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Pseudomonas aeruginosa causes infections in humans, particularly immune-compromised patients 
with cystic fibrosis, severe burns, and HIV, resulting in high morbidity and mortality. The pathogenic 
bacteria, P. aeruginosa, produces virulence factors regulated by the mechanism called quorum sensing 
system. The aim of this study was to assess the anti-quorum sensing activity of Ageratum conyzoides 
extracts. Chloroform fraction from hydro-methanolic extract at the sub-inhibitory concentration of 100 
µg/mL reduced quorum sensing virulence factors production such as pyocyanin, elastases, and 
rhamnolipids in P. aeruginosa PAO1 after 8 and 18 h monitoring. Moreover, a significant inhibition in 
HSL-mediated violacein production on C. violaceum CV026 was recorded after 24 and 48 h monitoring 
without affecting the bacterial growth. The chloroform fraction was rich in polyphenols and triterpenes, 
and was found to interact with QS receptors. The regulatory genes (rhlR and lasR) and downstream 
genes (RhlA and lasB) were the most affected, while synthase genes (lasI and rhlI) were the least 
affected. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis 
allowed the identification and quantification of some compounds such as gallic acid, vanillic acid, 
ellagic acid, sinapic acid, and quercetin. Caffeic acid, rutin, and kaempferol were detected in trace 
amounts. The presence of these phytochemicals could be responsible for the observed anti-quorum 
activity. The present study is probably the first attempt to investigate the anti-QS potential of A. 
conyzoides against P. aeruginosa. These data provide additional scientific evidence to justify the wide 
use of A. conyzoides in traditional medicine in Burkina Faso. 
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INTRODUCTION 
 
Since the discovery of penicillin in 1928 by Alexander 
Fleming, antibiotics were the best ally of human and 
animals’  immune   system   against    bacteria   (Gaynes, 

2017). Unfortunately, the misuse and overuse of 
antibiotics in human health and agriculture resulted in a 
strong    selection    pressure    and,    consequently    the 
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emergence of multi-resistant bacterial strains to 
conventional antibiotics, a decade after their introduction 
(Andersson and Hughes, 2010; Jenkins et al., 2008; 
Randall et al., 2003). Additionally, the important 
international trade and migratory flows, as well as the 
transfer of antibiotic resistance to humans via food or 
contact with animals, have accelerated the proliferation of 
multi-resistant bacteria (OIE, 2012; Talbot et al., 2006; 
WHO, 2001). Hence, the effectiveness of antibiotics, 
which has so far saved millions of lives, is thus 
jeopardized. Bacterial resistance to antibiotics is a major 
concern for human health (Collignon and McEwen, 2019; 
Yang et al., 2021), with antimicrobial resistance classified 
by WHO as the third greatest threat to human health 
(Mancuso et al., 2021; WHO, 2017). 

It is therefore more than urgent to renew the therapeutic 
arsenal and strategies against bacterial infections, 
particularly by developing: 
 
(i) New antibiotics with new mechanisms of action, with 
the high probability of selecting in the short or medium 
term some resistant strains to these new antibiotics 
(León-Buitimea et al., 2020) 
(ii) Alternatives to antibiotics (bacteriocins, bacteriophages, 
immunotherapies, antimicrobial peptides, predatory 
bacteria, inhibitors of bacterial virulence or resistance 
factors) with less impact on the selection of resistant 
strains (Hauser et al., 2016; León-Buitimea et al., 2020; 
Shao et al., 2020). 
 
Inhibiting bacterial resistance factors/genes expression or 
mechanism seems to be a promising approach to restore 
bacterial susceptibility to already available antibiotics 
(Laws et al., 2019; Melander and Melander, 2017). On 
the other hand, reducing bacterial pathogenicity by 
inhibiting the production of virulence factors would benefit 
the infected organism by giving its immune system more 
time to fight the infection (Ruimy and Andremont, 2004). 
It is established that genes expression involved in the 
production of bacterial resistance and virulence factors is 
under the control of a cell-to-cell communication termed 
quorum sensing (QS), which is a mechanism used by 
bacteria to detect their critical cell numbers through 
producing and perceiving diffusible signal molecules in 
order to coordinate a common behaviour (Allegretta et 
al., 2017; Shao et al., 2020). As a result, QS inhibitors 
have been identified as a promising solution for 
controlling multi-drug resistant pathogens (Lamin et al., 
2022). 

Pseudomonas aeruginosa, is one of the multi-drug 
resistant pathogens listed by WHO and classified in the 
most critical pathogens group. In spite of the advances in 
antimicrobial therapy, P. aeruginosa infection remains 
associated with high mortality, from 18 to 61% (Kim et al., 
2014; Zhang et al., 2020). P. aeruginosa was selected for 
investigation, as the mechanism that controls the 
transcription  of  genes  involved  in  its  virulence  is  well  
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known and is controlled by quorum sensing. In P. 
aeruginosa, QS coordinates AHL-mediated expression of 
virulence genes. It is a key opportunistic pathogen that 
leads to severe acute and chronic nosocomial infections 
in immune-compromised patients (Bielecki et al., 2008; 
Malgaonkar and Nair, 2019). 

