Journal of
Dryland Agriculture

OFFICIAL PUBLICATION OF THE CENTRE FOR DRYLAND AGRICULTURE, BAYERO UNIVERSITY, KANO
  • Abbreviation: J. Dryland Agric.
  • Language: English
  • ISSN: 2476-8650
  • DOI: 10.5897/JODA
  • Start Year: 2015
  • Published Articles: 41

Full Length Research Paper

Mycorrhiza co-association with Aspilia pluriseta Schweif. and phosphorus uptake effects on growth of gadam sorghum in the semi-arid lower Eastern Kenya

Muchoka J. P.
  • Muchoka J. P.
  • Department of Agricultural Resource Management, School of Agriculture, University of Embu, P. O. Box 6-60100, Embu, Kenya.
  • Google Scholar
Mugendi D. N.
  • Mugendi D. N.
  • Department of Agricultural Resource Management, School of Agriculture, University of Embu, P. O. Box 6-60100, Embu, Kenya.
  • Google Scholar
Njiruh P. N.
  • Njiruh P. N.
  • Department of Agricultural Resource Management, School of Agriculture, University of Embu, P. O. Box 6-60100, Embu, Kenya.
  • Google Scholar
Onyari C. N.
  • Onyari C. N.
  • Department of Land and Water Management, School of Agriculture, University of Embu, P. O. Box 6-60100, Embu, Kenya.
  • Google Scholar
Mbugua P. K.
  • Mbugua P. K.
  • Department of Plant Sciences, School of Pure and Applied Sciences, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya.
  • Google Scholar
Njeru E. M.
  • Njeru E. M.
  • Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya.
  • Google Scholar


  •  Received: 11 June 2020
  •  Accepted: 22 July 2020
  •  Published: 31 August 2020

References

Anderson WK, Sharma DL, Shackley BJ, D'Antuono MF (2004). Rainfall, sowing time, soil type, and cultivar influence optimum plant population for wheat in Western Australia. Australian Journal of Agricultural Research 55(9):921-930.
Crossref

 

Bam RK, Kumaga FK, Ofori K, Asiedu EA (2006). Germination, vigour and dehydrogenase activity of naturally aged Rice (Oryza sativa L.) seeds soaked in potassium and phosphorus salts. Asian Journal of Plant Sciences 5(6):948-955.
Crossref

 

Barea JM, Ferrol N, Azcón-Aguilar C, Azcón R (2008). Mycorrhizal symbioses. In The ecophysiology of plant-phosphorus interactions (pp. 143-163). Springer, Dordrecht.
Crossref

 

Basu S, Ramegowda V, Kumar A, Pereira A (2016). Plant adaptation to drought stress. F1000Research, 5.
Crossref

 

Bhuiyan MMH, Rahman MM, Afroze F, Sutradhar GNC, Bhuiyan MS I (2008). Effect of phosphorus, molybdenum and Rhizobium inoculation on growth and nodulation of mungbean. Journal of Soil and Nature 2(2):25-30.

 

Calvet C, Estaún V, Camprubı A, Hernández-Dorrego A, Pinochet J, Moreno MA (2004). Aptitude for mycorrhizal root colonization in Prunus rootstocks. Scientia Horticulturae 100(4):39-49.
Crossref

 

Caravaca F, Hernandez T, Garcıa C, Roldan A (2002). Improvement of rhizosphere aggregate stability of afforested semiarid plant species subjected to mycorrhizal inoculation and compost addition. Geoderma 108(2):133-144.
Crossref

 

Chimoita EL, Onyango CM, Gweyi-Onyango JP, Kimenju JW (2019). Socio-economic and Institutional Factors Influencing Uptake of Improved Sorghum Technologies in Embu, Kenya. East African Agricultural and Forestry Journal 83(2):69-79.
Crossref

 

Conacher A (2009). Land degradation: A global perspective. New Zealand geographer 65(2):91-94.
Crossref

 

Cooke JC, Lefor MW (1998). The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restoration Ecology 6(2):214-222.
Crossref

 

Cordell D, Drangert JO, White S (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change 19(2):292-305.
Crossref

 

Daryanto S, Fu B, Wang L, Jacinthe PA, Zhao W (2018). Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews 185:357-373.
Crossref

 

Fellowes E (2007). Molecular plant-microbe interactions within rhizosphere nutrient cycling. The University of Manchester (United Kingdom).

 

Ferrol N, Tamayo E, Vargas P (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany 67(22):erw403.
Crossref

 

Fitter AH (1988). Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. Journal of Experimental Botany 39(5):595-603.
Crossref

 

Gilbert N (2009). The disappearing nutrient: phosphate-based fertilizers have helped spur agricultural gains in the past century, but the world may soon run out of them. Natasha Gilbert investigates the potential phosphate crisis. Nature 461(7265):716-719.
Crossref

 

Habte M, Osorio NW (2001). Arbuscular mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. University of Hawaii.

