006) and the ratio between minimal bacterial concentrations (MBC) and MIC (MBC/MIC) ≥16 were considered "good results." MBC is ≥16 times the MIC value means that the microorganism is tolerant following criteria analyzed by Sherris (1986). Articles with description of antibacterial techniques were described but no results were excluded from the analysis. Data systemizing and graph building were done using Microsoft Excel 2010 software and results were expressed in absolute values and frequencies.

RESULTS AND DISCUSSION

Through refined search using the keywords "plant extract," "Streptococcus mutans," and "medicinal plants," a total of 129 available articles were found. According to selection criteria, 28 articles were selected to this review giving 135 plant species classified in 60 botanical families tested against S. mutans. Asteraceae, Fabaceae, Lamiaceae, and Anacardiaceae families were the most frequent (Figure 1 and Table 1) and 30 plant families had relevant results by agar diffusion, MBC/MIC, or both (Table 2). Among them, Rhus standley (Anacardiaceae), Amphipterygium adstringens (Anacardiaceae), Aloe vera (Asphodelaceae), Mikamia glomerate (Asteraceae), Tagetes lucida (Asteraceae), Bixa orellana (Bixaceae), Bursera simaruba (Burseraceae), Drymariagracilis Cnidoscolus (Carophyllaceae), multilobus (Euphorbiaceae), Glyycyrrhiza uralensis (Fabaceae), Liquidambar macrophylla(Hamamelidaceae), Cinamomum vera (Lauraceae), C. zeylanicum (Lauraceae), Persea americana (Lauraceae), Eysenhardti apolystachya

S/N	Family	n	Species
1	Acanthaceae	1	Justicia spiciaera Schlechtendal
2	Alliaceae	2	Allium cepa: Allium sativum
3	Amaranthaceae	2	Achyranthes aspera: Beta vulgaris
4	Anacardiaceae*	9	Amphipterygium adstringens; Anacardium humile; Cotinus coggygria; Pistacia atlantica;Rhus coriaria; Rhus standleyi Barkley; Schinus terebinthifolius; Semecarpus anacardium; Spondias purpurea L.
5	Annonaceae	2	Annona hypoglauca: Annona senegalensis
6	Apiaceae	1	Trachyspermum ammi
7	Apocynaceae	1	Calotropis gigentica
8	Asphodelaceae (Liliaceae)	1	Aloe barbadensis miller (Aloe vera)
q	Aspleniaceae	1	Phyllitis scolopendrium
10	Asteraceae (Compositae)*	13	Cichorium intybus; Parthenium hysterophorus; Tagetes lucida; Wedelia chinensis; Calendula oficinalis L.; Helichrysum litoreum; Heterotheca inuloides Cass; Lostephane heterophylla (Cav.) Benth.; Mikania glomerata; Milleria quinqueflora L.; Senecio sessilifolius (H. et A.) Hemsley; Coreopsis mutica DC.; Cirsum mexicanum DC.
11	Betulaceae	1	Alnus acuminata Kunth
12	Bixaceae	1	Bixa Orellana L.
13	Boraginaceae	4	Cordia cf. Exaltata; Cordia nodosa; Cordia sp.; Tournefortia hartwegiana Standley
14	Brassicaceae	1	Eutrema japonicum
15	Bromeliaceae	1	Ananas comosus
16	Burseraceae	1	Bursera simaruba (L.)
17	Caprifoliaceae	1	Sambucus mexicana Presl
18	Caryophyllaceae	1	Drymaria gracilis Cham. & Schehlechtendal
19	Celastraceae	1	Celastrus paniculatus
20	Chrysobalanaceae	1	Parinari curatellifolia
21	Clusiaceae (Calophyllaceae)	4	Garcinia lancifolia; Garcinia kola; Moronobea coccinea;Mammea americana
22	Combretaceae	1	Terminalia chebula
23	Convolvulaceae	1	Ipomoea alba
24	Crassulaceae	1	Sedum dendroideum Moc & Sessé
25	Cucurbitaceae	1	Momordica charantia L
26	Cupressaceae	1	Juniperus communis
27	Ebenaceae	3	Diospyros guianensis; Euclea divinorum; Euclea natalensis
28	Equisetaceae	2	Equisetum arvense; Equisetum hyemale
29	Euphorbiaceae	3	Cnidoscolus multilobus (Pax.) I.M. Johnston; Croton campestris; Croton draco Schlechtendal
30	Fabaceae (Leguminosae)*	12	Bauhinia purpurea; Clitoria ternatea; Copaifera langsdorffii; Erythrina lysistemon; Glycyrrhiza glabra L; Glycyrrhiza uralensis; Libidibia ferrea L.; Haematoxylon brasiletto; Lysiloma candidum Brandegee; Olneya tesota; Eysenhardtia polystachya (Ort.) Sarg.; Prosopsis juliflora (Swartz) DC.
31	Fagaceae	2	Quercus elliptica; Quercus infectoria
32	Gentianaceae	2	Centaurium erythraea; Centaurium erythraea
33	Geraniaceae	1	Pelargonium peltatum
34	Hamamelidaceae	1	Liquidambar macrophylla
05			Hoslundia opposita; Mentha arvensis L.; Ocimum basilicum; Ocimum sanctum (tenuiflorum);
35	Lamiaceae (Ladiateae)*	11	Ossimum gratissimum; Perilla frutescens; Rosmarinus officianalis; Salvia officianalis; Thymus vulgaris L.; Mentha viridis L.; Mentha x piperita L.
36	Lauraceae	4	Cinnamomum cassia; Cinnamomun zeylanicum Ness.; Cinamonum verum; Persea americana Mill.

Table 1. Plant species used for anti-Streptococcus mutans tests reported in peer reviewed articles published from January 1st, 2006 to December 31th, 2016.

Table 1. Cont'd.