Numerous P. aeruginosa infections are marked by 
typical skin manifestations such as burn infections and 
over-infection of old wounds (Spernovasilis et al., 2021). 
Multi-resistant P. aeruginosa has posed a major 
challenge to conventional antibiotics and therapeutic 
approaches, which show low efficacy and cause serious 
side effects (Shao et al., 2020). Only Cefiderocol was 
listed in 2020 as an antibiotic with consistent clinical and 
microbiological efficacy against specific strains of P. 
aeruginosa (Bassetti et al., 2021). New medicines are 
thus required. Interfering with quorum sensing has been 
shown to be very effective in reducing P. aeruginosa 
pathogenicity (Mancuso et al., 2021). One of the 
recommended options involves natural antimicrobial 
drugs, such as natural plant compounds (Moradi et al., 
2020). Medicinal plants are excellent chemical 
antimicrobial active agents (Mulat et al., 2020; 
Rasamiravaka et al., 2017). Plants produce various 
antimicrobial compounds, such as phenolics, terpenoids, 
flavanones, and quinones, due to their similarity in 
chemical structure to QS signals (acyl-homoserine 
lactone, AHL) and their ability to damage signal receptors 
(Chaudhry et al., 2021; Teplitski et al., 2021). Previous 
research has identified some plants as anti-QS (Moradi et 
al., 2020). But many others need to be further 
investigated for their ability to interfere with bacterial QS.  

Burkina Faso's flora abounds with various plants from 
which anti-QS compounds can be sought (Tibiri et al., 
2020). Ageratum conyzoides was selected according to 
previous studies which showed anti-microbial activity on 
specific Gram-positive and Gram-negative bacterial 
species such as P. aeruginosa, Escherichia coli, Shigella 
dysentery, and Streptococcus aureus, without any effect 
on the growth of these pathogens (Akinyemi et al., 2005; 
Pintong et al., 2020). Earlier studies reported a minimum 
bactericidal concentration of 160 mg/mL. Chah et al. 
(2006) reported a 90% wound healing rate with 
methanolic extract (6%), with no inhibition on the growth 
of the involved bacteria. A. conyzoides found in Burkina 
Faso, has long been used in folk medicine for infectious 
and skin diseases treatment (Nacoulma, 1996). The 
leaves were mainly used as poultices on wounds, burns, 
gastrointestinal pains, and anthrax (Nacoulma, 1996; 
Nébié et al., 2004). It is possible that the plant acts 
through another process that reduces the production of 
bacterial virulence factors. 

The aim of the study is to provide a scientific 
justification for the application of A. conyzoides in 
traditional medicine for the treatment of skin infections, 
old wounds and burns with over-infection. Specifically, 
the  objective  was  to  highlight  the anti-quorum potential  
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and the impact of A. conyzoides on the control of 
virulence factors associated with P. aeruginosa 
pathogenicity. 
 
 
MATERIALS AND METHODS 
 
Chemicals 
 
p-Iodonitrotetrazolium, elastin congo red, acetic acid, hydrochloric 
acid, 3-(N-morpholino) propane sulfonic acid (MOPS), Folin-
Cioralteu reagent, perchloric acid, glacial acetic acid, vanillin-glacial 
acetic, aluminium trichloride, carbenicillin (antibiotic) hexanoyl 
homoserine lactone molecule (HHL), gallic acid, vanillic acid, ellagic 
acid, caffeic acid, sinapic acid, rutin, quercetin and kaemferol O-
nitrophenyl- β‐D-galactopyranoside, nutrient agar, and Lauria-
Bertani (LB) broth medium were obtained from Sigma-Aldrich 
(Germany). Solvents (n-hexan, chloroform, ethyl acetate, n-butanol) 
of analytical grade were provided from sigma Aldrich (Belgium). 
 
 
Bacterial strains, plasmids and growth conditions 
 
P. aeruginosa PAO1 and Chromobacterium violaceum CV026 were 
provided from the Plant Biotechnology Laboratory (Université Libres 
de Bruxelles). Bacteria (106 UFC/mL) were grown in LB broth (pH 7, 
175 rpm) at 37°C for P. aeruginosa PAO1 and 30°C for C. 
violaceum CV026. P. aeruginosa derivatives harboring plasmid 
(pPCS1001, pPCS1002, pβ03, pLPR1, pβ02, pβ01 and pTB4124) 
were streaked onto LB-MOPS broth (50 mM, pH 7.2, 175 rpm) 
supplemented with carbenicillin (300 µg/mL). 
 
 
Plant material extraction 
 
A. conyzoides L. (Asteraceae) samples were collected in Gampela 
in August 2014 (Ouagadougou, Burkina Faso) and formerly 
identified. Voucher specimen has been deposited at the national 
herbarium of Burkina Faso (HNBU) under code 8755. The whole 
plant material was washed and dried at room temperature. The 
dried material was reduced into powder and extracted by 
maceration for 24 h with methanol containing 20% water. The 
extract was concentrated in a vacuum evaporator and used for a 
liquid-liquid fractionation with n-hexane, chloroform, ethyl acetate 
and n-butanol successively. Collection and experimental research 
on this plant were in accordance with national guidelines in Burkina 
Faso.  
 
