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To broaden the genetic base of the allotetraploid peanut (Arachis hypogaea L.), pre-breeding programs 
have produced interspecific synthetic allotetraploids resulting from the chromosome duplication of 
hybrids between peanut related diploid species. These allotetraploids were highly cross-fertile with 
peanut making it possible to access the extensive genetic variability harbored by the wild species. This 
study aims to evaluate the impact of polyploidization and hybridization in resveratrol content in Arachis 
hybrids. Resveratrol is a potent antioxidant that has been shown to be useful in the treatment of many 
human diseases. For that, resveratrol was characterized in five synthetic allotetraploids of wild Arachis, 
six diploid wild species, three cultivars of A. hypogaea and three backcross (BC) hybrids between 
synthetic allotetraploids and A. hypogaea. Leaves from these genotypes were ultraviolet (UV) light 
irradiated for 2 h 30 min and their resveratrol contents were determined by high performance liquid 
chromatograph (HPLC). Resveratrol was found in all genotypes, but at variable concentrations. 
Synthetic allotetraploids and peanut did not differ and diploid species had the lowest resveratrol 
content. The highest concentrations were observed in hybrids between allotetraploids and cultivars of 
A. hypogaea that were probably the most heterozygous among the genotypes analyzed since their 
chromosome sets came from different species. This study data suggest a positive effect of polyploidy 
and hybridization in resveratrol content. 
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INTRODUCTION 
 
The cultivated peanut Arachis hypogaea L. is an 
allotetraploid   (AABB)    that    originated    from  a  single 

crossing event between the diploid wild species Arachis 
duranensis  and  Arachis  ipaënsis  (Kochert  et al., 1996;  
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Bertioli et al., 2016). These two species belong to section 
Arachis, which also comprises the cultivated and its most 
close relatives (Krapovickas and Gregory, 1994). All the 
other species of section Arachis are diploids with the 
single exception of Arachis monticola, which is also a 
tetraploid (Smartt et al., 1978; Fernández and 
Krapovickas, 1994; Peñaloza and Valls, 2005; Stalker, 
2017). 

Section Arachis species constitute the secondary gene 
pool of the cultivated peanut (Stalker and Moss, 1987) 
and because of that, many accessions of those species 
have been characterized and evaluated for several 
agronomic traits, including resistance to biotic (Stalker, 
1984; Pande and Rao, 2001; Michelotto et al., 2015) and 
abiotic stresses (Nautiyal et al., 2008; Leal-Bertioli et al., 
2012). 

The reproductive barrier between cultivated and wild 
Arachis due to ploidy level difference has been 
overcomed using interspecific synthetic allotetraploids. 
Sterile diploid hybrids obtained by crossing A and B 
genome Arachis species have been turned fertile after 
their tetraplodization with colchicine, which allowed their 
crossing with peanut and the introgression of alleles from 
the wild species into the cultivated (Simpson , 1991). 

Peanuts are among the few plant species that produce 
resveratrol (Lanz et al., 1990; Sobolev and Cole, 1999; 
Arora and Japlan, 2018). This phenolic compound is a 
potent antioxidant (Frankel et al., 1993) whose healing 
and preventive potential for many human diseases were 
described in some recent reviews (Colica et al., 2018; 
Galiniak et al., 2019). Resveratrol is also a phytoalexin 
that has been associated with resistance to major peanut 
diseases (Sobolev et al., 2007). Moreover, ten species of 
section Arachis also synthesizes resveratrol and three of 
them had levels higher than those found in cultivar 
Caiapó of A. hypogaea (Lopes et al., 2013). 

The effect of polyploidization and hybrization on 
different traits in Arachis interspecific synthetic 
allotetraploids have been studied (Burow et al., 2001; 
Fávero et al., 2009, 2015; Leal-Bertioli et al., 2012, 2017; 
Michelotto et al., 2015, 2016, 2017). The characterization 
of resveratrol content in Arachis allotetraploids could add 
new value to these genotypes, which have been 
developed to be used in peanut pre-breeding programs 
(Bertioli et al, 2011). In this context, the objective of the 
present study was to evaluate the impact of 
polyploidization and hybridization in the resveratrol 
content analyzing synthetic allotetraploids, their 
respective diploid wild parentals and hybrids between two 
synthetic allotetraploids and three A. hypogaea cultivars. 
 