37 Lythraceae (Punicaceae) 2 Lafoensia pacari; Punica granatum 38 Malpighiaceae 1 Byrsonima crassifolia (L.) 39 Meliaceae 2 Azadirachta indica; Cedrela odorata L. 40 Mimosaceae 1 Stryphnodendron adstringens 41 Mirtaceae 1 Syzygium aromaticum 42 Moraceae 1 Moringa oleifera 43 Moringaceae 1 Moritar albia 44 Myristicaceae 1 Myritica fragrans 45 Myrtaceae 3 Myricirai dubia; Psidium guajava; Rhodomyrtus tomentosa 46 Papaveraceae 1 Argemone mexicana L. 47 Pedaliaceae 1 Dicerocaryum senecioides 48 Phyllanthaceae 1 Emblica offcinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 3 Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum 53 Salicaceae 3 Englerohytum magalismontanum; Madhuca longifolia; Mimusops elengi 54 Saplaceae 3 Englerohytum magalismontanum				
38 Malpighiaceae 1 Byrsonima crassifolia (L.) 39 Meliaceae 2 Azadirachta indica; Cedrela odorata L. 40 Mirnosaceae 1 Stryphnodendron adstringens 41 Mirtaceae 1 Stryphnodendron adstringens 42 Moraceae 1 Stryphnodendron adstringens 43 Moringaceae 1 Morus alba 44 Myristicaceae 1 Myritica fragrans 45 Myrtaceae 3 Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa 46 Papaveraceae 1 Dicerocaryum senecioides 47 Pedaliaceae 1 Dicerocaryum senecioides 48 Phyllanthaceae 1 Emblica officinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 1 Cymbopogon citratus 51 Rosaceae 3 Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina 52 Rubiaceae 3 Eriobotrya iaponica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina 53 Salicaceae 3	37	Lythraceae (Punicaceae)	2	Lafoensia pacari; Punica granatum
39 Meliaceae 2 Azadirachta indica; Cedrela odorata L. 40 Mimosaceae 1 Stryphnodendron adstringens 41 Mirtaceae 1 Syzygium aromaticum 42 Moraceae 1 Moringa oleifera 43 Moringaceae 1 Moringa oleifera 44 Myristicaceae 1 Myriatria dubia; Psidium guajava; Rhodomyrtus tomentosa 46 Papaveraceae 1 Argemone mexicana L. 47 Pedaliaceae 1 Dicerocaryum senecioides 48 Phyllanthaceae 1 Emblica offcinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 1 Cymbopogon citratus 51 Rosaceae 3 Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina 52 Salicaceae 2 Casearia javitensis; Caseria spruceana 53 Salicaceae 3 Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi 55 Selaginellaceae 1 Schaginella lepidophyla (Hook. &Grev.) Spring 54 Sapotaceae 2 <td>38</td> <td>Malpighiaceae</td> <td>1</td> <td>Byrsonima crassifolia (L.)</td>	38	Malpighiaceae	1	Byrsonima crassifolia (L.)
40Mimosaceae1Stryphnodendron adstringens41Mirtaceae1Syzygium aromaticum42Moraceae1Morus alba43Moringaceae1Morus alba44Myristicaceae1Myritica fragrans45Myrtaceae3Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa46Papaveraceae1Argemone mexicana L.47Pedaliaceae1Dicerocaryum senecioides48Phyllanthaceae1Emblica offcinalis49Piperaceae2Piper nigrum L.; Piper sanctum (Miq.)50Poaceae1Cymbopogon citratus51Rosaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina52Rubiaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. & Grev.) Spring56Smilacaceae1Chiranthodendron pentadactylon Lam.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Zingiber mioga; Zingiber Officinale60Zingiberaceae2Zingiber mioga; Zingiber Officinale	39	Meliaceae	2	Azadirachta indica; Cedrela odorata L.
41 Mirtaceae 1 Syzygium aromaticum 42 Moraceae 1 Morus alba 43 Moringaceae 1 Moringa oleifera 44 Myristicaceae 1 Myritica fragrans 45 Myrtaceae 3 Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa 46 Papaveraceae 1 Argemone mexicana L. 47 Pedaliaceae 1 Dicerocaryum senecioides 48 Phyllanthaceae 1 Emblica officinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 1 Cymbopogon citratus 51 Rosaceae 3 Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina 52 Rubiaceae 3 Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum 53 Salicaceae 3 Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi 55 Selaginellaceae 1 Smilax sp. 57 Solnaceae 1 Smilax sp. 58 Sterculiaceae 1 Chiranthodendron pentadactylon Lam.	40	Mimosaceae	1	Stryphnodendron adstringens
42 Moraceae 1 Morus alba 43 Moringaceae 1 Moringa oleifera 44 Myristicaceae 1 Myritica fragrans 45 Myrtaceae 3 Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa 46 Papaveraceae 1 Argemone mexicana L. 47 Pedaliaceae 1 Dicerocaryum senecioides 48 Phyllanthaceae 1 Emblica offcinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 1 Cymbogogon citratus 51 Rosaceae 3 Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum 53 Salicaceae 3 Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi 55 Selaginellaceae 1 Selaginella lepidophyla (Hook. &Grev.) Spring 56 Smilacaceae 1 Shiax sp. 57 Solanaceae 2 Datura stramonium L.; Solanum cf. Ianceifolium 58 Sterculiaceae 1 Chiranthodendron pentadactylon Lam. 59 Verbenaceae 2 Lantana camara; Verbena	41	Mirtaceae	1	Syzygium aromaticum
43 Moringaceae 1 Moringa oleifera 44 Myristicaceae 1 Myritica fragrans 45 Myrtaceae 3 Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa 46 Papaveraceae 1 Argemone mexicana L. 47 Pedaliaceae 1 Dicerocaryum senecioides 48 Phyllanthaceae 1 Emblica offcinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 1 Cymbopogon citratus 51 Rosaceae 3 Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina 52 Rubiaceae 3 Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum 53 Salicaceae 2 Casearia javitensis; Caseria spruceana 54 Sapotaceae 3 Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi 55 Selaginellaceae 1 Smilax sp. 56 Smilacaceae 2 Datura stramonium L.; Solanum cf. lanceifolium 58 Sterculiaceae 1 Chiranthodendron pentadactylon Lam. 59 V	42	Moraceae	1	Morus alba
44Myristicaceae1Myritica fragrans45Myrtaceae3Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa46Papaveraceae1Argemone mexicana L.47Pedaliaceae1Dicerocaryum senecioides48Phyllanthaceae1Emblica offcinalis49Piperaceae2Piper nigrum L.; Piper sanctum (Miq.)50Poaceae1Cymbopogon citratus51Rosaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina52Rubiaceae3Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae1Selaginella lepidophyla (Hook. & Grev.) Spring55Selaginellaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiber aceae2Zingiber mioga; Zingiber Officinale	43	Moringaceae	1	Moringa oleifera
45 Myrtaceae 3 Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa 46 Papaveraceae 1 Argemone mexicana L. 47 Pedaliaceae 1 Dicerocaryum senecioides 48 Phyllanthaceae 1 Emblica offcinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 1 Cymbopogon citratus 51 Rosaceae 3 Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina 52 Rubiaceae 3 Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum 53 Salicaceae 2 Casearia javitensis; Caseria spruceana 54 Sapotaceae 3 Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi 55 Selaginellaceae 1 Selaginella lepidophyla (Hook. &Grev.) Spring 56 Smilacaceae 2 Datura stramonium L.; Solanum cf. lanceifolium 58 Sterculiaceae 1 Chiranthodendron pentadactylon Lam. 59 Verbenaceae 2 Lantana camara; Verbena carolina L. 60 Zingiber mioga; Zingiber Officinale 1 <	44	Myristicaceae	1	Myritica fragrans
46Papaveraceae1Argemone mexicana L.47Pedaliaceae1Dicerocaryum senecioides48Phyllanthaceae1Emblica offcinalis49Piperaceae2Piper nigrum L.; Piper sanctum (Miq.)50Poaceae1Cymbopogon citratus51Rosaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina52Rubiaceae3Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Smilax sp.56Smilacaceae2Datura stramonium L.; Solanum cf. Ianceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiber mioga; Zingiber Officinale2135	45	Myrtaceae	3	Myrciaria dubia; Psidium guajava; Rhodomyrtus tomentosa
47Pedaliaceae1Dicerocaryum senecioides48Phyllanthaceae1Emblica offcinalis49Piperaceae2Piper nigrum L.; Piper sanctum (Miq.)50Poaceae1Cymbopogon citratus51Rosaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina52Rubiaceae3Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiber aceae2Zingiber mioga; Zingiber Officinale	46	Papaveraceae	1	Argemone mexicana L.
48 Phyllanthaceae 1 Emblica offcinalis 49 Piperaceae 2 Piper nigrum L.; Piper sanctum (Miq.) 50 Poaceae 1 Cymbopogon citratus 51 Rosaceae 3 Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina 52 Rubiaceae 3 Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum 53 Salicaceae 2 Casearia javitensis; Caseria spruceana 54 Sapotaceae 3 Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi 55 Selaginellaceae 1 Smilax sp. 56 Smilacaceae 2 Datura stramonium L.; Solanum cf. lanceifolium 58 Sterculiaceae 1 Chiranthodendron pentadactylon Lam. 59 Verbenaceae 2 Lantana camara; Verbena carolina L. 60 Zingiber mioga; Zingiber Officinale 1	47	Pedaliaceae	1	Dicerocaryum senecioides
49Piperaceae2Piper nigrum L.; Piper sanctum (Miq.)50Poaceae1Cymbopogon citratus51Rosaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina52Rubiaceae3Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	48	Phyllanthaceae	1	Emblica offcinalis
50Poaceae1Cymbopogon citratus51Rosaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina52Rubiaceae3Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Zingiber mioga; Zingiber Officinale60Zingiberaceae2Zingiber mioga; Zingiber Officinale	49	Piperaceae	2	Piper nigrum L.; Piper sanctum (Miq.)
51Rosaceae3Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina52Rubiaceae3Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Zingiber mioga; Zingiber Officinale60Zingiberaceae2Zingiber mioga; Zingiber Officinale	50	Poaceae	1	Cymbopogon citratus
52Rubiaceae3Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	51	Rosaceae	3	Eriobotrya japonica (Thunb.) Lindl; Prunus serotina var. capuli Karst; Rosa canina
53Salicaceae2Casearia javitensis; Caseria spruceana54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	52	Rubiaceae	3	Psychotria sp.; Zanthoxylum compactum; Zanthoxylum piperitum
54Sapotaceae3Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	53	Salicaceae	2	Casearia javitensis; Caseria spruceana
55Selaginellaceae1Selaginella lepidophyla (Hook. &Grev.) Spring56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	54	Sapotaceae	3	Englerophytum magalismontanum; Madhuca longifolia; Mimusops elengi
56Smilacaceae1Smilax sp.57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	55	Selaginellaceae	1	Selaginella lepidophyla (Hook. &Grev.) Spring
57Solanaceae2Datura stramonium L.; Solanum cf. lanceifolium58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	56	Smilacaceae	1	Smilax sp.
58Sterculiaceae1Chiranthodendron pentadactylon Lam.59Verbenaceae2Lantana camara; Verbena carolina L.60Zingiberaceae2Zingiber mioga; Zingiber Officinale135	57	Solanaceae	2	Datura stramonium L.; Solanum cf. lanceifolium
59 Verbenaceae 2 Lantana camara; Verbena carolina L. 60 Zingiberaceae 2 Zingiber mioga; Zingiber Officinale 135	58	Sterculiaceae	1	Chiranthodendron pentadactylon Lam.
60 Zingiberaceae 2 Zingiber mioga; Zingiber Officinale 135	59	Verbenaceae	2	Lantana camara; Verbena carolina L.
135	60	Zingiberaceae	2	Zingiber mioga; Zingiber Officinale
			135	