 
MIC and MBC assay 
 
The minimal inhibitory concentrations (MIC) of the extract were 
determined by broth microdilution method (Eloff, 1988). An 
overnight bacterial culture was diluted with LB broth to obtain a 
starting inoculum (106 CFU/mL). Each inoculum (180 µL) was 
incubated with a serial concentration of extracts ranging from 5 to 
0.049 mg/mL. Bacteria growth was studied using p-
iodonitrotetrazolium staining. After 18 h of incubation, 50 µL of INT 
(0.2 mg/mL) was added to each well and incubated at 37°C for 30 
min. A red colour indicated bacterial growth. To assess minimum 
bactericidal concentration (MBC), 20 µL aliquots of all dilutions 
showing no bacterial growth were spread on LB agar plates (37°C, 
24 h). The MIC were determined as the lowest concentration that 
inhibits bacterial growth, and the highest concentration that 
produces no bacterial colonies on a solid medium was chosen as 
the MBC (Ouedraogo and Kiendrebeogo, 2016). 

 
 
 
 
Bacteria kinetic growth assay  
 
Kinetics growth was assessed for 48 h for CVO26 or 18 h for PAO1 
as previously described (Rasamiravaka et al., 2018). A 5 mL 
volume of bacterial suspension was aliquoted into six or eight 
sterile tubes and grown (37°C for PAO1, 30°C for CV026) under 
continuous stirring (175 rpm). At regular time intervals (6 h for 
CVO26 and 3 h for PAO1), the turbidity or optical density of the 
bacterial culture at 600 nm is measured from the bacterial 
suspension. Bacterial cultures were then centrifuged at 3000G at 
24°C for 5 min. The supernatant was removed and the bacterial 
pellet re-suspended with 5 ml of a sterile NaCl solution (9‰). 
Briefly, a range of bacterial dilutions (10-5 to 10-8) was generated 
with sterile NaCl solution (9‰). 100 μl of each dilution was spread 
on LB agar plate and incubated for 18 h (Rasamiravaka et al., 
2018). Bacterial growth was assessed by determination of colony 
forming units (CFU/mL) according to the formula:  
 
CFU = Number of colonies / (Dilution × volume). 
 
 
Violacein production in C. violaceum CV026 assay 
 
Violacein production induced by hexanoyl-L-homoserine lactone 
(HHL) was evaluated during 48 h. Violacein was extracted from the 
supernatant of the culture using the previously described method of 
Saqr et al. (2021), with some modifications. CV026 inoculum (100 
µL) was incubated for 24 and 48 h with 1.880 mL of LB broth 
supplemented with HHL and samples (20 µL). Salicylic acid was 
used as a positive control. 1 mL of culture from each tube was 
centrifuged at 7000 rpm for 10 min in order to precipitate the 
insoluble violacein. The supernatant was removed and 1 ml of 
DMSO was added to the pellet. The solution was vortexed for 30 s 
to solubilise the violacein and then centrifuged again at 7000 rpm 
for 10 min. 200 μL of the supernatant containing the violacein was 
introduced into 96-well microplates and the absorbance was 
measured at 585 nm. Violacein amount was assessed by using the 
absorbances ratio 585 nm/600 nm. 
 
 
Pyocyanin production in P. aeruginosa PAO1 
 
The pyocyanin kinetic production was evaluated during 18 h (King 
et al., 2016). Briefly, 150 μL of samples were inoculated with 750 μL 
of PAO1 inoculum in LB medium for 8 and 18 h of growth. At each 
time point, the bacterial culture was centrifuged at 3000 G, 24°C for 
5 min. 500 μL of chloroform was added to 1 mL of bacterial 
supernatant and then vortexed to extract pyocyanin. To extract 
pyocyanin further, 400 µL of the lower chloroform phase containing 
pyocyanin was added to 300 µL of aqueous 0.2 N hydrochloric acid 
in Eppendorf tubes. The mixture was vortexed and then centrifuged 
to separate the two phases with pyocyanin in the upper aqueous 
phase. The absorbance at 380 nm of 200 μL of aqueous phase was 
measured to assess the pyocyanin produced by the bacteria. 
Salicylic acid was used as a positive control. Pyocyanin amount 
was assessed by using the absorbance ratio 380 nm/600 nm. 
 
 
Elastase assay 
 
Elastase production was detected using elastin Congo red (ECR) 
(Ahmed et al., 2019). The method consists of the degradation of 
elastin bound to Congo Red by a bacterial suspension containing 
elastase. P. aeruginosa PAO1 was grown with samples and control 
(DMSO 1% and salicylic acid) for 8 and 18 h at 37°C at 175 rpm in 
LB. The tubes were then centrifuged at 3000 g for 5 min at 24°C. 
250 μL of congo red elastin (5 mg/ml) dissolved in Tris-HCl buffer 
(0.1 M   Tris-HCl   pH 8; 1 mM CaCl2)   was    added   to   750 μL  of  



 
 
 
 
supernatant in each Eppendorf tube. The mixture was incubated at 
37°C for 16 h at 200 rpm. The degradation of elastin causes 
solubilisation of Congo Red during this incubation phase, producing 
a red solution, whereas the undegraded Elastin-Red-Congo 
complex is insoluble in water. The reaction mixture was centrifuged 
(3000 g, 10 min) to separate the non-soluble part, and the 
absorbance of 200 μl of supernatant was read at 495 nm to 
estimate the elastin activity. 
 
