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Mycorrhiza fungi are important components of soil microbiota in the rhizosphere and greatly influence 
the uptake of mineral elements by plants. A greenhouse experiment was conducted at the University of 
Embu to evaluate effect of Aspilia pluriseta rhizosphere mycorrhiza on phosphorus uptake by gadam 
sorghum. Pots were filled with soil from a predetermined source in the semi-arid Gakurungu, Tunyai 
and Kanyuambora regions of Kenya. A completely randomized block design was used with each 
treatment replicated four times giving n=144.  Regular watering was maintained for thirty-five days. Data 
were analyzed using three-way ANOVA. Seed emergence, hypocotyl development and stand count were 
enhanced at P≤0.05 in both mycorrhiza fungi inoculated gadam sorghum seeds and in pots whose soils 
were taken from the rhizosphere of A. pluriseta plants. The growth attributes had a positive correlation 
with yield at 95% confidence. Soil phosphate level was enhanced where seed inoculation with 
mycorrhiza was done and in soils previously grown A. pluriseta vegetation. A. pluriseta bush fallows 
can be used for phosphate bio-remediation and cover crop in arid and semi-arid environments. 
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INTRODUCTION 
 
The use of fertilizers to supplement soil nutrients in 
promoting plant growth is prevalent in modern  agriculture 

(Cordell et al., 2009). Phosphorus (P) is the most 
important    nutrient    element    (after   nitrogen)   limiting  
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agricultural production in most regions of the world 
(Holford, 1997). In East Africa, phosphorus deficiency 
occurs in many soils, not only due to P depletion through 
crop harvest and erosion, but also due to P-fixing soils in 
the region (Nziguheba, 2007). Soil degradation caused 
by conventional agriculture in these fragile ecosystems 
poses an added threat to agricultural production 
(Conacher, 2009; Stavi and Lal, 2015). Much attention 
has to be given in restoring and maintaining soil health, 
particularly in arid and semi-arid environments. A suitable 
cover crop, with multiple benefits (Poeplau and Don, 
2015; Thapa et al., 2018; Daryanto et al., 2018; Sturm et 
al., 2018) would be ideal for these environments. 

It is hypothesized that a complex association occurs 
between mycorrhiza, soils and plants, leading to the 
availability of phosphorus in the soils in usable forms to 
plants. Virtually all crop plants (except Brassicaceae, 
Amaranthaceae and Polygonaceae) worldwide are host 
to some form of mycorrhizal association (Cooke and 
Lefor, 1998; Stanescu and Maherali, 2017). Among the 
three major nutrients (nitrogen, phosphorus and 
potassium) required by plants, phosphorus constitutes a 
particularly critical component because on one hand it is 
limiting for crop yield on a large proportion of global 
arable land and, on the other hand, it is a non-renewable 
resource (Plenchette et al., 2005; Cordell et al., 2009; 
Vance, 2008). Agricultural experts point to a phosphate 
crisis in the foreseeable future (Gilbert, 2009). Different 
approaches have to be explored to ensure a continued 
supply of phosphates in the soil and hence sustained 
food production. Soil biology has emerged over the last 
decade as a critical part of the knowledge base for 
successful and sustainable agricultural production (Shen 
et al., 2011). A key component of this subject is the plant-
mycorrhizal fungi relationship, which has enormous 
potential for improved management of contemporary 
farming systems (Shen et al., 2011; Harrier and Watson, 
2003). 

The majority of terrestrial plant species are capable of 
interacting with mycorrhiza fungi (MF) in nature to provide 
an effective pathway by which phosphorus is scavenged 
and rapidly delivered to cortical cells within the root 
(Smith et al.,  2011, 2001). MF acts as a catalyst to 
concentrate P in a manner that makes it available to 
plants (Ferrol et al., 2016; Schubert and Lubraco, 2000; 
Calvet et al., 2004). The plant supplies the fungi with 
sugars produced by photosynthesis, while the hyphae 
network improves the plant capacity to absorb water and 
nutrients (Plenchette et al., 2005; Smith et al., 2003).  