*Families most reported; n, number of species reported for each family.

(Leguminosae), Haematoxylon brasiletto (Leguminosae), Cedrela odorata (Meliceae), Myrcia riadubia (Myrtaceae), Syzygium aromaticum (Myrtaceae), Argemone mexicana (Papaveraceae), Piper sanctum (Piperaceae), Punica granatum (Punicaceae), and Datura stramonium (Solanaceae) results have met international journals standard requirements. It is worth noting that some "good results" reported for agar diffusion was not correlated to a "good result" in MBC/MIC.

Natural products scientific experts have been standardizing parametres to stablish sweatable antimicrobial techniques for plants extracts or substances investigation. In this case, MIC and MBC have been the most recommended strategies (Ríos and Recio, 2005; Cos et al., 2006). From the literature review, only 19 articles met the established criteria here. Results reported involved 135 plants using qualitative techniques such as agar diffusion (20%), quantitative techniques (MBC and/or MIC) (43.69%), and a combination of both (36.28%) (Figure 2). The fact that almost 80% of the results were from quantitative techniques indicates the tendency to improve the quality of results following high scientific impact journals requirements. Regarding the results reported by several of studies analyzed, a combination of both seemed to be the best choice. In this case, in the researchers' opinion, researchers can associate a technique still used in clinical diagnosis (Kirby-Bauer) to a more accurate quantitative procedure: The qualitative method to screen plant extract and the quantitative method to establish extract concentrations.

Analyzing the agar diffusion technique, different variants were reported: Disc-variant, well-variant, and cilinders-variant. They were used in 52.9, 45.43 and 1.62% of the articles reporting agar diffusion as the method of choice, respectively. Comparing the two morefrequent reported, disc-variant and well-variant, and considering the best results (inhibition zone from \geq 16), no significant statistical difference (p=0.35) was seen between them in relation to halo size results. However, according to Valgas et al. (2007) and Silveira et al. (2009), the sensibility of diffusion method well-variant is superior to disc-variant for two reasons: (a) The presence of suspended particulate matter seems to interfere less with the diffusion of the antimicrobial substance into the agar; and (2) the precipitation of substances (that is, cationic) in the disc may prevent diffusion of antimicrobial substances into the agar. Thus, despite the restriction usage of agar diffusion by natural products researchers, based on easy execution and low coast (Silveira et al., 2009), it is believe that this approach should still be

Table 2. Plant species with relevant anti-S.mutans activity by agar diffusion and/or microdilution technique.