 
Rhamnolipids assay 
 
Rhamnolipid production was assessed by methylene Blue method 
(Rasamiravaka et al., 2016). This method relies on measuring the 
absorbance of the rhamnolipid-methylene blue complex moving 
through the chloroform phase. P. aeruginosa PAO1 were grown 
with samples and control (DMSO 1% and salicylic acid) for 8 and 18 
h in 5 mL of LB medium (37°C, 175 rpm). All tubes were centrifuged 
(3000 g for 10 min) and 4 ml of supernatant recovered and filtered 
(0.1 μm Millipore filters). The pH of the supernatant was then 
adjusted to 2.3 ± 0.2 with 1N hydrochloric acid. Rhamnolipids were 
extracted by stirring the supernatant with 4 ml ethyl acetate 
(centrifugation at 100 g for 1 min). The upper phase containing the 
rhamnolipids was collected in a 30 ml tube. The process was 
repeated three times and the extracts were collected and 
evaporated to dryness. The extracts of rhamnolipids were then 
dissolved in 4 mL of chloroform and mixed with 400 μl of freshly 
prepared methylene blue solution. The methylene blue solution was 
prepared by adding 200 μl of methylene blue reagent (1.4%, w/v in 
ethanol) and 4.8 mL of distilled water adjusted to pH 8.6 ± 0.2 with 
50 mM borate buffer. Tubes were vortexed for 5 min and incubated 
at room temperature for 15 min to allow complexation of the 
methylene blue to the rhamnolipids. 1 ml of the chloroform blue 
phase was added to a 2 ml Eppendorf tube and vortexed for 20 s 
with 500 μl of 0.2 N hydrochloric acid, allowing the complexed 
methylene blue to be transferred to the acid phase. Tubes are 
centrifuged at 100 g for 1 min and left at room temperature for 10 
min. 200 μL of the acidic upper phase is transferred to a 96-well 
microplate well and the absorbance is measured at 638 nm. 
 
 
β‐Galactosidase assay 
 
All reporter strains of PAO1 were incubated in LB-MOPS-
Carbenicillin for 8 and 18 h (50 µL, 37°C, 175 rpm) supplemented 
with samples (Extract and DMSO). In 12-well plates, 940 μL of LB-
MOPS-Carbenicillin, 10 μL of samples (dissolved in DMSO), and 50 
μL of PAO1 bacterial inoculum were incubated at 37°C. After 
incubation, the absorbances were read at 600 nm. 300 μL of 
permeabilization buffer was added to the initial mixture, then 75 
μL+50 µL of buffer was incubated for 20 min at 37°C. The samples 
were then used to perform the β‐galactosidase assay with O-
nitrophenyl- β‐D-galactopyranoside. 600 μL of ortho-nitrophenyl-β-
D-galactoside (oNPG) substrate buffer was added and the tubes 
were allowed to incubate for 5 to 60 min at 37°C. The reaction was 
stopped with 700 μL of stop buffer (1 M Na2CO3). The absorbance 
of 100 μL of the supernatant was read at 420 nm. β‐Galactosidase 
activity has been expressed in Miller units (Bonneau et al., 2020). 
 
 
Phytochemical analysis  
 
Determination of total polyphenolic, total flavonoid, and total 
triterpenoid content 
 
Total polyphenolic, flavonoids, and terpenoids contents in extract 
were determined  using  previous  spectrometric  method  (Olech  et  
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al., 2020). The polyphenol content was assessed with 25 μL of 
extract solution (0.1 mg/ml) and 125 μL of FCR solution (0.2N). 
After 5 min of incubation, 100 μL of sodium carbonate solution (75 
g/L) was added. The absorbance was read after 1 h of incubation, 
at 760 nm against a standard curve of gallic acid (200 mg/L, 
R2=0.9952). Total polyphenolics were expressed as mg/g gallic acid 
equivalents (GAE). Flavonoid content analysis was performed with 
100 μL of AlCl3 (2% in methanol) and 100 µL of extract (1 mg/ml in 
methanol). Absorbance was read at 415 nm after 10 min from a 
quercetin standard curve (R2=0.9995). Total flavonoid was 
expressed as mg/g quercetin equivalent (QE). Triterpenoid content 
was assessed by the following process: 100 µL of sample (10 
mg/mL in methanol), 150 µL of glacial acetic acid vanillin solution 
(5%) and 500 µL of perchloric acid were used as the reaction 
solution. The mixture was placed into a water bath (60°C) for 45 
min, then cooled in an ice bath and 2.5 mL of glacial acetic acid 
was added. Absorbance was read at 548 nm against standard 
curve of ursolic acid (R2=0.9966). Total triterpenoids were 
expressed as mg/g ursolic acid equivalent (UAE). 
 
