Herreria salsaparilha Mart.: A potential source of antimicrobial and cytotoxic compounds

Juliana da Silva Coppede, Ana Lucia Fachin, Silvia Helena Taleb Contini, Bianca Waleria Bertoni, Suzelei de Castro Franca and Ana Maria Soares Pereira*

Department of Plant Biotechnology, University of Ribeirão Preto–UNAERP, 14096-900 Ribeirão Preto, São Paulo, Brazil.

Accepted 13 April, 2012

Herreria salsaparilha is a plant species popularly used for the treatment of syphilis and cutaneous infections. The aim of this work was to evaluate its potential antimicrobial activity against multi-resistant field strains of *Escherichia coli*, *Staphylococcus aureus*, their respective ATCC cell lines, and strains of *Trichophyton rubrum* H6 and T. *rubrum* mutant ΔTruMDR2. Additionally, the cytotoxic activity against astrocytoma brain tumor cells (U343), human cervical cancer cells (HeLa) and murine melanoma cells (B16) was investigated. The antimicrobial activity was confirmed against both the *S. aureus* multi-resistant strain (MIC: 750 µg) and its ATCC strain (MIC: 50 µg). Moreover, the cytotoxic activity was determined for HeLa (IC$_{50}$: 2 µg) and B16 (IC$_{50}$: 10 µg) tumor cells.

Key words: Cerrado, salsaparilha, anti-tumoral, Herreriaee.

INTRODUCTION

Hundreds of plants endemic to Brazilian biomes are used as medicinal drugs for treating a variety of diseases like kidney affections, rheumatism, diabetes, arteriosclerosis, ulcers, cancer, venerereal disease, urinary system affections and diarrhea (Rodrigues and Carvalho, 2001), though their efficacy have not been validated yet. *Herreria salsaparilha* belongs to these plants, its hydroalcoholic extract roots is popularly used to treat syphilis, eruptions, cutaneous infections, and as depurative, sudorific and stimulant (Peckolt, 1936; Corrêa, 1974).

Due to morphologic similarities, the species is frequently misidentified as belonging to the *Smilax* genus, also referred to as salsaparilha, and are indistinctively used for the same purposes (Cunha, 1940; Stellfeld, 1940).

In Brazil, *H. salsaparilha* is disseminated in diverse biomes such as Mata Atlântica, Cerrado and Pantanal (Brandão et al., 2004; Berg and Silva, 1988). The evaluation of its efficacy as well as the identification of potential chemical compounds is certainly important contributions for the safe use of this plant as therapeutic drug. No phytochemical studies on *H. salsaparilha* have been reported so far. The objective of this study was the evaluation of the antimicrobial and cytotoxic activities of *H. salsaparilha* crude root extracts and fractions; besides, the determination of compounds correlated to the activities displayed by the *H. salsaparilha* phytocomplex.

MATERIALS AND METHODS

H. salsaparilha exsiccates were identified by Rosana Conrado Lopes, Ph.D. (Department of Botany, Federal University of Rio de Janeiro, RJ, Brazil), and deposited at the Herbaria of the Federal University of Rio de Janeiro – UFRJ and at the University of Ribeirão Preto, UNAERP (vouchers, RFA 34467 and HMURP 00396, respectively).

H. salsaparilha roots (970 g) collected from the Medicinal Plant Collection at UNAERP were dried in oven with forced air circulation at 45°C for three days. Dry and powdered material was macerated in 80% ethanol. Hydroalcoholic crude extract (29.39 g) was obtained after evaporation under vacuum and freeze-drying procedures.

The dry crude extract (20 g) was then partitioned in a H$_2$O: MeOH: CHCl$_3$ mixture (40:10:50). The organic and aqueous fractions were dried and used in bioassays.

Additionally, an aliquot (5 g) of the hydroalcoholic crude extract was chromatographed on Sephadex LH-20 column (62 × 3 cm) with MeOH as eluent. Fractionation was monitored by thin layer chromatography (TLC) developed in CHCl$_3$: MeOH (7:3 v/v), and the chemical profile of extracts was determined using UV light and vanillin-sulphuric acid spray reagent. The microbiological activities of four sub-fractions, pooled according to the TLC chemical profile and identified as H1, H2, H3 and H4 were investigated.

The chemical profile of constituents from the CHCl$_3$ root extract was...
determined by gas chromatography-mass spectrometry (GC-MS) using a Varian 3900GC/2100MS/injector CP8410 with capillary column Varian Factor FOUR Vi-Sms (WCOT fused silica) 30 m x 0.25 mm ID, 0.25 µm operating by electron impact (70 eV). Injector: 240°C; detector: 230°C; carrier gas: He; flow: 1.0 mL/min; dilution: 10 µg extract or fraction/1.0 mL CHCl3; injection volume: 1 µl split: 1/20; program: 60 to 165°C, 3°C/min; 165 to 240°C, 10°C/min.