 

Harrier L A, Watson CA (2003). The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Advances in Agronomy 79(79):185-225.
Crossref

 

Holford ICR (1997). Soil phosphorus: its measurement, and its uptake by plants. Soil Research 35(2):227-240.
Crossref

 

Idu M, Ogboghodo AI, Omonhinmin CA (2003). Effect of soil types on the seed germination of Helianthus annuus L. Agricultural Science Digest 23(2):101-103.

 

Jaetzold R, Schmidt H, Hornetz B, Shisanya C (2006). Ministry of agriculture farm management handbook of Kenya VOL. II-Part C Subpart C1. Nairobi, Kenya: Ministry of Agriculture.

 

Janos DP (1980).Vesicular‐arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61(1):151-162.
Crossref

 

Kavanová M, Fernando AL, Agustín AG, Hans S (2006). Phosphorus deficiency decreases cell division and elongation in grass leaves." Plant Physiology 141(2):766-775.
Crossref

 

McLean EO (1983). Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and Microbiological Properties 9:199-224.
Crossref

 

Nziguheba G (2007). Overcoming phosphorus deficiency in soils of Eastern Africa: Recent advances and challenges. In Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities (pp. 149-160). Springer, Dordrecht.
Crossref

 

Olsen SR (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.

 

Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005). Managing arbuscular mycorrhizal fungi in cropping systems. Canadian Journal of Plant Science 85(1):31-40.
Crossref

 

Poeplau C, Don A (2015). Carbon sequestration in agricultural soils via cultivation of cover crops-A meta-analysis. Agriculture, Ecosystems and Environment 200:33-41.
Crossref

 

Raverkar KP, Bhattacharya S (2014). Arbuscular mycorrhizae: status and potential. Bioresources for Sustainable Plant Nutrient Management (Eds: Ramesh Chandra and KP Raverkar) Satish Serial Publishing House, New Delhi, DOI, 10.

 

Roy-Bolduc A, Hijri M (2011). The use of mycorrhizae to enhance phosphorus uptake: A way out the phosphorus crisis. Journal Biopesticides and Biofertilizers 2(104):1-5.
Crossref

 

Schubert A, Lubraco G (2000). Mycorrhizal inoculation enhances growth and nutrient uptake of micropropagated apple rootstocks during weaning in commercial substrates of high nutrient availability. Applied Soil Ecology 15(2):113-118.
Crossref

 

Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang F (2011). Phosphorus dynamics: From soil to plant. Plant Physiology 156(3):997-1005.
Crossref

 

Sladonja B, Krapac M, Ban D, Užila Z, Dudaš S, Dorčić D.(2014). Effect of soil type on pyrethrum seed germination. Journal of Plant Protection Research 54(4):421-425.
Crossref

 

Smith SE, Dickson S, Smith FA (2001). Nutrient transfer in arbuscular mycorrhizas: How are fungal and plant processes integrated? Functional Plant Biology 28(7):685-696.
Crossref

 

Smith SE, Facelli E, Pope S, Smith FA (2010). Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil 326(2):3-20.
Crossref

 

Smith SE, Jakobsen I, Grønlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156(3):1050-1057.
Crossref

 

Smith SE, Smith FA, Jakobsen I (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133(1):16-20.
Crossref

 

Stanescu S, Maherali H (2017). Arbuscular mycorrhizal fungi alter the competitive hierarchy among old-field plant species. Oecologia 183(2):479-491.
Crossref

 

Stavi I, Lal R (2015). Achieving zero net land degradation: challenges and opportunities. Journal of Arid Environments 112:44-51.
Crossref

 

Sturm DJ, Peteinatos G, Gerhards R (2018). Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Research 58(5):331-337.
Crossref

 

Thapa B, Pande KR, Khanal B, Marahatta S (2018). Effect of Tillage, Residue Management and Cropping System on the Properties of Soil. International Journal of Applied Sciences and Biotechnology 6(2): 164-168.
Crossref

 

Tiamtanong S, Sinma K, Mala T, Rungcharoenthong P, Amkha S (2015).Effects of Mycorrhizal Fungi with Phosphate Fertilizer Applications on Phosphate Solubilizing and Soil Properties of Grapes Orchard. Modern Applied Science 9(1):149.
Crossref

 

Tuan PA, Sun M, Nguyen TN, Park S, Ayele BT (2019). Molecular mechanisms of seed germination. In Sprouted Grains (pp. 1-24). AACC International Press.
Crossref

 

Vance CP (2008). Plants without arbuscular mycorrhizae. In The ecophysiology of plant-phosphorus interactions (pp. 117-142). Springer, Dordrecht.
Crossref

 

Varga S (2015). Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment. American Journal of Botany 102(3):358-366.
Crossref