 
HPLC-DAD analyses  
 
The chromatography analysis was conducted according to the 
protocol described by Meda et al. (2011). HPLC-DAD-UV-Visible 
chromatographic analysis of the phenolic compounds of the active 
fraction was carried out under isocratic conditions by using a C18 
reverse phase column (4.6 mm × 250 mm) packed with 5 µm 
diameter particles. The mobile phase consisted of methanol, 
acetonitrile, water (40:15:45, v/v/v) containing 1.0% acetic acid. The 
mobile phase was filtered through a 0.45 µm membrane filter and 
degassed by ultrasound before use. Eight standards including five 
(05) phenolic acids (gallic, vanillic, ellagic, caffeic and sinapic acids) 
and three flavonoids (rutin, quercetin and kaempferol) were used. 
Each standard was dissolved in methanol to an initial concentration 
of 400 µg/mL and then cascade diluted to 6.25 µg/mL in 1 mL vials. 
The fraction was also dissolved in methanol. The injection rate was 
0.5 mL/min and the injection volume was 10 µL. Chromatographic 
data were recorded over 210 to 400 nm, and integrated at 271 nm, 
327 nm for phenolic acid and 365 nm for flavonoids. The used 
solvent was HPLC grades (Sigma-Aldrich, Belgium). Quantification 
of the compounds was done by peak area integration against the 
standard curves. 
 
 
Statistical analysis 
 
Experiment was performed in triplicate and data were expressed as 
mean ± SD. GraphPad prism Software was used for statistical 
analysis (GraphPad software Inc., San Diego, CA, USA); one-way 
or two-way ANOVA followed by the Tukey or Bonferonni test on 
GraphPad at the value ≤ 0.001 was considered significant. 
 
 
RESULTS  
 
Anti-QS effect  
 
Effect on bacterial growth 
 
The MICs for hydro-methanolic extract were 5.0 mg/mL 
for P. aeruginosa PAO1 and 2.5 mg/mL for C. violaceum 
CV026. For two bacteria the MBC values were 5 mg/mL 
(> 5 mg/mL for PAO1). MBC/MIC ratio (<4) for both 
strains  indicated  a  bactericidal   effect   of   extract.  For  
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Figure 1. Effect on bacterial C. violaceum CV026 and P. aeruginosa PAO1 kinetics 
growth. Methanol extract (MeOH) at 100 µg/mL did not exhibit a significant effect on C. 
violaceum CVO26 kinetic growth during 48 h (a) and P. aeruginosa PAO1 kinetic growth 
during 18 h (b). Dimethyl sulfoxide (DMSO) was used as negative control. Mean values ± 
SD of triplicate independent experiments are shown. 

 
 
 
concentrations below the MIC, A conyzoides extract 
should not induce the bacteriostatic or bactericidal 
activity. So, at a minimum concentration of 100 µg/mL, 
corresponding to CMB/CMI >32 ratio, the strains should 
be tolerant to the plant extract which will allow evaluation 
of its intrinsic effect on QS-dependent bacterial factors.  
 
 
Effect of extract on bacterial kinetics growth 
 
Data of Figure 1a showed the C. violaceum kinetic in the 
presence of hydro methanolic extract in relation to DMSO 
1%  for   48 h.   An   exponential   growth  phase  (0-24 h) 

followed by a stationary phase (24-48 h) was observed. 
The exponential phase started immediately at the 
beginning of the incubation. In both phases, the same 
growth pattern of C. violaceum CV026 was observed. 
The results showed that the samples (methanolic extract 
(MeOH) and DMSO 1% exhibited substantially similar 
growth kinetics. Figures 1b shows the P. aeruginosa 
PAO1 kinetic data in the presence of methanolic extract 
in relation to DMSO 1% during 18 h of growth. As shown 
in CV026 growth, as soon as the samples were added, 
the bacterial strains started immediately growing in two 
phases. After bacteria growth reached the exponential 
phase at 12 h, a stationary phase was followed until 18 h. 
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Figure 2. Chloroform fraction from A. conyzoides methanolic extract reduce violacéine 
production in CV026 (a) growth at 24 and 48 h and Pyocyanin (b) production in P. 
aeruginosa PAO1 growth at 8 and 18 h compared to DMSO 1% used as negative 
control. Salicylic acid was used as positive control. HF: n-Hexane fraction, CF: 
chloroform fraction; AEF: Ethyl acetate fraction, BF: n-Butanol fraction, ***Data that are 
statistically different (p<0.001), **indicates p < 0.01 ns: non-significant. 

 
 
 
In both phases, the same growth pattern of PAO1 was 
observed. The results showed that the samples 
(methanol 80% extract and DMSO1%) exhibited 
substantially similar growth kinetics effects. Methanolic 
extract (100 µg/mL) did not significantly affect the cell 
viability according to CFU quantification. 
 
 
Effect on violacein production in C. violaceum CVO26 
 
The methanol extract and its fractions were  screened  for  

their effect on HHL-induced violacein production by 
CV026. As shown in Figure 2a, after treatment of sub-
MIC concentration, the extract hexane (HF) and 
chloroform (CF) fractions induced a significant inhibition 
of production of violacein production (OD585 nm/600 nm) 
during 24 and 48 h. Compared to negative control, the 
violacein production inhibition >50% was found with the 
hexane and chloroform fractions. For the ethyl acetate 
(EAF) and butanol (BF) fractions, the inhibition was less 
noticeable (30%). CF was a best inhibiter of violacein 
production than methanolic extract and salicylic acid. 
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Importantly, the presence of the samples in the medium 
had no adverse effect on bacterial growth (Figure 1a). It 
is therefore conceivable that the negative effect on 
violacein production is not driven by growth inhibition but 
rather by disruption of the resistant quorum-sensing 
systems. On this basis, the impact of the extract and its 
fractions were investigated on the production of QS-
dependent virulence factors, such as pyocyanin, 
elastase, rhamnolipid and selected genes involved in P. 
aeruginosa QS system.  
 