Microbial strains
S. aureus and E. coli clinical isolates resistant to antibiotics were obtained from the otopharyngeal and urinary tracts, respectively, of patients treated in the Electro Bonini Clinical Center at the University of Ribeirão Preto; ATCC bacterial strains, a Gram-positive S. aureus ATCC 6538 and a Gram-negative E. coli ATCC 25922; a field strain MYA-3108 (H6) and a mutant strain with a disrupted resistance gene named ΔTruMDR2 of Trichophyton rubrum (Fachin et al., 1996).

Determination of antimicrobial activity
The minimum inhibitory concentration (MIC) values of H. salsaparilha crude root extracts and fractions were determined against the bacterial and fungal strains following the CLSI M27-A2 (2003) and M38-A (2002) guidelines, respectively (CLSI, 2003, 2002). Stock cultures were submitted to serial dilutions within the range 15.6 to 1000 µg.

Sensitivity assays of tumor cell lines
The human brain tumor cell line U343 MGa (astrocytoma) was provided by Carlos Gilberto Carlotti, Jr., PhD, (Department of Surgery, Faculty of Medicine of Ribeirão Preto, FMRP, USP) and the human cervical cancer as well as the murine melanoma cells by Claudio Miguel da Costa-Neto, PhD (Department of Biochemistry, FMRP, USP).

Cytotoxic effects of extracts against tumoral lineages
Human U343 and HeLa cells were maintained in DMEN Medium (Gibco BRL, Eggenstein, Germany) supplemented with 10% fetal calf serum (Cultilab) in a 5% CO2 atmosphere at 37°C. All cancer cell lines were plated into 96-well plates at a concentration of 1.0 × 10^5 cells/well. After 24 h, compounds dissolved in DMSO (range of concentrations: 2 to 100 µg/mL) were added to each plate well and incubated for 48 h in the same conditions described earlier. The cytotoxicity was determined using an XTT colorimetric cell proliferation assay (Roche Molecular Biochemicals). Briefly, the culture medium was removed, and 100 µl of fresh culture medium and a pre-formulated 50 µl XTT mixed reagent (50:1 XTT reagent: electronically coupled reagent) were added. The culture plate was incubated at 37°C for 4 h. The absorbance values (OD490) were determined using an ELISA ELX 800 reader. The final concentration of DMSO in the culture medium was kept constant, below 0.1% (v/v). All cell treatments were carried out in triplicate. Actinomycin D was used as positive control.

RESULTS AND DISCUSSION
Extracts and fractions of H. salsaparilha roots were active against S. aureus ATCC. Our results showed that the activity exhibited by the CHCl3 fraction was 15 times superior to both the aqueous fraction and the crude hydroalcoholic extract, which in turn was less active (500 µg/mL) than its MeOH fraction H2 (125 µg/mL) (Table 1). According to the criteria established by Elloff, compounds are considered to be active antimicrobial when effective in concentrations below 100 mg/mL (Eloff, 2004).

The antibacterial activity of CHCl3 H. salsaparilha root extract is associated to the accumulation of the major compounds linoleic acid ethyl ester and palmitic acid ethyl ester in H. salsaparilha roots. The antimicrobial activity of those compounds against S. aureus strains has been reported (Bhattacharjee et al., 2005; Yang et al., 2003; Barbara et al., 2002).

The cytotoxic activity of H. salsaparilha crude extract and the CHCl3 fraction against B16 (IC50: 100 µg and 10 µg, respectively) and HeLa (IC50: 2 µg) cells was confirmed. The efficacy of the CHCl3 fraction was compared to Actinomycin D and considered just as efficient as that reference drug (Table 2).

GCMS chromatograms from the CHCl3 fraction (Figure 1) and fraction H2 (Figure 2) showed the predominance of two peaks with retention times at 29.95 and 31.53 min, respectively. Peaks were identified by comparing their mass spectra (Figures 1A and 1B) with those in a data system library (NIST). Furthermore, co-injection with standard compounds allowed the identification of major compounds (Figure 3). In the CHCl3 fraction, the major components found were the linoleic acid ethyl ester and palmitic acid ethyl ester in the proportion of 3:2 respectively, while the fraction H2 contains the same major components in the proportion of 2:3 respectively. Both compounds seem to play a role in the antimicrobial and cytotoxic activity displayed by the fractions, but the reduced efficiency of fraction H2 in relation to the CHCl3 fraction suggests that the relative concentration of those fatty acids derivatives is modulating such activities.

The effect of saturated fatty acids, particularly linoleic acid, on tumoral cells is controversial. Though there is confirmation that this compound promotes the multiplication of cancer cells (Bartsch et al., 1999), several authors reported that there is no clinical evidence of that (Zock and Katanne, 1998; Erickson, 1998). In addition, some studies showed that it is the correlation between saturated and polyunsaturated fatty acids that determine the beneficial or damaging effect (Chajes et al., 1999; Nkondjock et al., 2003). Moreover, the cytotoxic activity of palmitic acid ethyl ester against human leukemia cells was reported by Harada et al. (2002).