 
METHODOLOGY 
 

Plant material 
 

Seventeen Arachis genotypes were analyzed for resveratrol content 
being six wild diploid species, three tetraploid peanut (A. hypogaea) 
cultivars   and    eight    tetraploid    hybrids    that    comprised   five 

  

 
 
 
interspecific synthetic allotetraploids, and three hybrids resulting 
from crosses between peanut and synthetic allotetraploids (Table 
1). The Arachis wild species analyzed harbor different types of 
genome: A (villosa, stenosperma, A. duranensis), B (A. ipaënsis 
and Arachis gregoryi) and K (batizocoi). The cultivars of peanut 
analyzed were ‘IAC Caiapó’, ‘Runner IAC 886’ and ‘IAC 505’. All 
synthetic allotetraploids and hybrids analyzed were developed by 
Santos (2013). The plants were grown in greenhouses at Embrapa 
Genetic Resources and Biotechnology, Brasília, Brazil. 

 
 
Induction of resveratrol synthesis using UV 

 
The experiments were performed using detached leaves collected 
from six-month-old Arachis plants in greenhouse conditions, as 
previously described (Lopes et al., 2013). In short, detached leaves 
were exposed to an ultraviolet light for 2 h 30 min and maintained in 
the dark for additional 15 h at room temperature. UV-treated and 
non-treated control leaves of each genotype were divided into three 
aliquots of 1 g and stored at -80°C. 

 
 
Resveratrol extraction and sample preparation  

 
The resveratrol extraction protocol was based on Potrebko and 
Resurreccion (2009). Prior to high performance liquid 
chromatograph (HPLC) injection, the dried residue was 
reconstituted in 6.8 ml of 15% (v/v) ethanol. The samples were 
vortexed for 1 min and left in ultrasonic bath for four minutes. The 
procedure was repeated twice to ensure the complete recovery of 
the extract. The samples were then transferred to 2.0 ml tubes and 
centrifuged for 15 min at 25°C at 13,400 rpm. The supernatant of 
the centrifuged material was conditioned in a 2-ml tube and then 
used for injection in a HPLC (CLAE, Varian®) with ternary pump, 
automatic dial and coupled photodiode array detector (PDA 
Varian® PS- 240 / PS-410 / PS-335 / Galaxie Software 1.9). 

 
 
HPLC analysis 

 
The column used in HPLC was Zorbax XDB Agilent (250 x 4.6 mm, 
5 μm), without guard column. A gradient of acetonitrile and a 0.02% 
aqueous phosphoric acid (J. T. Baker) were used as mobile phase. 
The conditions were: acetonitrile for 0 min at 13%; 6 to 9 min at 
15%; 17 min at 17%; 28 to 33 min at 28%; 40 min at 50%; 45 min at 
60%; 46 to 48 min at 80%; 49 to 54 min at 13%; flow rate of 1.0 
ml/min. The UV absorption was monitored at 308 nm, 280 nm and 
also at the maximum absorption wavelength of each eluent (PDA). 
The injection volume of each sample was 10 μl. 

The peak of resveratrol was identified by comparison with the 
retention time of the commercial standard solutions of resveratrol (> 
99%, 230-240 μg/ml, Sigma-Aldrich) and phenolphthalein (> 98%, 
2927-2835 μg/ml, Sigma-Aldrich) that were injected daily for area 
verification. Additional procedures for resveratrol identification were 
analysis of the spectrum provided by the diode array detector, and 
the quantification by co-elution with the resveratrol pattern and 
further comparison of the chromatograms of the induced and 
control samples. The final concentration of resveratrol per gram of 
leaf was calculated according to Potrebko and Resurreccion (2009). 

 
 
Data analysis 

 
The means of the resveratrol production were compared using the 
Scott and Knott test at 5% probability, considering the groups of 
plants over time (3 blocks) as covariate, aiming at filtering the 
variability  observed  due  to  these   repetitions.  The  analysis  was 
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Table 1. Arachis species and hybrids analyzed, their accession number, genome type, and concentration of resveratrol estimated after UV 
exposure. 
 

Species / Hybrid Accession* Genome Resveratrol content  SD* (μg/g) 

A. batizocoi K9484 KK 162.1  147.0
f
 

A. duranensis  V14167 AA 415.8  118.0
d
 

A. ipaënsis  K30076 BB 84.5  46.4
f
 

A. gregoryi  V6389 BB 390.3  30.9
d
 

A. hypogaea  cv. IAC 505 AABB 212.7  88.0
e
 

A. hypogaea  cv. Runner IAC 886 AABB 275.2  88.0
e
 

A. hypogaea  cv. IAC Caiapó AABB 579.5  85.8
b
 

A. stenosperma  V10309 AA 42.5  12.5
f
 

A. villosa  V12812 AA 61.7  26.8
f
 

A. batizocoi x A. stenosperma K9484 x V10309 AAKK 290.0  85.4
e
 

A. batizocoi x A. duranensis K9484 x Se2848 AAKK 513.3  145.0
c
 

A. batizocoi x A. duranensis  K9484 x V14167 AAKK 627.0  213
b
 

A. ipaënsis x A. villosa K30076 x V12812 AABB 88.9  44.9
f
 

A. gregoryi x A. stenosperma V6389 x V10309 AABB 261.6  70.0
e
 

cv.886x[cv 886 x (A. batizocoi x A. stenosperma)]**   AABK 351.7  151.6
e
 

cv. 505 x [(A. gregoryi x A. stenosperma)]   AABB 526.8  91.5
c
 

Caiapóx[Caiapóx (A. batizocoi x A. stenosperma)]**   AABK 743.0  103.9
a
 

 