 
Effect on pyocyanin production 
 
Figure 2b shows the pyocyanin amount produced par P. 
aeruginosa PAO1 in the presence of methanolic extract 
(MeOH) and fractions in relation to controls. As shown in 
Figure 2b, at 8 and 18 h, MeOH extract, hexane fraction 
(HF) and chloroform fraction (CF) have a significant 
impact (p < 0.001) on pyocyanin production (OD380 
nm/600 nm). This impact was more evident for the HF 
and CF fractions compared to salicylic acid used as 
positive control. These two fractions may contain similar 
or different compounds that express the same effects on 
pyocyanin production. The effect of butanol fraction (BF), 
was weaker than methanolic extract (MeOH extract), 
while no significant effect was found with the ethyl 
acetate fraction (EAF). 
 
 
Effect on elastase and rhamnolipids production 
 
Rhamnolipids and lasB elastase are also important 
virulence factors in the virulence of P. aeruginosa. The 
results of this elastase and rhamnolipids assay were 
summarized in Figure 3. At 8 and 18 h, CF induced the 
lowest amount of elastase (Figure 3a) and rhamnolipids 
production (Figure 3b). The effect of CF fraction was 
more significant from 18 h onward, compared to salicylic 
acid. For the EAF and BF fractions, their effects were 
either similar to or less than that of MeOH extract. The 
effect of HF was similar to that of the stock extract and 
less than the CF fraction. It was suggested that a 
molecular difference in the composition of HF and CF. CF 
appears to contain compounds that are more effective 
than HF, and which effectively repress the production of 
these virulence factors. The CF fraction has therefore 
been studied for its ability to modulate the expression of 
virulence genes. 
 
 
Effect on QS genes in P. aeruginosa PAO1 
  
If CF interfered with QS mechanisms, it should be 
reflected on the transcription of QS-regulated and QS-
regulatory genes. In order to highlight any interference 
with the QS genes expression in P. aeruginosa PAO1, it 
was followed that the transcription rate over 8 and 18 h of  

 
 
 
 
growth (Table 1). After 8 h of growth, the CF caused a 
significant decrease in the expression of the rhlR gene 
lasI, lasR, lasB, rhlR compared to the negative control. 
This effect was more pronounced after 18 h (except for 
LasI). Thereafter, the expression of the rhamnolipid 
synthesis genes, rhlA as well as the elastase synthesis 
gene lasB was significantly reduced at 18 h, whereas at 8 
h no effect was evident. In contrast, salicylic acid reduced 
the expression of all QS-dependent genes after 8 h, but 
had a limited impact after 18 h. Indeed, only the lasR and 
rhlR genes were affected while the other had an 
equivalent expression to the DMSO condition. Compared 
to the extract and salicylic acid, the impact of CF was 
more noticeable on the rhlR gene both at 8 and 18 h 
(P<0.001) whereas on the lasR regulatory gene, no 
significant difference was observed after 18 h. In order to 
prove whether the decrease in β-galactosidase activity is 
really associated with a reduction in the expression of 
QS-related genes and not with a general effect on 
transcription/translation mechanisms, the promoter 
activity of the aceA gene was examined in P. aeruginosa 
PAO1. The addition of samples has no negative impact 
on aceA gene transcription, reflecting that they affect the 
expression of QS-related genes without affecting the 
transcriptional machinery of P. aeruginosa PAO1 (Table 
1). 
 
 
Phytochemical analyses  
 
Polyphenolic, flavonoid and terpenoid contents  
 
Total polyphenol, flavonoid and terpenoid contents were 
analysed in the active fraction (CF) and the stock extract 
(MeOH extract). The amount of polyphenol, flavonoid and 
terpenoid compounds in the MeOH extract was 123.33 ± 
5.6 mg/g GAE, 54.67 ± 1.54 mg/g QE and 15.60 ± 0.6 
mg/g UAE, respectively. For CF fraction, the values were 
683.14 ± 60.39 mg/g GAE, 115.21 ± 2.52 mg/g QE and 
37.74 ± 0.29 mg/g UAE, in polyphenol, flavonoids and 
terpenoids, respectively. Mostly, high content of total 
polyphenol, flavonoids and terpenoids was found mainly 
in the active fraction (CF). 
 
 
HPLC-DAD analysis 
 
The identification of compounds from the CF fraction was 
performed by injection on HPLC-DAD. The retention 
times of the different peaks were compared to the 
retention times of the different standards and identified 
(Figure 4). The summary information is listed in Table 2. 
Four (04) of the peaks were recognized, gallic acid 
(Rt=5.507 min), vanillic acid (Rt=7.364 min) and ellagic 
acid (Rt=8.279 min), and sinapic acid (Rt=8.209 min). 
Other compounds such as caffeic acid, quercetin, rutin 
and kaempferol, were also identified but their presence 
was  revealed  in  trace form (except for quercetin) (Table  
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Figure 3. Chloroform fraction from A. conyzoides methanolic extract reduce elastase production 
(a) and rhamnolipids (b) production in P. aeruginosa PAO1 growth at 8 and 18 h compared to 
DMSO 1% used as negative control. Salicylic acid was used as positive control. HF: n-Hexane 
fraction, CF: Chloroform fraction; EAF: Ethyl acetate fraction, BF: n-Butanol fraction. ***Data that 
are statistically different (p<0.001). 