The activity of H. salsaparilha on the HeLa cells was significant when compared to other plant extracts suggested as anti-tumoral, as those from Euphorbia arenaria (IC50: 74.6 µg) reported by Betancur-Galvis or to isolated compounds such as triterpenes saponins and alkaloids from Ixeris sandifolia and Guiiera senegalensis (IC50: 9 µM) (Betancur-Calvis et al., 2002; Fiot et al., 2006).

The CHCl3 fraction of the H. salsaparilha hydroalcoholic root extract, rich in palmitic and linoleic acid derivatives,
Table 1. MIC determinations of extracts and fractions obtained from roots of *Herreria salsaparilha* against *Escherichia coli*, *Staphylococcus aureus* and *Trichophyton rubrum*.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Escherichia coli – ATCC (µg/mL)</th>
<th>Escherichia coli – Clinical (µg/mL)</th>
<th>Staphylococcus aureus – ATCC (µg/mL)</th>
<th>Staphylococcus aureus – Clinical (µg/mL)</th>
<th>Trichophyton rubrum H6 (µg/mL)</th>
<th>ΔTruMDR2 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>* * 500 * * * * * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous fraction</td>
<td>* * 750 * * * * * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic fraction (CHCl₃)</td>
<td>* * 50 750 * * * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1**</td>
<td>* * 125 * * * * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2**</td>
<td>* * 1000 * * * * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4**</td>
<td>* * * * * * * * * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antibiotics

Sulfamethoxazole	1250 5000 1250 2500 n.t. n.t.					
Ampicillin	20 156 20 78 n.t. n.t.					
Chloramphenicol	20 20 156 625 n.t. n.t.					
Silver sulfadiazine	78 78 156 90 n.t. n.t.					
Gentamycin	20 20 30 78 n.t. n.t.					
Streptomycin	156 187 156 312 n.t. n.t.					
Tetracycline	500 1000 250 250 n.t. n.t.					
Griseofulvin	n.t. n.t. n.t. 2.50 1.25					
Fluconazole	n.t. n.t. n.t. n.t. 36 36					
Itraconazole	n.t. n.t. n.t. 2.50 1.00					
Amphotericin B	n.t. n.t. n.t. 20 12					

** H1 to H4 = fractions of the crude hydroalcoholic extract; * MICs over 2.5 mg/mL; n.t. = not tested.

Table 2. Percentage of growth inhibition of tumoral cells (B16, U343, HeLa) treated with the crude hydroalcoholic root extract of *Herreria salsaparilha* and its fractions.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>IC₅₀/(µg mL⁻¹)</th>
<th>B16 (µg)</th>
<th>HeLa (µg)</th>
<th>U343 (µg)</th>
<th>3T3 (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td></td>
<td>100</td>
<td>2</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Organic chloroform</td>
<td></td>
<td>10</td>
<td>2</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Aqueous fraction</td>
<td></td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>H1</td>
<td></td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>H4</td>
<td></td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Actinomycin D</td>
<td></td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

The highest concentration tested was 100 µg/mL; IC₅₀ = concentration that inhibits cell growth by 50%. U343, brain astrocytoma; HeLa, uterine cervix; B16, melanoma. H1 to H4 = fractions from the crude extract.

exhibited cytotoxic activity against B16 (murine melanoma) cells with an IC₅₀ of 10 µg. Regular cells were not affected. Similar results were obtained with triterpene saponins from *Ixeris sansifolia* with an IC₅₀ between 8 and 50 µM against melanoma A375 cells (Feng et al., 2003). Other reports on steroidal saponins from *Hedea helix* and phenolic compounds from *Mallotus japonicus* showed an IC₅₀ of ≤ 5 µg against the same lineage (Danloy et al., 1994; Arisawa et al., 1990).

The biological activities and correlated chemical constituents of *H. salsaparilha* have never been reported before. Obtained results confirm the antimicrobial and
Figure 1. GC chromatogram of organic chloroform fraction from the crude hydroalcoholic extract of *H. salsaparilha* roots. (A) Mass spectrum of palmitic acid ethyl ester. (B) Mass spectrum of Linoleic acid ethyl ester.
cytotoxic activities of this phytocomplex, which are associated to the synergism between the identified compounds produced by that plant. Obtained results corroborate findings reported by Rao et al. (2004),
Slambrouck et al. (2007) and Arulvasu et al. (2010), who found that crude or semi-purified extracts from medicinal plants traditionally used by people all over the world may be, in near future, helpful in the treatment of numerous types of cancer, if associated to the traditional treatments using synthetic chemotherapeutics.

REFERENCES

Slambrouck et al. (2007) and Arulvasu et al. (2010) found that crude or semi-purified extracts from medicinal plants traditionally used by people all over the world may be, in near future, helpful in the treatment of numerous types of cancer, if associated to the traditional treatments using synthetic chemotherapeutics.