Mycorrhizal symbioses contribute significantly to plant 
nutrition and particularly to phosphorus uptake (Smith et 
al., 2011). The large surface area of the mycorrhiza fungi 
hyphal network is very efficient in nutrient uptake 
(Plenchette et al., 2005; Barea et al., 2008). Furthermore, 
phosphorus is a highly immobile element because it is 
easily adsorbed by soil particles and a phosphate-free 
zone rapidly occurs around plant  roots  (Roy-Bolduc  and 
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Hijri, 2011). Extra radical hyphae extend beyond this 
depletion zone, absorbing bio-available phosphate that 
would otherwise not be accessible to the plant (Fellowes, 
2007; Raverkar and Bhattacharya, 2014). Phosphate ions 
in the soil also become rapidly bound with cations, 
forming insoluble complexes that are unavailable to 
plants (Fellowes, 2007; Raverkar and Bhattacharya, 
2014). 

Recent physiological and molecular research has 
revealed that the MF pathway plays a major role in P 
uptake, regardless of the extent to which a mycorrhiza 
fungi plant benefits in terms of increased growth or P 
uptake (Smith et al., 2010). This experiment investigated 
the Aspilia pluriseta Schweif plant in mediating 
phosphorus mining from the soil aided by mycorrhiza and 
eventual phosphates availability in soil colloids for use by 
other plants. Performance trials were conducted with 
Gadam sorghum (Sorghum bicolor L.) grown on 
rhizosphere soils of A. pluriseta and growth attributes 
observed over time. 

 
 
MATERIALS AND METHODS 

 
Study area 

 
This experiment was set up at the University of Embu located on 
latitude 00 31’ 52.03” N and longitude 37 27’ 2.20” E at an elevation 
of 1480 m above sea level. The average annual rainfall around the 
university greenhouses is 1252 mm and is received in two distinct 
rainy seasons; the long rains (mid-March to June) with an average 
rainfall of 650 mm and the short rains (mid- October to December) 
with an average of 450 mm (Jaetzold et al., 2006). The area has a 
mean annual temperature of 19.5°C, a mean maximum of 25°C, 
and a mean minimum of 14°C. Over 65% of the rains occur in the 
long rain season (Jaetzold et al., 2006). The average temperature 
inside the greenhouse was 24°C while average humidity was 65%. 
The soils are mainly humic nitisols derived from basic volcanic 
rocks (Jaetzold et al., 2006) and are deep, well-weathered with 
moderate to high inherent fertility but over time soil fertility has 
declined due to continuous mining of nutrients without adequate 
replenishment. 

 
 
Approach 

 
Mature plots of A. pluriseta vegetation were identified in preselected 
sites in Tharaka Nithi (Gakurungu at 00°12’00” S, 37°51’00” E and 
Tunyai at 00°10’00” S, 37°50’00” E) and Embu (Kanyuambora at 
0°21’0” S, 37°28’30” E) counties. The specific sites where the soil 
was extracted were purposively selected and each sub-site had 
colonies of A. pluriseta vegetation, silty clay, silt loam and sandy 
loam soils. Soil categorization was based on USDA soil taxonomy. 
A five-meter length tape measure was used to delineate the 
clearance area of 1 m

2
 of the selected sub-site. The underneath 

vegetation was cleared using a panga. Using a mattock, a forked 
jembe and a spade about 20 kg of soil from each depth of interest 
were dug in each of the subsites at the depths of 0-20 cm, 21-40 
cm and 41-60 cm. A three-meter tape measure was used to take 
the vertical distances. The soil was put in separate, sterilized 
hessian bags that were clearly labeled using a felt pen for each 
depth of soil. A similar  procedure  was  used  to  collect  soil  in  the 



 

48          J. Dryland Agric. 
 
 
 

Cs 

D2Oa 

Cs 

D1wpa 

Sl 

D2Oa 

Sl 

D2Oi 

Sl 

D3Oa 

Ls 

D2wpa 

Sl 

D1wpa 

Ls 

D3Oa  

Cs 

D2wpi  

Sl 

D2wpi 

Sl 

D3wpa 

Cs 

D3wpi  

Cs 

D1Oa 

Ls 

D3wpa 

Cs 

D3Oa  

Cs 

D2Oi 

Sl 

D1Oa 

Cs 

D3Oi 

Cs 

D2wpa 

Cs 

D1wpi 

Sl 

D1wpi 

Sl 

D3wpi 

Cs 

D3wpa 

Sl 

D2wpa 

Ls 

D1Oa 

Ls 

D1Oi 

Ls 

D2Oa 

Ls 

D2Oi 

Sl 

D1Oi  

Ls 

D3Oi 

Ls 

D1wpa 

Ls 

D1wpi 

Sl 

D3Oi  

Ls 

D2wpi 

Cs 

D1Oi  

Ls 

D3wpi 

 
 

 

Figure 1. Block 1 experimental layout in the greenhouse. Sl-sandy loam soil; Cs-silty clay soil; Ls-silt loam soil; O-soils without A. 
pluriseta vegetation; wp-soils with A. pluriseta vegetation; a-Gadam seeds not inoculated and i-Gadam seeds inoculated; D1-soil 
depth level 1 (0-20 cm); D2-soil depth level 2 (21-40 cm); D3-soil depth level 3 (41-60 cm). 

