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Clinacanthus nutans is an economically important medicinal plant that can be found grown in many 
countries in the Asian region. Useful medicine properties such as anti-cancer, anti-bacteria, and anti-
viral, backed by its high content of phytochemical compounds such vitexin, isovitexin, stigmasterol and 
lupeol has increased the demand for C. nutans in the market. Extensive work had been carried out on 
its content and pharmacological activity using fresh samples but limited studies for in vitro cultures of 
C. nutans. No genome size estimation has been done for C. nutans. Objective of this study was to 
analyse nuclear DNA content of C. nutans using flow cytometry. Preparation of different nuclei isolation 
buffer and stoichiometric DNA staining using propidium iodide was carried out. The genome size of C. 
nutans was estimated using Glycine max cv. Polanka as internal standard and its genome size was 
compared with in vitro plantlets of C. nutans. Flow cytometry analysis revealed that nuclear 2C DNA of 
C. nutans content is estimated at 1.75 ± 0.006 pg. Coefficient of variation in flow cytometric analysis 
was within the limit of 5% implying that the results were reliable with the Tris.MgCl2 being the best 
nuclei isolation buffer. No significant difference was observed from field grown and in vitro C. nutans. 
This finding will assist further in genome size evolution analysis of Clinacanthus spp. and to determine 
polyploids for increased active compounds and biomass.  
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INTRODUCTION 
 
Clinacanthus nutans, also known as Sabah Snake Grass 
or Daun Belalai Gajah is a shrub belonging to the 
Acanthaceae family. This plant has recently gained much 
economic value in South Asian region mainly in Malaysia, 
Indonesia, and Thailand due to its pharmacological 
properties (Zulkipli et al., 2017). Its secondary content, 
rich in phytochemicals such as betulin, lupeol, vitexin, 
isovitexin  and   stigmasterol  are  beneficial  to  mankind. 

Based on the active compounds, pharmacological 
activities such as anti-oxidative (Pannangpetch et al., 
2007; Arullappan et al., 2014), anti-proliferative (Yong et 
al., 2013; Ghazemzadeh et al., 2014), anti-tumorigenic 
(Huang et al., 2015), anti- bacterial (Chomnawang et al., 
2009; Arullappan et al., 2014), anti-viral (Kunsorn et al., 
2013) and anti-inflammatory (Wanikiat et al., 2008) have 
been  reported   with   C. nutans.  Owing  to  the  growing
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demand, conventional propagation methods through 
stem cutting and micropropagation have been proposed 
as an alternative way to cultivate this plant commercially. 
In line to that, a few in vitro protocols since then had been 
established and explored (Chen et al., 2015; Haida et al., 
2020). Besides cultivation, field management, clone 
selection and polyploidization are being constantly 
explored to cater the growing demand. 

Knowledge of nuclear DNA content, both size and 
molecular details have become essential in determining 
genetic evolution of plants besides gaining a better 
understanding at molecular and cellular level (Yan et al., 
2016). Since the report of Lilium longiflorum genome size 
(Ogur et al., 1951), more than 12,200 plant species 
genomes have been estimated (Pellicer and Leitch, 
2014). Genome size refers to its nuclear DNA content in 
a cell and is measured in picograms (pg) or megabase 
pairs (Mbp, 1 pg = 987 Mbp) (Dolezel et al., 2003). 
Estimation of genome size is crucial in many biological 
fields such as evolution, ecology, population genetics and 
plant breeding (Kron et al., 2007; Loureiro et al., 2010). 
Its size change is associated with environmental factors, 
climatic variation, and geographical plant distribution 
(Bennett, 1976; Levin and Funderburg, 1979) and (Ohri 
and Khoshoo, 1986). Continuous subculturing of plantlets 
in in vitro may lead to genetic disturbance and cause 
somaclonal variation (Sliwinska and Thiem, 2007). It is 
crucial to ensure genome stability in in vitro plantlets 
especially medicinal plant such as C. nutans that is highly 
sort after for its pharmaco-properties. Moreover, limited 
studies have evaluated the effect of in-vitro conditions on 
genome size.  