Family Species		Part of the plant	Extract/solvent used	Technique used (unit of measurement)	Concentration (halo ≥18 mm)	MIC	MBC	Reference	
Allianana	Allium activum	Dulh		AD-DV (mg/g)	NI	ND	ND	OHara et al. (2008)	
	Allum sauvum	Bulb		AD-WV (%); MIC/MBC (mg/mL)	0.2	6.25	12.5	Jain et al. (2015)	
	Achyranthes aspera	Root	Ethyl Acetate	AD-DV (mg/disco)	5	ND	ND	Jebashree et al. (2011)	
	Pistacia atlantica	Leaf	Aqueous	AD-DV/WV - (mg/ml) MIC/MBC - (µg/mL)	40, 80, 100	60	90	Roozegar et al. (2016)	
	Rhus coriaria	Peel fruit	Aqueous	AD-WV; MIC/MBC (mg/ml)	100	1.56	6.25	Vahid-Dastjerdi et al. (2014)	
Amaranthaceae		A . 1.1	Aqueous	MIC/MBC (µg/mL)	ND	32.5	125		
	Rhus standleyl Barkley	Aerial parts	Ethanolic	MIC/MBC (µg/mL)	ND	65	250	Rosas-Pinon et al. (2012)	
	Schinus terebinthifolius	Leaf, stem bark	n-hexane	AD-DV; MIC (mg/mL)	20 mg/MI (initial concentration)	3.25	ND	Pereira et al. (2011)	
	Amphipterygiumadstringens Schiede ex Schlechter	Stem bark	Aqueous	MIC/MBC (µg/mL)	ND	67.5	>1000	Rosas-Piñón et al. (2012)	
Apocynaceae	Calotropis gigentica	Leaf	Ethanol	AD-WV (%)	1.25 and 20	ND	ND	Sharma et al.(2015)	
Asphodelaceae (Liliaceae)	Aloe Vera	Leaf	Crude (gel)	AD-WV (%) MIC (µg/mL)	50 and 100	12.5	ND	Fani and Kohanteb. (2012)	
Asteraceae	Mikania glomerata	Certified dried aerial parts	Sequence of dichloromethane, methanol/H ₂ O (9:1), and n- hexane	MIC/MBC (µg/mL)	ND	6.25	12.5	Andrade et al. (2011)	
	Tagetes lucida	Aerial parts	Ethanolic	MIC/MBC (µg/mL)	ND	62.5	250	Rosas-Piñón et al. (2012)	
			NI (1)			00 50			
Bixaceae	Bixa Orellana L.		Methanol	AD-C-PV			_	Medina-Flores et al. (2016)	
		Seeds	Methanol	MIC (µg/mL)		31.25			
	5 4 4 4 5 6	a	Aqueous	MIC/MBC (µg/mL)	ND	100	62.5		
Burseraceae	Bursera simaruba (L.) Sarg.	Stem bark	Ethanolic	MIC/MBC (µg/mL)	ND	62.5	750	 Rosas-Piñón et al. (2012) 	
Caryophyllaceae	<i>Drymaria gracilis</i> Cham. & Schehlechtendal	Leaf	Aqueous	MIC/MBC (µg/mL)	ND	67.5	500	Rosas-Piñón et al. (2012)	
Chrysobalanaceae	Parinari curatellifolia	Stem	Ethanol	AD-WV; MIC/MBC (mg/ml)	100	6.5	25	Oshomoh and Idu (2012)	
		Fruit	Crude (juice)	AD-WV (mg/ml)	5	ND	ND		
		Branch	Methanol	AD-WV (mg/ml)	5	ND	ND	_	
Clusiaceae	Garcinia lancifolia	Leaf	Methanol	AD-WV (mg/ml)	5	ND	ND	Policegoudra et al. (2012)	
		Fruit	Methanol	AD-WV (mg/ml)	5	ND	ND	_	
		Leaf	Dichlorometane	AD-WV (mg/ml)	5	ND	ND		

Table 2. Contd.

Combretaceae	Terminalia chebula	Fruit	Hexane Ethyl acetate Ethanol MIC (mg/mL) Methanol		ND	0.76	ND	Jebashree et al. (2011)	
Compositae	lostephane heterophylla(Cav.) Benth.	Roots	Aqueous	MIC/MBC (µg/mL)	ND	67.5	125	Rosas-Piñón et al. (2012)	
0	1	A . 1.1	Organic	AD-WV/MIC/MBC (mg/ml)	8.34	<0.04	≤0.04	01	
Convolvulaceae	ipomoea alba L.	Aerial parts	Chloroform fraction	AD-WV/MIC/MBC (mg/ml)	10.78	ND	ND	Silva et al. (2014)	
	Cnidoscolus multilobus		Aqueous	MIC/MBC (µg/mL)	ND	62.5	250	Rosas-Piñón et al. (2012)	
Euphorbiaceae	(Pax.) I.M. Johnston	Leaf	Ethanolic	MIC/MBC (µg/mL)	ND	15.6	<250		
Fabaceae	Glycyrrhiza uralensis	Root	Deglycyrrhizinated licorice root extract	MIC/MBC (µg/mL)	ND	8	8	Ahn et al. (2012)	
Geraniaceae	Pelargonium peltatum	Leaf	Aqueous	AD-DV (mg/ml)	≥200	ND	ND	Hurtado et al. (2013)	
Hamamelidaceae	Liquidambar macrophylla	Leaf	Ethanolic	MIC/MBC (µg/mL)	ND	67.5	500	Rosas-Piñón et al. (2012)	
Lamiaceae	Ocimum sanctum (tenuiflorum)	Leaf	Ethanol	AD-WV (%)	5 and 10	ND	ND	Pai et al. (2015)	
	Cinamonum verum J. Presl	NI	Hexane extraction	MIC/MBC (µg/mL)	200	ND	ND	OHara et al. (2008)	
lauraceae	Cinnamomun zeylanicum Ness.	Bark	Aqueous	MIC/MBC (µg/mL)	ND	62.5	250		
	Persea americana Mill.	Leaf	Aqueous	MIC/MBC (µg/mL)	ND	32.5	125	Rosas-Piñón et al. (2012)	
			Ethanolic	MIC/MBC (µg/mL)	ND	65	500		
	Eysenhardtia polystachya (Ort.) Sarg.	Wood	Aqueous	MIC/MBC (µg/mL)	ND	78	500	Rosas-Piñón et al. (2012)	
Leguminosae	Haematoxylon brasiletto	Ctem herely	Aqueous	MIC/MBC (µg/mL)	ND	10.5	125		
	Karst	Stern Darck	Ethanolic	MIC/MBC (µg/mL)	ND	12.5	125		
Lythraceae	Lafoensia pacari	Leaf, roots, stem	Ethanol	AD-DV; MIC (mg/ml)	20 mg/mL initial concentration	1.0	ND	Pereira et al. (2011)	
			Aqueous	MIC/MBC (ug/mL)	ND	60	500		
Meliaceae	Cedrela odorata L.	Seed	Ethanolic	MIC/MBC (µg/mL)	ND	32.5	250	 Rosas-Piñón et al. (2012) 	
		Seeds	Methanol	AD-WV (w/v)	1:1			Camere-Colarossi et al. (2016)	
	Myrciaria dubia	Pulp	Methanol	MIC (µg/mL)	ND	62.5	ND		
Myrtaceae			Ethyl Acetate	AD-DV (mg/disco)	2.5	ND	ND	Jebashree et al.(2011)	
	Psidium guajava	Leaf	Ethyl acetate, hexane, etanol, and methanol	MIC (mg/mL)	ND	<0.076	ND		
	Syzygium aromaticum (L.)	Enuit	Aqueous	MIC/MBC (µg/mL)	ND	25 250 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		- Pasas Diñán et al. (2012)	
	Merr. & Perry	Fruit	Ethanolic	MIC/MBC (µg/mL)	ND	62.5	125	Kosas-Pinon et al. (2012)	