 
 
 
sites and subsites for the control experiment but in adjacent areas 
where Aspilia was not growing. All other parameters remained the 
same, except the lack of A. pluriseta vegetation in the patches 
selected. The soil collected was transported in clearly labeled 
hessian bags to the University of Embu greenhouse using a three-
tone truck. At the greenhouse, the soil was thoroughly mixed for 
each respective soil type, depth and presence or absence of Aspilia 
vegetation. A sample of the initial homogenous soil was tested for 
phosphorus (Olsen, 1954 protocol), phosphates (using colorimetric 
method) and pH (using McLean, 1983 procedure). Sterilized pots 
(30 cm × 40 cm) were filled with this homogenous soil to about one-
third full.  Two seeds of mycorrhiza fungi-inoculated Gadam 
sorghum (inoculation protocol according to (Habte and Osorio, 
2001) were planted into pots and a similar number planted with 
uninoculated sorghum seeds as a control. Two kilograms of A. 
pluriseta rhizosphere soil earlier tested and found to contain 
mycorrhiza fungi of the order Glomerales was mixed with 1kg 
gadam sorghum seeds. Each of the 4 treatments (Figure 1) as 
mentioned was replicated four times, giving n=144. Each pot was 
watered after every two days using a two-liter watering can for the 
first one week. Thereafter, the watering regime was reduced to 
once a week but ensuring the pots remained moist. Watering was 
done uniformly to all the pots. This was maintained for thirty-five 
days. Data on plant growth attributes were taken every week and 
corroborated with treatments given in the pots. 

 
 
Data analysis methods 

 
Data obtained from various treatments were subjected to SAS 
Edition 8.2. Differences between treatment means were examined 
using least significant difference (LSD) at P ≤0.05.  Plant growth 
attributes obtained on the soil types, rhizosphere depths and 
locations with A. pluriseta were compared to their controls and 
conclusions made. 

 
 

RESULTS 
 

Effect of soils on gadam sorghum seed emergence 
and stand county 
 
Soil type influenced gadam sorghum seeds emergence. 
Greater seed emergence was experienced in silt loams at 

97% within the first seven days. Seeds planted in silty 
clay soils had the lowest seed emergence in the first 
week and significantly differed from the other soils at 
P≤0.05 (Table 1). 

Silt loam soils differed significantly from silty clay and 
sandy loam on germination and stand count in the first 35 
days of growth at 95% confidence level. 

 
 
A. pluriseta effect on gadam sorghum seeds early 
growth 

 
Gadam seed emergence and early growth were highest 
in soils that had A. pluriseta vegetation (Figure 2) at 
96.5% in the first week and differed significantly with 
seeds planted in soils that were not previously growing A. 
pluriseta at P≤0.05  (Table 2).  Similarly, stand count was 
almost maintained in soils with A. pluriseta vegetation 
than those without (Figure 2). 

 
 
Effect of gadam sorghum seeds inoculation with 
mycorrhizal fungi on seed emergence, stand count 
and plant height 

 
Gadam seed emergence and stand count gave similar 
results when the sorghum seeds were inoculated with 
mycorrhizal fungi (Figure 3). The inoculated seeds had 
higher percent seed emergence and stand count 
compared to the uninoculated. Besides, aggregate 
gadam crop stability was higher in inoculated sorghum 
seeds. The average sorghum plant height was 124 cm at 
physiological maturity (Figure 4). Although both growth 
curves were normal, the curve with soils where A. 
pluriseta previously grew peaked higher. Similar results 
were obtained when gadam sorghum seeds were 
inoculated with mycorrhizal fungi from the rhizosphere of 
A. pluriseta. 
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Table 1. Effect of soil type on germination and stand count on gadam sorghum in the first 35 days of growth (% values). 
 