Genome size evaluation is constantly being optimized 
both at the process level as well as use of improved 
instruments. The estimate of genome size in plants 
started with Feulgen densitometry (Bennett and 
Leitch,1997) and re-association kinetics (Dhillon et al., 
1980) followed by the popular flow cytometry (FCM) 
(Dolezel et al., 2007). The FCM requires a small quantity 
of sample and can analyse many cells in a shorter time 
with higher precision compared to other 
spectrophotometry approaches (Moghbel et al., 2015; 
Dhooghe et al., 2010; Omidbaigi et al., 2010).  

However, the accuracy of FCM in some plants was 
subjected to the presence of endogenous fluorescence 
inhibitors such as tannins (Loureiro et al., 2006) and 
anthocyanins (Bennett et al., 2008). This demands the 
need to optimize Galbraith et al. (1983) simple method of 
plant nuclei isolation technique, chopped leaf tissues in a 
lysis buffer. The selection of appropriate nuclei isolation 
buffer according to the plant and inhibitors present is 
considered crucial in genome size determination. As the 
appropriate buffer ascertains the quality of the sample 
maintained and stoichiometric errors during DNA staining 
(Sadhu et al., 2016). Among the common buffer used in 
nuclear DNA estimation in plants are Galbraith buffer 
(Galbraith et   al., 1983),  LBO1   buffer  (Dolezel   et   al., 

 
 
 
 
1989), Otto buffer (Otto, 1990; Dolezel and Gohde, 
1995), Tris.MgCl2 buffer (Pfosser et al., 1995) and 
Tris.MgCl2 with 1% PVP (Dolezel et al., 1989). Although 
the chemical component of the mentioned buffers varies, 
each of the nuclei isolation buffer contains an organic pH-
stabilizing chemical such as MOPS, TRIS or HEPES, 
chromatin stabilizers such as MgCl2, MgSO4 or 
Spermine, and divalent cation binding metal chelators 
such as EDTA or sodium citrate as nuclease cofactors. 
Inorganic salts such as KCl or NaCl are also added to 
attain proper ionic concentration and non-ionic detergents 
such a Triton X-100 or Tween 20 which further aid in 
releasing nuclei and remove debris from the surface of 
the nuclei (Coba and Brown, 2001). 

Studies have reported that concurrent evaluation of 
both target plants and standards, use of internal and 
external standards (Price et al., 2000; Noirot et al., 2005), 
use of appropriate nuclei isolation buffer and addition of 
anti-oxidative compounds (Dolezel and Bartos, 2005; 
Dolezel et al., 2007) reduces experimental error. The 
genome size is reflected and estimated based on known 
DNA content that act as standards. Plants such as 
Solanum lycopersicum L. Stupicke polni rane (2C DNA 
content = 1.96 pg), Glycine max Merr. Polanka (2C DNA 
content = 2.50 pg), Zea mays.L. CE-777 (2CDNA content 
= 5.43 pg) and Pisum sativum. L. Citrad (2C DNA content 
= 9.09 pg) (Dolezel et al., 2007) are commonly used as 
an estimator or standard to estimate the sample plant 
genome size.  It is recommended that the standard 
should have a genome size close to target plant species 
(Dolezel et al., 1998).  

No genome size estimation had been carried out for C. 
nutans which is highly sort after for its medicinal values 
as this can help in further exploration of clone selection 
and polyploidization sector to enhance active 
compounds. At present, to cater the growing demand, 
stem cutting has been the propagation method used to 
cultivate this valuable medicinal plant which could soon 
lead to extinction (Zulkipli et al., 2017). Besides, genetic 
disturbance and somaclonal variation is reported in in 
vitro cultures (Sliwinska and Thiem, 2007). Therefore, 
this study explores the impact varying nuclei isolation 
buffer to determine the genome size of C. nutans besides 
determining the variation, if any, in in vitro grown and field 
grown plants using laser sourced flow cytometer (BD 
Accuri C6) along with Glycine max cv. Polanka (Dolezel 
et al., 1992) as an internal standard. 
 