Table 2. Contd.

Papaveraceae	Argemone mexicana L.	Leaf	Aqueous	MIC/MBC (µg/mL)	ND	78	500	Rosas-Piñón et al. (2012)
			Crude extract	AD-WV (%)	0.2	25	50	
Phyllanthaceae	Emblica offcinalis	Fruits	Organic extract	MIC/MPC (mg/ml)	0.2	50	100	Jain et al. (2015)
			Aqueous extract		0.2	12.50	50.00	
Piperaceae	Piper sanctum (Miq.)	Leaf	Ethanolic	MIC/MBC (µg/mL)	ND	62.5	<500	Rosas-Piñón et al. (2012)
			Aqueous	MIC/MBC (µg/mL)	ND	12.5	125	
Punicaceae	Punica granatum L.	Pericarp	Ethanolic	MIC/MBC (µg/mL)	ND	62.5	250	
			Ethanol 70% Glucolic etxract	AD-CV (%)	100≥3	ND	ND	Argenta et al. (2012)
Salicaceae	Caseria spruceana	Leaf	Organic	AD-WV/MIC/MBC (mg/ml)	200	≥12.5	≥12.5	Silva et al. (2014)
Solanaceae	Datura stramonium L.	Aerial parts	Aqueous	MIC/MBC (µg/mL)	ND	100	>1000	Rosas-Piñón et al. (2012)
Zingiberaceae	Zingiber officinale	Rhizomes	Organic solvent	AD-WV (%) MIC/MBC (mg/mL)	0.2	12.50	25.00	Jain et al. (2015)

AD-WV, Agar diffusion-well variant; AD-DV, agar diffusion-disc variant; AD-CP, agar diffusion - cup plate variant; ND, not done; NI, not informed; MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration; NC, information is not clear

accepted for screening of natural products taking into consideration the fact that this technique is also considered a "gold test" for clinical diagnosis (Schumacher et al., 2018).

A point of concern on medicinal plant folk usage validation is the preparation and solubilization and/or dilution of plant material. The expression of units in the analyzed results in the articles was quite varied: mg/mL (54.52%) followed by percentage (23.67%). It is important to note that 15.95% used mg/disco, 4.78% of articles did not mention any amount of measurement, and 1.06% used proportion criterion (volume/volume or weight/volume). When the best results (≥18.5 mm inhibition zone) was considered, the ones expressed in mg/mL (63.33%) were the most promising when compared to results expressed in percentage (13.33%). Furthermore, analyzing the diferences in agar diffusion technique, the more

frequent was mg/mL usage on DV (62.43%) and percentage unit on WV (45.08%) (Table 3). Hence, taking into consideration these aspects, two points which deserve attention were considered: (1) the standardization of international units requested by journal editors (Cos et al., 2006) recognizing that mg/mL is still the most accurate measurement for *in vitro* tests instead of percentage, and (2) percentage seems to better represent the folk method or it is the best choice for some plant material processing (that is, resin, pasty, or gelatinous substances) and it should not be neglected.

Taking into consideration the best plants results against *S. mutans* by agar diffusion technique, three vegetal products were distinguishable in their results (\geq 30 mm inhibition zone): *Aloe vera* gel, *Garcinialancifolia* fruit juice, and *Allium sativum* bulbo juice. The *Aloe vera* gel at 50 and 100%

showed inhibition zone of 30 and 54 mm. respectively, and antibacterial action was confirmed by promising results showed in MIC technique (12.5 µg/mL) (Fani and Kohanteb, 2012). The G. lancifolia fruit juice at 5 mg/mL gave 47 mm inhibition zone (Policegoudra et al., 2012) and the bulbo juice from A. sativum at 100 mg/mL showed 30 mm of inhibition zone (OHara et al., 2008). It is important to note that in the case of A. sativum (Jain et al., 2015), although the anti-S. mutans potential has been also confirmed by MIC (6,250 µg/mL) and MBC (12,500 µg/mL), the concentration showed in these two quantitative techniques are not in the parameters established by high impact publications since they use (Cos et al., 2006) reference which, unfortunately, makes uncertain the validation of these species.

From the articles selected (n=43) using broth dilution as technique for searching natural products

Figure 2. Qualitative and quantitative techniques reported in peer reviewed articles found in databases from January 2006 to December, 2016. AD, Agar diffusion technique; MIC, Minimal inhibitory concentration technique; MBC, Minimal bacterial concentrations technique.

Table 3. Frequency of results reported in articles using agar diffusion technique indexed in database in the period of January, 2006 to December, 2016.

AD variant	mg/mL	%	mg/disco	Proportion (v/v or w/v)	Not reported	Total
DV						
Total	123(62.43%)	14 (7.10%)	60(30.45%)	0	0	197
18,5-54 mm	9(75%)	2(16.66%)	1(8.33%)	0	0	12
WV						
Total	74(43.78%)	73(43.19%)		4(2.36%)	18(10.65%)	169
18,76-47 mm	10(55.55%)	2(11.11%)		2(11.11%)	4(22.22%)	18
Total	216	91	61	6	22	396

DV, Disc variant; WV, well variant; v/v, volume/volume; w/v, weight/volume

with anti- S. mutans activity, few (n=17) showed MIC and MBC in association. A ratio between MBC/MIC (r) was obtained in order to evaluate the quality of antibacterial results (Table 4). A ratio ≥16, indicating bactericidal tolerance, was found only for three species ethanolic extracts: Cnidoscolus multilobus, Tournefortia hartwegiana, and Coreopsis mutica. However, since MIC was considered "good results," in the researchers' opinion, it would be interesting to isolate molecules with antimicrobial action from these species. Microbial tolerance may be influenced by bactericidal activity such as antagonism of molecules, technical factors, or microorganism characteristics (Sherris, 1986; Traczewski et al., 2009).