Soil type 
Duration of crop stand count (days) 

7 14 21 28 35 

Silty clay 83.3
b
 83.3

b
 83.3

b
 84.4

b
 82.3

b
 

Silt loam 96.9
a
 96.9

a
 94.8

a
 94.8

a
 94.8

a
 

Sandy loam 90.2
ab

 90.2
ab

 90.2
ab

 90.2
ab

 90.2
a
 

LSD 7.2 7.2 7.6 7.6 7.8 

 
 
 

 
 

 

Figure 2. Percentage gadam seed emergence and stand count over the 
growing period. 

 
 
 
Table 2. Effect of using Aspilia sourced soils on gadam sorghum seedlings (% survival). 
 

Factor 
Duration of crop stand count (days) 

7 14 21 28 35 42 49 56 63 70 77 84 

Without  Ap 83.8
b
 83.8

b
 83.8

b
 84.4

b
 83.1

b
 79.4

b
 78.6

b
 78.3

b
 77.6

b
 77.3

b
 77.3

b
 77.3

b
 

With Ap 96.5
a
 96.5

a
 95.1

a
 95.1

a
 95.1

a
 94.4

a
 95.1

a
 95.1

a
 95.1

a
 95.1

a
 95.1

a
 95.1

a
 

LSD 5.9 5.9 6.2 6.2 6.3 7.2 7.2 7.3 7.3 7.4 7.4 7.4 

 
 
 
Changes in pH, phosphorus and phosphate levels 
before and after gadam sorghum harvest 
 
The initial rhizosphere reading for pH and phosphorus 
was higher but the opposite was true of phosphates after 
the experiment (Table 3). Phosphate level in soils grown 
with A. pluriseta vegetation had a higher content 
compared to soils without the vegetation (Table 3) 
 
 
Correlation of gadam sorghum growth attributes with 
yield 
 
All  growth  attributes  for  gadam sorghum had a positive 

correlation with yield at 95% confidence level (Table 4). 
Soil depth, however, exhibited a negative correlation with 
yield. 
 
 
DISCUSSION 
 
Seed germination and eventual crop stand is a process 
that influences crop yield and quality (Tuan et al., 2019). 
Gadam sorghum germination and subsequent plant 
survival was significantly affected by the type of soil in 
which the plant was grown. Soils that had A. pluriseta 
previously growing produced higher sorghum crop yields. 
We found  out  that  the  water  retention  capacity  of  the
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Figure 3. Sorghum emergence and stand count for inoculated and 
uninoculated seedlings. 

 
 
 

 
 

 
Figure 4. Height of gadam sorghum crop in Aspilia soils compared to non 
Aspilia soils. 

 
 
 
Table 3. pH, phosphates (ppm) and phosphorus (ppm) content levels in the soil. 
 

Factor  
Before planting 

One week after 
harvesting 

Before planting 
One week after 

harvesting 
Before planting 

One week after 
harvesting 

pH1 pH2 Phos1 Phos2 Phr1 Phr2 

Silty clay  6.3
a
 6.2

a
 96.2

a
 96.8

a
 25.7

a
 24.2

a
 

Silt loam  6.0
b
 5.9

b
 76.9

a
 78.9

a
 34.5

a
 32.8

a
 

Sandy loam  6.3
a
 6.1

a
 80.8

a
 80.8

a
 35.3

a
 34.5

a
 

LSD  0.2 0.2 39.2 39.6 15.8 15.9 

With Ap  6.0
b
 5.9

b
 103.6

a
 107.7

a
 31.2

a
 30.0

a
 

Without  Ap  6.3
a
 6.2

a
 65.6

b
 63.3

b
 31.8

a
 31.0

a
 

LSD  0.2 0.2 32 32.3 12.9 13 

0-20 cm  6.4
a
 6.3

a
 108.6

a
 108.4

a
 40.3

a
 39

a
 

21-40 cm  6.1
b
 5.9

b
 65.3

b
 67.3

b
 28.5

a
 27.8

a
 

41-60 cm  6.1
b
 6.0

b
 80.0

ab
 80.8

ba
 25.7

a
 24.7

a
 

LSD  0.2 0.2 39.2 39.6 15.8 15.9 

Mean  6.2 6.1 84.6 85.5 31.5 30.5 
 

pH1-Initial soil pH; pH2-pH one week after harvesting; Phos1-Initial soil phosphates in ppm; Phos2-Soil phosphates in ppm one week after harvesting; 
Phr1-Initial soil phosphorus in ppm; Phr2-Soil phosphorus in ppm one week after harvesting.  
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Table 4. Correlation coefficient table in relation to the yield of gadam sorghum. 
 