 
MATERIALS AND METHODS 
 

Plant materials 
 

Plant material for field grown C. nutans was obtained from the 
medicinal plant garden, at the Forest Research Institute Malaysia 
(FRIM), Kepong, Selangor, with identity confirmed by the FRIM’s 
botanist, at the Ethnobotanical Department. These samples were 
collected in the month of September 2017, and grown in pots, at 
Taylor’s Garden, and thereafter explants were collected to establish 
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Figure 1. Plant materials used in this experiment (a) In vitro C. nutans; (b) field grown C. nutans;(c) G.max used as 
standard. 

 
 
 
in vitro culture. Both, field grown C. nutans and standard plant were 
grown under similar condition at the greenhouse or in vitro. 
Greenhouse plants were grown in 30 cm pots under natural light 
source at Taylor’s Garden. Glycine max cv. Polanka (2C DNA 
content = 2.50 pg) was chosen as the standard reference as its 
genome size was larger than of the target sample. Seeds of G. max 
was obtained from Cytogenetic lab, MPOB (Malaysian Palm Oil 
Board) which was procured from Dr. Jaroslav Dolezel, Institute of 
Botany, Olomouc, Czech Republic. The ambient growth room 
condition of 25± 2°C and 60 to 65% relative humidity, at 12 h 
photoperiod, with light intensity at 3000 lux were maintained for in 
vitro grown C. nutans cultures in Plant Tissue Culture room at 
Taylor’s University. These plantlets were sub-cultured every 8 
weeks using nodal cutting approach. The samples used for 
analyses were maintained for a duration of over two years (Figure 
1).  
 
 
Sample preparation 
 
Plant samples (C. nutans) and standards (G. max) were selected 
randomly for nuclei isolation using different isolation buffer and 
genome size evaluation with FCM. Three nuclei extraction buffer 
were prepared according to modified procedure from Dolezel et al. 
(1989), first being Tris.MgCl2 containing 200 mM Tris, 4 mM MgCl2. 
6H2O, 0.5% (v/v) Triton X-100  and 1% PVP (Dolezel et al., 1989), 
LBO1 buffer containing 15 mM Tris, 2 mM Na2EDTA, 80 mM 
KCL,20 mM NaCl, 0.5 mM spermine,15 mM β-mercaptoethanol, 
0.1% Triton X-100, pH 7.4) (Dolezel et al., 1989) and Otto buffer 
comprising of Otto I (0.1 M citric acid and 0.5% (v/v) Tween 20; pH 
2 to 3) and Otto II (0.4 M Na2HPO4⋅12H2O; pH 8-9) (Otto, 1990). 
Fully formed young leaf from sample and standard was excised. 
Each sample, weighing approximately 30 to 50 mg were placed on 
ice cold 6 mm petri dish to decrease the nuclease activity and was 
chopped into tiny segments (0.5 to 1.0 mm) in 1 ml of ice-cold 
buffer using a sharp clean razor blade (Treet Corporation Ltd) to 
form a homogenate. About 500 µl of the homogenate was then 
pipetted  out   and   filtered  through  a  40 µm  nylon  mesh  (Fisher 

Scientific) into a 1.5 ml microcentrifuge tube to remove cell 
fragments and large debris. The filtrate was then added with 2.5 µl 
of RNase (10 mg/ml; Sigma-Aldrich) to denature RNA and 25 µl of 
Propidium iodide (1 mg/ml; Sigma-Aldrich) to stain the DNA. Final 
concentration of propidium iodide was maintained at 50 µg/ml. 
Samples and standard were incubated on ice in the dark for 30 min 
prior to analyse with flow cytometer. Four replicates were carried 
out for each buffer on different days and debris factor and yield 
factor were calculated based on the formula as below (Loureiro et 
al., 2007): 

 

 

 
 
 
Flow cytometric analysis 

 
Estimation of nuclear DNA content was performed using BD Accuri 
TM

 C6 flow cytometer. Samples and standard were stained with 
propidium iodide and were excited at 488 nm with 20-mW laser 
illumination. The fluorescence signal also known as the pulse area 
measurement was screened using two different filters. FL2 with a 
585/40 nm bandpass filter was used for propidium iodide-stained 
nuclear DNA content. Auto fluorescence due to chloroplast was 
excluded from the analysis by selecting a region using FL3 (670 nm 
long pass filter). Flow rate was kept constant at low pace (14 µl 
sample per minute) throughout the experiment and a run time for 
each sample was approximately 3 to 5 min. Each sample, at least 
5000 nuclei were evaluated.  