 
 
 
2), while the rest of the peaks were not identified. The 
concentration of the identified compounds indicates a 
higher proportion of ellagic and sinapic acids (Table 2).  
 
 
DISCUSSION 
 
A. conyzoides is an herbal medicine commonly used in 
traditional medicine to  treat old  wounds,  infected  burns 

and dermatoses (Chahal et al., 2021; Igbinosa and Eribo, 
2016). A great deal of A. conyzoides-oriented research 
has been carried out to discover compounds to control 
multidrug resistant pathogens (Kotta et al., 2020). 
Antibacterial activities of some extracts have been 
reported on several pathogenic strains such as S. 
aureus, E. coli, and P. aeruginosa (Igbinosa and Eribo, 
2016; Odeleye et al., 2014). Beyond the bactericidal and 
bacteriostatic  effect,  bioactive  compounds  of  the  plant  
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Table 1. Effect of extract and CF fraction on the expression of lasI, lasR, lasB, rhlI, rhlR, rhlA and aceA genes in P. aeruginosa PAO1 after 8 and 18 h incubation. 
 

Gene 
8 h  18 h 

DMSO Salicylic acid MeOH extract CF  DMSO Salicylic acid MeOH extract CF 
lasI 740.1±85 533.1±135* 490.03±74** 444.4±63***  622.6±99 466.5±50 490.8±42 427.3±39* 
lasR 907.0±260 657.88±43** 633.57±81*** 536.1±20***  2117.32±58 1125±57*** 1280±221*** 791±43*** 
lasB 1157.3±117 747.24±24*** 823.91±190*** 912.9±20***  3000.3±143 2418.1±225 2400.0±137 1543.3±88** 
rhlI 641.67±73 340±163** 410.88±126* 542.56±22  629.33±96 534.5±41 556.1±48 561.2±78 
rhlR 4808.75±563 3514.39±313*** 3212.21±582*** 2637.71±248***  6016±903 4640.3±610*** 4153±444*** 3023.8±499*** 
rhlA 775.77±103 591.62±149** 672.07±170 780.35±63  1472.3±89 1225.7±89 1246.7±55 629.1±192* 
aceA 1057.51±160 982.64±125 1086.10±115 965.03±80  2455.98±254 2277.50±47 1964.17±63 2455.59±446 

 

CF: Chloroform fraction. The data are presented as mean ± SD for tree replicates. Salicylic acid was used as positive control. ***Data that are statistically different (p<0.001). 
 
 
 
disruption of bacterial virulence. The study 
indicates that A. conyzoides exerts anti-virulence 
activities rather than a bactericidal effect against 
the Gram-negative opportunistic pathogen P. 
aeruginosa. The report is the first in vitro 
investigation of the anti-QS properties of A. 
conyzoides from Burkina Faso.  

C. violaceum CV026 has a low human health 
impact, but is widely used as a reporter strain in 
QS screening (Zhu et al., 2011). As a result, 
chloroform fraction (CF) obtained from methanol 
(MeOH) extract reduces QS-mediated violacein 
production in C. violaceum, as well as pyocyanin, 
elastase, rhamnolipid production, and biofilm 
formation in P. aeruginosa PAO1 with no effect on 
bacterial growth. The effect of CF fraction was 
more significant from 18 h onwards, compared to 
salicylic acid, an inhibitor of quorum sensing 
(Ahmed et al., 2019; Prithiviraj et al., 2005). At a 
concentration (100 µg/mL) below the MIC (5 
mg/mL), no bacteriostatic or bactericidal effects 
were detected. This observation supports the 
findings of Chah et al. (2006) who reported the 
lack of inhibition on PAO1 growth by the 
methanolic extract, and those of Odeleye et al. 
(2014) whose results indicted a  sensitivity  of 160 

mg/mL well above the MIC value recorded in this 
study. Virulence factors and the biofilm formation 
examined in this study are under QS control 
(Paluch et al., 2020); hence reduction/inhibition of 
these factors indicates possible QS antagonism, 
which may result either from a direct effect on 
gene expression and/or protein synthesis 
downstream of AHLs, or from an inhibition of AHL 
synthesis (Dekimpe and Déziel, 2009). In QS, the 
rhl system has been shown to directly control 
pyocyanin biosynthesis through the transcription 
factor RhlR and its autoinducer C4-HSL (Dekimpe 
and Déziel, 2009; Haque et al., 2018). C4-HSL 
forms a complex with RhlR to activate the 
transcription of lasB elastase genes and those 
involved in initiating pyocyanin (by phz operon) 
and rhamnolipids (rhlAB operon) biosynthesis 
(Cruz et al., 2020; Dekimpe and Déziel, 2009; 
Hendiani et al., 2019). According to the results, 
the CF significantly down-regulated the RhlR gene 
and caused the reduction of pyocyanin, 
rhamnolipids and lasB-elastase biosynthesis. This 
is evidence to support that CF may possess RhlR 
inhibitory can act to control disease-causing 
bacteria through activity against P. aeruginosa 
virulence.   