Parameter 
Correlation value to yield (Days after seed germination) 

7 14 21 28 35 42 49 56 63 70 77 84 

Site
1
 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 

Inoculation
2
 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 

Block 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

Soil 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

Depth -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 

Stand count 0.39 0.39 0.39 0.37 0.39 0.4 0.39 0.39 0.38 0.38 0.38 0.38 

Plant height  0.48 0.38 0.38 0.34 0.37 0.49 0.51 0.51 0.51 0.51 0.51 0.51 

No. of Leaves 0.27 0.52 0.32 0.08 0.4 0.39 0.31 0.39 0.45 0.59 0.63 0.63 

Length of Leaves 0.16 0.14 0.11 0.21 0.25 0.39 0.45 0.45 0.45 0.45 0.45 0.45 
 
1
Whether or not A. pluriseta had grown in the soils 

2
whether or not gadam sorghum seeds were inoculated with Arbuscular mycorrhiza fungi (AMF). 

 
 
 

different soil types affected stand count with time. 
The smaller the particles were, the more the water 
holding capacity and with time, seeds that 
germinated dried up. Sladonja et al. (2014) 
obtained similar results on pyrethrum seed 
emergence tested for different soil types while Idu 
et al. (2003) observed that germination and 
emergence of Helianthus annuus L. were low in 
clay treatments compared to other soil treatments 
with bigger particle size. Anderson et al. (2004) 
reported that varied rainfall, sowing time, soil type, 
and cultivar influence on plant population for 
wheat in Western Australia and obtained similar 
results. 

   Early growth of the gadam sorghum plant was 
influenced by the use of soils that had A. pluriseta 
initially growing in it. Varga (2015) noted that 
mycorrhiza fungi negatively influenced seed 
germination but at the same time improved plant 
growth. This partly explains the behavior of 
sorghum seedlings stand county stability 
compared to seedlings in soils that had not been  
growing A. pluriseta. 

 
 

Inoculation with mycorrhizal fungi affected seed 
emergence, stand count and plant height in this 
experiment. Results obtained closely mirrored the 
observation made by Caravaca et al. (2002) that 
rhizosphere aggregate stability of afforested 
semiarid plant species was significantly improved 
upon mycorrhiza fungi inoculation. Not only does 
mycorrhizal association with plants improve 
drought tolerance (Fitter, 1988) but also seedling 
survival (Janos, 1980). Gadam sorghum is a short 
stature crop (Chimoita et al., 2019) and this is 
confirmed in this experiment showing the plant as 
having an average height of 124 cm at 
physiological maturity. Having a small height is 
one of the drought escaping mechanism of plants 
in dry land areas as assimilate partitioning is done 
early during the plant's life (Basu et al., 2016). 

Kavanová et al. (2006) revealed that 
phosphorus is critical for cell division and 
elongation on the grass plants at the early stages 
of growth. This phenomenon could have 
contributed towards greater plant height for seeds 
that  were  inoculated with mycorrhizal fungi in this 

 
 
current experiment and further corroborates 
research by Bhuiyan et al. (2008) that phosphorus 
inoculation was found to be positive and 
significant on mungbean plant height. Besides, 
Bam et al. (2006) showed that germination and 
vigor in rice improved significantly when seeds 
were soaked in potassium and phosphorus salts. 
Soil that had A. pluriseta previously growing had 
mycorrhiza that acted as a source of inoculation 
and therefore continued with phosphates 
synthesis with gadam sorghum as the host plant. 
This finding agrees with Tiamtanong et al. (2015) 
that mycorrhiza fungi inoculation enhances the 
development of soil phosphates by increasing 
phosphates enzyme activity. The phosphorus in 
the soil was converted to phosphates through the 
action of mycorrhiza. 
 
 
Conclusion 
 
Gadam sorghum plant emergence, stand count 
and aggregate  plant  stability  were  improved  by
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inoculating seeds with A. pluriseta rhizosphere soils or 
growing sorghum as follower crop in A. pluriseta bush 
fallows. These attributes enhance overall crop yield, grain 
quality and land productivity.  A. pluriseta bush fallows 
can be used for phosphate bio-remediation and cover 
crop in arid and semi-arid environments. 
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