Resolution, linearity, and doublet discrimination capability of the 
instrument was evaluated using Accuri C6 DNA QC Particles Kits 
which includes the usage of chicken erythrocyte nuclei (CEN) and 
cow thymocyte (CTN) as 8 beads and 6 beads. This was carried out  

  
(a) (b) (c) 

 

 
                   Total number of particles – total number of nuclei    
DF (%) =                                                                               × 100 
                                    Total   number of particles  
 
 
 
                                   Total number of nuclei / number of seconds of run(s) 
YF (nuclei s -1 mg -1) =  
                                               Weight of tissue (mg) 
 
 

 

 

 

 
                   Total number of particles – total number of nuclei    
DF (%) =                                                                               × 100 
                                    Total   number of particles  
 
 
 
                                   Total number of nuclei / number of seconds of run(s) 
YF (nuclei s -1 mg -1) =  
                                               Weight of tissue (mg) 
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Figure 2. Histogram of relative fluorescence intensity derived from nuclei of C. nutans isolated in (a) Tris.MgCl2 with 1% PVP; 
(b) nuclei of C. nutans isolated from LBOI buffer; (c) nuclei C. nutans isolated from Otto buffer. 

 
 
 
prior to running the samples and the standard. The nuclei were 
gated to obtain a region around the signals due to intact single 
nuclei and to eliminate the background fluorescence due to debris, 
fragmented DNA and auto-fluorescence from chlorophyll. The gate 
was consistently maintained across all the samples during the run 
using FCM. Histogram was plotted to compare median fluorescence 
intensity (MFI) of the peaks derived from the sample and standard 
used as external and internal. The DNA content per cell is 
proportional to the fluorescence intensity of PI measured by the 
flow cytometry (Yan et al., 2016). Therefore, the 2C DNA content 
was calculated based on the value of fluorescence intensity of the 
peaks for both sample and standard based on the calculation as 
below (Dolezel et al., 2007): 

 

 
(MFI: Mean fluorescence intensity) 
 
 
Presence of inhibitors 
 
Test sample and standard were chopped together to assess the 
presence of inhibitors in the C. nutans. This is due to the presence 
of phenolic compounds in the cytosol of plants that inhibits the 
propidium fluorescence. Therefore, it is required to test for inhibitors 
for all sample plants that are run using FCM to determine the 
nuclear DNA content (Price et al., 2000). Presence of inhibitors are 
confirmed if the mean peak position of the standard plant is lower in 
the presence of the target sample compared to the mean of the 
standard plant chopped alone. In this experiment, the sample and 
standard were examined separately and chopped together and 
processed as one sample. 
 
 
Data analysis 
 

Total of four replicates from C. nutans were examined using the 
three buffers (Tris.MgCl2, LBO1 and Otto buffer). Each replicate 
was run on different days. For genome size estimation, total of six 
C. nutans plants were analysed with four from wild type C. nutans 
and  the  other  two  in  vitro  propagated C.  nutans  plantlets. Each 

plant sample was analysed in triplicates with each replicate being 
performed on different days. In all the experiments, the 
fluorescence of at least 5000 nuclei to 10000 nuclei was measured. 
Conversion from picograms (pg) to base pair numbers was done as 
follows: 1 pg DNA is equivalent to 0.978 × 10

9
 bp (Dolezel et al., 

2007). The results were analysed using one way analysis of 
variance (ANOVA) using SPSS version 25. For significant effect, 
Tukey’s pairwise comparison was carried out with p value ≤ 0.05.. 
 