Also, considering ideal MIC values, it was observed that for MIC \geq 100 µg/mL, MBC values were 3 times higher; while for MIC \leq 100 µg/mL, MBC values were next to 6 times higher then MIC. From the study point of view, the MIC values were higher than clinical valuable concentrations suggested in the literature (Cos et al., 2006) to reach a bactericidal effect and it means that the natural products tested had a tendency to be bacteriostatic against *S. mutans*.

Following the same criteria cited earlier (MIC \leq 100 ug/mL and r=1) and establishing the best products reported literature. Glycyrrhiza in uralensis deglycyrrhizinated licorice root extract (Ahn et al., 2012), Mikania glomerate ent-Kaurenoic acid-rich extract (Moreira et al., 2016b), Ipomoea alba chloroform fraction (Silva et al., 2014), and Pistacia atlantica aqueous extract (Roozegar et al., 2016) showed the best results. Considering isolated substances and criteria established here, only saponin class showed important results. Saponins isolated from the seeds of Madhuca longifolia and Bauhinia purpurea were tested against two S. *mutans* strains and promising results were found for both (Jyothi and Seshagiri, 2012) (Table 5).

The polarity of plant metabolites is also a point of concern since it can interfere on substances diffusion and/or solubilization. Non-polar or other samples difficult _

Table 4. MBC and MIC ratio of plant extracts with MIC ≤ 100 µg/mL tested against *S. mutans* reported in peer reviewed articles (January, 2006 to December 2016).

S/N	Species	Plant family	Part of the plant	Type of extract/solvente used	MIC µg/mL	MBC µg/mL	r	References
1	Mikania glomerata	Asteraceae (Compositae)	Aerial organs	ent-Kaurenoic acid-rich extract 🌲	6.50	12.50	1.92	Moreira et al., 2016
2	Glycyrrhiza uralensis	Fabaceae	Root	deglycyrrhizinated licorice root extract •	8.00	8.00	1.00	Ahn et al., 2012
3	Haematoxylon brasiletto	Fabaceae (Leguminosae)	Branch, barck	Áqueous	10.50	125.00	11.90	Rosas-Piñón et al., 2012
4	Haematoxylon brasiletto	Fabaceae (Leguminosae)	Branch, barck	Ethanol	12.50	125.00	10.00	
5	Punica granatum L.	Punicaceae	Pericarp	Áqueous	12.50	125.00	10.00	
6	Cnidoscolus multilobus (Pax.) I.M. Johnston	Euphorbiaceae	Leaves	Ethanol	15.60	< 250.00	16.03	
7	Syzygium aromaticum (L.) Merr. & Perry	Myrtaceae	Fruit	Áqueous	25.00	250.00	10.00	
8	Rhus standleyi Barkley.	Anacardiaceae	Aerial parts	Áqueous	32.50	125.00	3.85	
9	Persea americana Mill.	Lauraceae	Leaves	Áqueous	32.50	125.00	3.85	
10	Heterotheca inuloides Cass.	Compositae	Aerial parts	Ethanol	32.50	125.00	3.85	
11	Cedrela odorata L.	Meliaceae	Seed	Ethanol	32.50	250.00	7.69	
12	Ipomoea alba	Convolvulaceae	Aerial organs	Chloroform fraction	< 40.00*i	≤40.00*i	1.00	Silva et al., 2014
13	Ipomoea alba	Convolvulaceae	Aerial organs	Chloroform fraction	60.00*ii	80.00*ii	1.33	
15	Pistacia atlantica	Anacardiaceae	Leaves	Áqueous	60.00	90.00	1.50	Roozegar et al., 2016
16	Cedrela odorata L.	Meliaceae	Seed	Áqueous	60.00	500.00	8.33	Rosas-Piñón et al., 2012
17	Syzygium aromaticum (L.) Merr. & Perry	Myrtaceae	Fruits	Ethanol	62.50	125.00	2.00	
18	Punica granatum L.	Punicaceae	Pericarp	Ethanol	62.50	250.00	4.00	
19	Cinnamomun zeylanicum Ness.	Lauraceae	Barck	Áqueous	62.50	250.00	4.00	
20	Cnidoscolus multilobus (Pax.) I.M. Johnston	Euphorbiaceae	Leaves	Áqueous	62.50	250.00	4.00	
21	Tagetes lucida	Asteraceae	Aerial parts	Ethanol	62.50	250.00	4.00	
22	Piper sanctum (Miq.)	Piperaceae	Leaves	Ethanol	62.50	< 500.00	8.00	Rosas-Piñon et al., 2012
23	Bursera simaruba (L.)	Burseraceae	Branch, barck	Ethanol	62.50	750.00	12.00	
24	Tournefortia hartwegiana Standley.	Boraginaceae	Aerial organs	Ethanol	62.50	> 1000.00	16.00	
25	Coreopsis mutica DC.	Compositae	Aerial organs	Ethanol	62.50	> 1000.00	16.00	
26	Rhus standleyi Barkley.	Anacardiaceae	Aerial organs	Ethanol	65.00	250.00	3.85	
27	Persea americana Mill.	Lauraceae	Leaves	Ethanol	65.00	500.00	7.69	
28	lostephane heterophylla (Cav.) Benth.	Compositae	Root	Áqueous	67.50	125.00	1.85	
29	Drymaria gracilis Cham. & Schehlechtendal	Caryophyllaceae	Leaves	Áqueous	67.50	500.00	7.41	
30	Liquidambar macrophylla	Hamamelidaceae	Leaves	Ethanol	67.50	500.00	7.41	
31	Amphipterygium adstringens	Anacardiaceae	Branch, barck	Áqueous	67.50	> 1000.00	14.81	
32	Argemone mexicana L.	Papaveraceae	Leaves	Áqueous	78.00	500.00	6.41	
33	Eysenhardtia polystachya (Ort.) Sarg.	Fabaceae (Leguminosae)	Wood	Áqueous	78.00	500.00	6.41	
35	Ipomoea alba	Convolvulaceae	Aerial organs	Chloroform fraction	m100.00	160.00	1.60	Silva et al., 2014
36	Bursera simaruba (L.)	Burseraceae	Branch, barck	Áqueous	100.00	500.00	5.00	Rosas-Piñon et al., 2012
37	Datura stramonium L.	Solanaceae	Aerial organs	Áqueous	100.00	1000.00	10.00	

r, Ratio between MBC and MIC; *m, Mean of reported values; * The final product was originated from soluble fraction of dichloromethane extraction, partitioned with n-hexane; *Dried roots were passed thrhough heating in distilled water (20:1 [v/w]) for 2 h, heating (78°C) in 95% ethanol (95% ethanol:residue ratio of 15:1 [v/w]) for 2 h, column (6.5 cm - 60 cm) filled with Diaion HP-20 adsorbent equilibrated with distilled water, 50% ethanol and 99% etanol. *The same extract was tested for two different bacterial concentration: i - 1×10²; ii - 1×10³

Table 5. Minimal inhibitory concentration and minimal bactericidal concentration of plant compounds with MIC \leq 30 µg.mL⁻¹ tested against *S. mutans*.