Although the mechanism of action of CF is 
unclear, it is evident here that it acts upstream of 
the virulence genes (Hendiani et al., 2019). 

Herein, the liquid-liquid fractionation of the A. 
conyzoides MeoH extract led to obtain a high 
content of polyphenol, flavonoids and terpenoids 
within the active fraction (CF). Recent works show 
evidence that several phenolic compounds, 
terpenoids and flavonoids have anti virulence 
effects (Asfour, 2018; Bouyahya et al., 2017; 
Santos et al., 2021). The HPLC results revealed 
high concentration of ellagic, sinapic, and gallic 
acids and low concentration of vanillic acid and 
quercetin. These compounds have been reported 
previously in A. conyzoides (Dang Xuam et al., 
2004; Okunade, 2002). Most of them have been 
previously pointed out as QSinhibitors (Francesca 
et al., 2020; Manner and Fallarero, 2018; Onem et 
al., 2021; Quecan et al., 2019). Previous 
investigation has shown ellagic acid derivatives 
from Terminalia chebula Retz down-regulate the 
expression of QS genes, thereby attenuating the 
virulence of P. aeruginosa PAO1 (Sarabhai et al., 
2013). A combination of ellagic acid and 
tetracycline was determined to effectively inhibit 
biofilm    formation   by    Propionibacterim   acnes 
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Figure 4. HPLC-DAD chromatograms of Chloroform fraction (CF) from A. conyzoides hydro methanolic extract. DAD 1A: 
signal 271 nm: gallic acid, vanillin acid, ellagic acid. DAD 1B: signal: 327.4 nm: sinapic acid. DAD 1C: signal: 365 nm: 
quercetin. 

 
 
 
without affecting its growth (Sankar et al., 2016). Vanillic 
acid was identified as an active leader responsible for 
anti-quorum sensing activity in Actinidia deliciosa extract 
(Sethupathy et al., 2017). It also inhibited the violacein 
production in C. violaceum ATCC 12472 (Sivasankar et 
al., 2020). Ouyang et al. (2016) had shown that quercetin 
as an effective inhibitor of QS, and virulence factors 
including pyocyanin, protease and elastase in P. 
aeruginosa (Ouyang et al., 2016). Furthermore, the 
expression levels of lasI, lasR, rhlI and rhlR were 
significantly reduced, in response to 16 µg/mL quercetin 
(Ouyang et al., 2016). Widely distributed in nature, gallic 
acid is a phenolic compound extensively studied for its 
numerous biological activities including anti-QS (Borges 
et al., 2014). Gallic acid had also been reported to  be  an 

autoinctor-1 type QS inhibitor (Zhang et al., 2020). The 
reduced expression of virulence genes in the CF fraction 
could be attributed to the presence of these compounds 
(Nain et al., 2020), or/and to other unidentified 
phytochemicals. 

Altogether, these non-bactericidal anti-virulence 
properties and the reported antimicrobial activities, 
provide additional evidence and support the long history 
use of this plant in traditional medicine for the treatment 
of skin infectious disease (Nacoulma, 1996). Indeed, the 
reduction of QS genes and the end-effect on virulence 
factors’ productions allows to explain the historical use of 
A. conyzoides in Burkina Faso. These observations also 
provide an opportunity to extrapolate on how this plant 
could  be  used  to  control   antibiotic   resistant  bacteria. 
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Table 2. Retention time, absorbance constants (λ) and structure of all standards.  
 

No. 
Chromatographic peaks Standards 

Identification Amount 
(mg/L) Structure 

Rt (min) λ max Rt (min) λ max 

1 5.507 234 5.503 235 Gallic acid 1.141 

 

O

OH

OH

HO

HO

 
        

2 6.622 N/A 6.622 260; 325 Caffeic acid N/A 
 

O

HO

OHHO

 
        

3 6.869 N/A 6.869 255; 355 Rutin N/A 

 

O

OH O

OH

O

O

OH

OH

OH OH OH

OH

O
O

HO
OH

 
        

4 7.364 225; 288 7.350 220; 285 Vanillic acid 0.046 

 

HO

O

O

OH

 
        

5 8.209 235; 290 8.170 235; 290 Sinapic acid 9.92 

 
HO

O

O
OH

O

 
        

6 8.279 236; 280 8.356 235; 270 Ellagic acid 13.84 

 
HO O

HO

O

O

O

OH

OH

 
        

7 11.421 255; 375 11.430 255; 380 Quercetin 0.194 

 

O

OH

OH

OH

OOH

HO

 
        

8 17.215 N/A 17.215 265; 365 Kaempferol N/A 

 

O

O

HO

OH

OH

O

 
 

N/A: Not available; Rt: Retention time (min). 
 
 
 
Conclusion 
 
The present study reports the anti-QS activity of A. 
conyzoides extract effectively inhibited QS genes 
expression, signal concentration and virulence  factors  in 

P. aeruginosa. The promising properties may be due to 
the presence of various phytochemicals such as phenolic 
acid, flavonoids, and triterpenoids. These phytochemical 
compounds could be a factor that targets both the 
signals’ molecules and the genes of QS.  



 
 
 
 
Research is currently in progress to identify and isolate 
the bioactive compound. 
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