 
RESULTS  
 
Comparative analysis of different buffers  
 
The choice of nuclei isolation buffer is a crucial step in 
genome size estimation in plants. Three different buffers 
were examined here for C. nutans as these three buffers 
(Tris.MgCl2, LBO1 and Otto buffer) differ in their 
ingredients to extract the nuclei from the plant. The 
effectiveness of these buffers in C. nutans nuclei isolation 
is presented in Figure 2. It is seen, Tris.MgCl2 with 1% 
PVP buffer (a) and LBO1 buffer (b) shows low CV value 
compared to Otto buffer (c) and with a narrower peak. 
The result also shows that no noticeable nuclear 
aggregation particles was seen in FCM histogram of 
nuclei suspension extracted using Tris.MgCl2 (a) and 
LBO1 buffer (b). However, Otto buffer (c) showed cell 
clumping and increased CV value (≥ 5%) plus relatively 
higher variance in mean fluorescence intensity in all the 
replicates.  

The efficacy of the buffers was further evaluated based 
on the calculation obtained from a combination of high 
yield factor (YF), low debris factor and low CV (%) peaks 
(Table 1). Based on the FCM analysis of C. nutans, there 
was no significant difference between the debris factor in 
all three-buffer  tested.  No  significant  variation  too  was  

Sample 2C DNA C. nutans (pg):  MFI of sample peak × 2.5pg (2C DNA G.max) 

                     MFI of standard peak (G.max) 
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Table 1. Flow cytometric parameter analysed using different buffers Tris.MgCl2, LBOI and OTTO. Each treatment 
was replicated four time. 
 

Buffer CV (%) DF (%) YF (nuclei/sec/mg) 

Tris.MgCl2 4.745 ± 0.978
a
 8.411 ± 4.489

a
 39.930 ± 5.618

b
 

LBO1 4.495 ± 1.140
a
 8.685 ± 5.179

a
 6.846 ± 1.542

a
 

Otto  10.82 ± 2.601
b
 12.275 ± 5.655

a
 7.150 ± 3.482

a
 

 

Mean values followed by same letter are not significantly different at p ≤ 0.05 (Tukey’s test). 
 
 
 

 
 

Figure 3. Histogram of relative fluorescence intensity derived from (a) nuclei isolated from leaves of G. max 
only; (b) nuclei isolated from wild type C. nutans and G .max cv Polanka (standard) chopped, stained, and 
analysed simultaneously.  

 
 
 
seen with total number or particles, total number of 
singlet nuclei and the weight of the C. nutans leaf cut. 
However, the time required to run the sample differed in 
these buffers. LBO1 buffer and Otto buffer took an 
average of 25 to 28 min to run the analysis compared to 
Tris.MgCl2 buffer, which was much faster, an average of 
5 min. As such, LBOI and OTTO buffer gave a 
significantly low yield factor compared to Tris.MgCl2 
buffer (Table 1).  In this study, significantly highest yield 
factor (YF), lowest debris factor (DF) and low CV peaks 
are seen with Tris.MgCl2 supplemented with 1% PVP. 
Therefore, Tris.MgCl2 with added 1% PVP buffer was 
further used for genome estimation in C. nutans plant. 
 
 
2C Nuclear DNA content analysis in C. nutans 
 
Genome estimation for C. nutans along with G. max cv. 
Polanka as its internal reference was carried out using 
Tris.MgCl2 with 1% PVP. The mean fluorescence 
intensity peak for G. max (as external) and C. nutans 
presented in Figure 3, shows distinct and  well  separated 

2C peak of G.max and 2C peak of C. nutans.  The 
coefficient of variation (CV) for the mean fluorescence 
intensity varied between 3.5 to 4.5%. The 2C nuclear 
DNA content of C. nutans was estimated by comparing 
DNA content of the standard (G. max), to be 2C=1.75± 
0.005 pg. For the 2C-value obtained in this study, the CV 
value (standard deviation divided by average number of 
channels) is crucial. The CV values being above 5% 
indicates that the extracted nuclei are not concentrated. 
This leads to larger deviation in the 2C DNA value which 
will not be precise. Therefore, CV value of ≤ 5% is taken 
as reliable factor for genome size estimation (Cao et al., 
2014). 
 