Species	Family	Part of the plant	Compound	S. mutans strain	MIC (µg/ml)	MBC (µg/ml)	MBC / MIC
Madhuca Iongifolia	Sapotaceae	Seed	Saponin	MTCC 890 MTCC 497	18.30 23.60	34.40 39.60	1.88 1.68
Bauhinia purpurea	Fabaceae	Seed	Saponin	MTCC 890 MTCC 497	26.40 26.30	43.00 38.00	1.63 1.44
			Ent-kaurenoic acid	ATCC25175	10	20	2

MIC, Minimal inhibitory concentration; MBC, Minimal bactericidal concentration.

to diffuse in the medium, should be avoided in diffusion methods (Valgas et al., 2007). In this review the most frequent category used was polar solvent but it is worth noting that a combination of solvent or crude extracts obtained directly from the plant without solvent addition was also described. By agar diffusion technique, from non-polar solvent extraction, only two showed \geq 18 mm inhibition zone: The hexanic extract from bark of *Cinamonum verum* (OHara et al., 2008) and the hexanic extract from bark/leaves of *Schinuster ebinthifolius* (Pereira et al., 2011).

Both articles reported the use of dimetylsulfoxide as solvent to solubilize the powdered extracts. Thus, although both hexanic extracts were active at higher than clinically acceptable concentrations, the results published by Ohara et al. (2008) and Pereira et al. (2011) suggested that solvent such as dimetylsulfoxide can help some molecules to diffuse into agar medium and make possible the use of agar diffusion technique for apolar substances as suggested by Valgas et al. (2007).

The antibacterial property of a variety of natural products is documented; nonetheless, the great variability of secondary metabolites composition makes the studies in this area always laborious.For anti-*S. mutans*, it seems there is a restriction in this variety of substances. From the peer reviewed sources used in this work, the only pure substance report was saponins extracted from four species: *Madhuca longifolia, Bauhinia purpurea, Celastrus paniculatus,* and *Semecarpus anacardium* by Jyothi and Seshagiri (2012) with promising results only

for saponins isolated from *M. longifolia*. The antimicrobial broad spectrum of saponins has been reported (Avato et al., 2006; Qin et al., 2016), however the amphiphilic characteristics of this class, with the diversity which it carries, plays an important role in the antimicrobial property itself or in its solubilization in aqueous based medium used in the techniques employed were considered.

Conclusion

The present systematic review showed a comprehensive

examination of medicinal plants under the perspective of anti-S. mutans activity. Results showed that agar diffusion technique is still widely used for medicinal plants antimicrobial activity screening being either well-variant or disc-variant worthwhile as screening tests. The remarkable results from A. vera, G. lancifolia and A. sativum by agar diffusion or from G. uralensis, M. glomerata, I. alba, and P. atlantica by MIC/MBC show that although taxonomic criterion may be considered a leader for antimicrobial activity, ethnobotanical criterion should also be considered an excellent guide for in vitro studies. The unit of measurement used (µg/mL) is scientifically considered more accurate; however, it is worth noting that percentage as unit of measurement warrants validation since it mimics the popular usage of plants. Finally, the standardization of antimicrobial protocols for medicinal plants antimicrobial tests is needed in order to obtain more accurate results and make the comparision between natural products and controls easier.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGMENT

We would like to thank the Universidade Estadual de Santa Cruz for structural support.

REFERENCES

- Ahn J, Cho J, Kim J, Park N, Lim K, J-K K (2012). The antimicrobial effects of deglycyrrhizinated licorice root extract on Streptococcus mutans UA159 in both planktonic and biofilm cultures. Anaerobe 18:590-596.
- Argenta J, Pasqual M, Pereira C, Dias D, Barbosa R, Pereira L (2012). Effect of pomegranate extract (Punica granatum) on cariogenic bacteria: *in vitro* and *in vivo* study. Arq Odontol 4:218-226.
- Avato P, Bucci R, Tava A, Vitali C, Rosato A, Bialy Z, Jurzysta M (2006). Antimicrobial activity of Saponins from Medicago sp.: Structure-activity relationship. Phytotherapy Research 20:454-557.
- Balouiri M, Sadiki M, Ibnsouda S (2016). Methods for in vitro evaluating

antimicrobial activity: A review. Journal of Pharmaceutical Analysis 2:71-79.