 
Genome size comparison between in vitro and field 
grown C. nutans 
 
Figure 4 shows the comparison of mean fluorescence 
intensity between the wild type and in vitro grown C. 
nutans, as well as the DNA values (2C) of C. nutans 
along with 1C calculated (bp) using Tris.MgCl2 buffer. The  

2014). 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

Peak CV% Mean 

1 4.21 47355.0 

2 4.03 67393.5 

 

Peak CV% Mean 

2 3.46 69495.0 

 
(a) (b) 

2 1 2 

(b) 
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Figure 4. Histogram of relative fluorescence intensity obtained after analysis of (a) C. nutans in vitro and (b) C. 
nutans wild type nuclei isolated simultaneously with G. max cv Polanka (2C=2.5pg) as an internal standard. The 
peak number 1(C. nutans); peak no.2 (G. max), mean fluorescence intensity and coefficient of variation percentage 
(CV) is stated. 

 
 
 

Table 2. Nuclear DNA content and genome size (mean + SD) of C. nutans estimated with flow cytometry using G. 
max.  
 

Plant material n(R) 
2C Nuclear DNA content 

mean ± SD (pg) 

1C Genome size + SD 

(10
9
 bp) 

CV% 

Wild Type 4(3) 1.7455 ± 0.009574
a
 0.8535 ± 0.004

a
 4.4 

In vitro 2(3) 1.7495 ± 0.002121
a
 0.8555 ± 0.001a 3.8 

All plants 6(3) 1.7475 ± 0.005848 0.8736 ± 0.003a  
 

Mean values followed by same letter are not significantly different at p ≤ 0.05(Tukey’s test). ). G.max cv Polanka (2C= 
2.5 pg) as internal standard. Sample number (n), replicate measurements per sample (R) are as indicated. 1pg 
DNA=0.978 x 10 

9
 bp according to Dolezel et al. (2003). 

 
 
 

estimated nuclear DNA content of field grown C. nutans 
was compared to its in vitro plantlets using G.max cv 
Polanka as internal standard (Figure 3). It shows no 
significant difference in genome size, between the field 
grown and in vitro grown C. nutans chopped together 
with G. max (Table 2). 
 
 
DISCUSSION 
 
Establishing the genome size and determining the best 
nuclear isolation protocol is among the preliminary, but 
crucial step in description of a plant species, and 
constructing pathways for genome sequencing (Gregory, 
2005). DNA analysis using FCM  involves  preparation  of 

intact nuclei suspension which is stained using PI 
fluorochromes prior to analysis.  It is crucial for the 
suspension buffer to protect the nuclear DNA from 
degradation and to provide a suitable environment for 
specific stochiometric staining of the nuclear DNA 
including reduction in the negative effect of cytosolic 
compound present in plants during DNA staining 
(Loureiro et al., 2007). Although there are several nuclear 
isolation buffers available, published data shows that no 
one buffer works for all plant species (Bainard et al., 
2010). Similarly, prominent yield of nuclei was seen for C. 
nutans isolated using Tris.MgCl2 buffer with 1% PVP 
compared to OTTO and LBO1 buffer. Tris being an 
organic compound helps in stabilizing the pH of the 
solution,  thus  keeping the nuclei intact (Greilhuber et al.,  



 
 
 
 
2007). Besides the presences of Triton X -100 further 
helps to ease the nuclei release from the cells and 
isolates them away from debris (Galbraith et al., 1983). 
The addition of polyvinylpyrrolidone (PVP) that is known 
to bind to phenolics and prevents interaction with DNA 
(O’Brien et al., 1996) has been crucial. The absences of 
PVP in both OTTO and LBO1 buffer could be a factor for 
high CV or low yield (Grielhuber et al., 2007). PVP have 
been reported to eliminate the intervention of inhibitory 
compounds in many studies (Veselska et al., 2014; Nath 
et al., 2014; Sadhu et al., 2016).  However, the 
performance of the Tris.MgCl2 with 1% PVP did not 
exhibit good isolation of nuclei cells in Garcini 
mangostana (Midin et al., 2017) and Drimia indica (Nath 
et al., 2014). In certain plant species, the nuclei released 
from the plant cells adheres to the precipitate that is 
formed from citric acid in Otto I buffer as it forms mucous 
substance (Dolezel et al., 2005) thus giving a high 
background debris as seen in the histogram plot of this 
study. But Otto buffer was successfully used as isolation 
buffer in other plant species such as Erianthus 
arundinaceus (Yan et al., 2016), Cucurma species 
(Skornickova, et al. 2007) and Festuca pallens (Smarda 
and Bures, 2006). The presence of beta-mercaptoethanol 
in LBO1 reduced the CV value but did not give a high 
yield for the nuclei of in vitro C. nutans. But this buffer is 
reported applicable in evaluation of genome size in other 
plant species such as Rosa macrophylla (Idrees et al., 
2020) and Primula genus (Wang et al., 2015). 

Based on the FCM analysis, the difference between the 
mean fluorescence intensity of G. max prepared 
separately and those prepared together with C. nutans 
was not significant (Figure 2). This suggests that the 
addition of 1% PVP as antioxidant in the Tris.MgCl2 buffer 
(Dolezel et al., 1989) was able to minimize the cytosolic 
effect of C. nutans cell debris or secondary compounds in 
the PI staining of G. max. Thus, giving consistent results 
of nuclear DNA content of C. nutans against G. max as 
internal standard. Based on the mean fluorescence 
values, the nuclear DNA content of C. nutans was 
approximately 0.7 times of G. max. Therefore, it’s 
estimated that the nuclear DNA content of C. nutans to 
be 1.75 pg /2C and the 1C value to be 0.835 ×10

9 
bp. 

With this known genome size of C. nutans, evolutionary 
pattern of other species within Clinacanthus genus can 
be explored in the future besides being a basic guidance 
in polyploidization work. 

In this study, micropropagation of C. nutans was 
carried out using nodal segments which facilitates lower 
risk of gene instability (Kesari et al., 2012). FCM analysis 
of 2C DNA carried out on in vitro plantlets of C. nutans 
showed a similar pattern compared to the field grown C. 
nutans indicating genome stability after continuous 
subculture over a period of two years. This suggests that 
the genome of the C. nutans plantlets is stable after 
prolonged subcultures. Similarly, genome stability was 
recorded in six medicinal plants that  were propagated  in  
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vitro by Sliwinska and Thiem (2007). Stable genome 
sizes were also observed in Hydrasis canadensis L. 
(Obae et al., 2010) and Pongamia pinnata L. (Choudury 
et al., 2013) too. Thus, this paves the way for mass 
propagating C. nutans via tissue culture, to meet 
commercial-scale cultivation demands, while preserving 
the threatened wild population of this high value 
medicinal plant. 

The recent release of C values in the plant data base 
has a compilation of more than 12,000 plant species with 
Angiosperm covering more than 10,000 species (Leitch 
et al., 2019).  The Kew-C value database reports the 
smallest angiosperm genome size belongs to Fragaria 
viridis. Duch with 1C value at 0.1 pg and the largest (95  
pg) belongs to Trillium apetalon using the same method 
of estimation, i.e. flow cytometer. Based on the data, C. 
nutans genome size falls at the lower end of the C-value 
distribution under the family of Acanthaceae, which 
ranges from 0.4 to 2.91 pg/1C. From this experiment, C. 
nutans genome size can be estimated to be 
approximately two times larger than Hygrophilia violacea 
with 1C DNA value at 0.40 pg and 0.8 times smaller than 
Acanthus mollis, which has 1C DNA value at 0.97 pg 
(Leitch et al., 2019). Genome size is directly associated 
to cell size and cell size is significantly related to cell 
division (Yuan et al., 2021). From the genome size 
comparison, cell size of C. nutans is larger than H. 
violacea and smaller than A. molis. With the variation 
found in genome size, correlation between the genome 
size and other phenotypical traits can be investigated to 
further understand the evolution drift, if any exists among 
a family (Yuan et al., 2021). 
 
 
Conclusion 
 
2C nuclear DNA content of C. nutans is estimated at 1.75 
pg using flow cytometry analysis. This report is the first to 
estimate the nuclear DNA content of C. nutans and 
therefore provides important information required to 
assist further genomic and molecular studies of this 
economically important medicinal plant.  
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