- Camere-Colarossi R, Ulloa-Urizar G, Medina-Flores D, Caballero-García S, Mayta-Tovalino F, del Valle-Mendoza J (2016). Antibacterial activity of Myrciaria dubia (Camu camu) against *Streptococcus mutans* and *Streptococcus sanguinis*. Asian Pacific Journal of Tropical Biomedicine 6:740-744.
- Campana E, Carvalhaes C, Barbosa P, Machado A, Paula A, Gales A (2011). Evaluation of M.I.C.E.®, Etest® and CLSI broth microdilution methods for atimicrobial testing of nosocomial bacterial isolates. Jornal Brasileiro de Patologia E Medicina Laboratorial 2:157-164.
- Cos P, Vlietinck A, Vanden Berghe D, Maesa L (2006). Anti-infective potential of natural products: How to develop a stronger in vitro "proof-of-concept." Journal of Ethnopharmarcology106:290-302.
- Fani M and Kohanteb J (2012). Inhibitory activity of Aloe vera gel on some clinically isolated cariogenic and periodontopathic bacteria. Journal of Oral Science, 1:15-21.
- Halberstein R (2005). Medicinal plants: Historical and cross-cultural usage patterns. Annals of Epidemiology 9:686-699.
- Hurtado J, Rubio Z, Berrospi L, Azahuanche F (2013). Antibacterial activity of *Pelargonium peltatum* (L.) L'Her. against Streptococcus mutans, Streptococcus sanguis and Streptococcus mitis versus chlorhexidine. Revista Cubana de Plantas Medicinales 2:224-236.
- Jain I, Jain P, Bisht D, Sharma A, Srivastava B, Gupta N (2015). Comparative evaluation of antibacterial efficacy of six Indian plant extracts against Streptococcus mutans. Journal of Clinical and Diagnostic Research 2:ZC50-ZC53.
- Jebashree H, Kingsley S, Sathish E, Devapriya D (2011). Antimicrobial activity of few medicinal plants against clinically isolated human cariogenic pathogens-an in vitro study. International Scholarly Research Network Dentistry 6.
- Jyothi KS, Seshagiri M (2012). In-vitro activity of saponins of Bauhinia purpurea, Madhuca longifolia, Celastrus paniculatus and Semecarpus anacardium on selected oral pathogens. Journal of Dentistry 4:216.
- Kouidhi B, Al Qurashi YMA, Chaieb K (2015). Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microbial Pathogenesis 80:39-49.
- Matthew L (2015). A comparison of disc diffusion and microbroth dilution methods for the detection of antibiotic resistant subpopulations in Gram negative bacilli. University of Washington Seattle.
- Medina-Flores D, Ulloa-Urizar G, Camere-Colarossi R, Caballero-García S, Mayta-Tovalino F, del Valle-Mendoza J (2016). Antibacterial activity of *Bixa orellana* L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. Asian Pacific Journal of Tropical Biomedicine 5:400-403.
- Moreira M, Souza A, Soares S, Bianchi T, Eugênio D, Lemes D, Veneziani R (2016). ent-Kaurenoic acid-rich extract from Mikania glomerata: In vitro activity against bacteria responsible for dental caries. Fitoterapia, 112:211–216.
- Moreira MR, Ambrosio SR, Furtado NA, Cunha WR, Heleno VC, Silva AN, Simão MR, Martins CH, Veneziani RC (2016b). Evaluation of ent-kaurenoic acid derivatives for their anticariogenic activity. Natural product communications 6:777-780.

Nishikawara F, Katsumura S, Ando A, Tamaki Y, Nakamura Y,

- Sato K, Nomura Y, Hanada N (2006). Correlation of cariogenic bacteria and dental caries in adults. Journal Of Oral Science 4:245-251.
- OHara A, Saito F, Matsuhisa T (2008). Screening of Antibacterial Activities of Edible Plants against Streptococcus mutans. Food Science and Technology Research 2:190–193.
- Oshomoh E, Idu M (2012). Antimicrobial activity of ethanol and aqueous extracts of Parinari curatellifolia (stem) on dental caries causing microbes. International Journal of Pharmaceutical Science and Research 7:2113-2118.

- Pai R, Bhat S, Salman A, Chandra J (2015). Use of an extract of Indian sacred plant Ocimum sanctum as an anticariogenic agent: an in vitro study. International Journal of Clinical Pediatric Dentistry 2:99-101.
- Pelkonen O, Xu Q, Fan T-P (2014). Why is Research on Herbal Medicinal Products Important and How Can We Improve Its Quality? Journal of Traditional and Complementary Medicine 1:1-7.
- Pereira E, Gomes R, Freire N, Aguiar E, Brandão M, Santos V (2011). In vitro antimicrobial activity of Brazilian medicinal plant extracts against pathogenic microorganisms of interest to dentistry. Planta Medica-Natural Products and Medicinal Plant Research 77(4):401
- Petersen P (2003). Continuous improvement of oral health in the 21st century -the approach of the WHO Global Oral Health Programme.
- Policegoudra R, Saikia S, Das J, Chattopadhyay P, Singh L, Veer V (2012). Phytochemical and in vitro evaluation of Garcinia lancifolia. Indian Journal of Pharmaceutical Sciences 3:268-271.
- Qin X, Yu M, Ni W, Yan H, Chen C, Cheng Y, Liu HY (2016). Steroidal saponins from stems and leaves of Paris polyphylla var. yunnanensis. Phytochemistry 77:1242–1248.
- Ramakrishna Y, Goda H, Baliga MS, Munshia K (2011). Decreasing Cariogenic Bacteria with a Natural, Alternative Prevention Therapy utilizing Phytochemistry (Plant Extracts). Journal of Clinical Pediatric Dentistry 1:55-63.
- Rates SMK (2001). Plants as source of drugs. Toxicon 5:603-13.
- Ríos JL, Recio MC (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology 100:80-84.
- Roozegar MA, Jalilian FA, Havasian MR, Panahi J, Pakzad I (2016). Antimicrobial effect of Pistacia atlantica leaf extract. Bioinformation 1:19-21.
- Rosas-Piñón Y, Mejía A, Díaz-Ruiz G, Aguilar M, Sánchez-Nieto S, Rivero-Cruz JF (2012). Ethnobotanical survey and antibacterial activity of plants used in the Altiplane region of Mexico for the treatment of oral cavity infections. Journal of Ethnopharmacology 141:860-865.
- Schumacher A, Vranken T, Malhotra, A, Arts, JJC, Habibovic P (2018). In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models. European Journal of Clinical Microbiology Infectious Disease 37:187-208.
- Sharma M, Tandon S, Aggarwal V, Bhat K, Kappadi D, Chandrashekhar P, Dorwal R (2015). Evaluation of antibacterial activity of Calotropis gigentica against Streptococcus mutans and Lactobacillus acidophilus: An in vitro comparative study. Journal of Conservative Dentistry 18:457-460.
- Sherris JC (1986). Problems in in vitro determinantion of antibiotic tolerance in clinical isolates. Antimicrobial Agents and Chemotherapy 5:633-637.
- Silva J, Castilho A, Saraceni C, Díaz I, Paciencia M, Suffredini I (2014). Anti-Streptococcal activity of Brazilian Amazon Rain Forest plant extracts presents potential for preventive strategies against dental caries. Journal of Applied Oral Science 2:91-97.
- Silveira L, Olea R, Mesquita J, Cruz A, Mendes J (2009). Antimicrobial activity methodologies applied to plants extracts: comparison between two agar diffusion techniques. Brazilian Journal of Pharmacognosy 2:124-128.
- Traczewisk MM, Katz BD, Steenbergen JN, Brown SD (2009). Inhibitory and bactericidal activities of daptomycin, vancomycin, and teicoplanin against methicillin-resistant *Staphylococcus aureus* isoates collected from 1985 to 2007. Antimicrobial Agents and Chemoterapy 5:1735-1738.
- Vahid-Dastjerdi E, Sarmast Z, Abdolazimi Z, Mahboubi A, Amdjadi P, Kamalinejad M (2014). Effect of Rhus coriaria L. water extract on five common oral bacteria and bacterial biofilm formation on orthodontic wire. Iranian Journal of Microbiology 4:269-275.
- Valgas C, Souza S, Smânia E, Smânia Jr A (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology 38:369-380.