* Collectors: K=A. Krapovickas; Se=G.J. Seijo; V=J.F.M. Valls. ** Backcrossings (BC1). Means followed by the same letter do not differ (α<0.05) 
according to Scott-Knott test. 

 
 
 
developed in the statistical language program R, free for download 
at the site http://www.r-project.org/. 
 
 

RESULTS AND DISCUSSION 
 

All genotypes analyzed were able to produce resveratrol 
in response to UV induction (Table 1). Traces of 
resveratrol (below 0.1 μg) were detected in the samples 
not exposed to UV (data not shown). 

The resveratrol content varied greatly among the six 
wild diploid species analyzed going from 42.53±12.5 μg/g 
in A. stenosperma to 415.8±118.0 μg/g in A. duranensis 
(Table 1). Lopes et al. (2013) detected 370.0 μg/g of 
resveratrol in UV-treated plants of A. gregoryi (accession 
V6389) which was very similar to the value found in the 
present study (390.3±30.9 μg/g). Conversely, for A. 
batizocoi (accession K9484) and A. ipaënsis (accession 
K30076), Lopes et al. (2013) detected higher contents 
(524.5 and 314.0 μg/g, respectively) than those found 
here (162.1±147.0 μg/g and 84.5±46.4 μg/g, 
respectively). Also, Carvalho et al. (2017) detected 
resveratrol in UV-treated leaves of A. duranensis 
(accession V14167) in concentration (371.97 μg/g) 
similar to that observed here (415.8±118.0 μg/g), whereas 
in A. stenosperma, (accession V10309) resveratrol 
concentration was at least 13-times higher (512.6 μg/g) 
than in our study (42.49±12.5 μg/g). The differences in 
the resveratrol content of a same accession observed in 
these studies may be due to different factors, such as the 

intrinsic nature of resveratrol as a secondary metabolite, 
whose production is prone to changes according to the 
environment temperature (Wang and Zheng, 2001), plant 
age (Chung et al., 2001), water availability in the soil 
(Esteban et al., 2001), and cultivation season (Chen et 
al., 2002). Genetic, ontogenic, morphogenetic, and 
environmental factors that could cause variation on plant 
secondary metabolite content in different species were 
reviewed by Yang et al. (2018). 

Concerning the three peanut cultivars evaluated, ‘IAC 
Caiapó’ presented the highest resveratrol concentration 

(579.5  85.8
b
 μg/g), followed by ‘Runner IAC 886’ (275.2 

 88.0
e
 μg/g) and ‘IAC 505’ (212.7  88.0

e 
μg/g) that 

showed similar concentrations to each other. Over the 
years, many studies have shown a variable resveratrol 
content among A. hypogaea varieties/cultivars, with 
differences due to the plant organ studied, crop location, 
annual season and pathogens infestation levels. Sanders 
et al. (2000) found differences among resveratrol content 
(from 0.03 to 0.147 µg/g) in seeds without coat of three 
peanut market types (Virginia, Runner, and Spanish) 
produced in different areas and without any specific 
induction of resveratrol, as UV used in this study. 
Significant variations in resveratrol content (from 0.125 to 
1.626 μg/g) was also found when seeds of 20 germplasm 
accessions of A. hypogaea harvested from the same field 
were analyzed using HPLC (Wang and Pittman, 2009). 
Variation on resveratrol content was also found in roots of 
three peanut  cultivars grown in 2000 fall and 2001 spring 

http://www.r-project.org/
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being the content of fall crops much higher than those of 
spring (Chen et al., 2002). Peanut cultivar ‘IAC Caiapó’ 
higher resveratrol content (ranging from 300 to 600 
μg/kg) when compared to the cultivar ‘IAC 886’ (Zorzete 
et al., 2011). This last cultivar is less susceptible to thrips 
Enneothrips flavens infection (Moraes et al., 2005). 
Considering that resveratrol is a phytoalexin, peanut 

cultivars with higher concentrations of this metabolite are 
likely more resistant against pathogen attack. 
Resveratrol content in peanut seeds was negatively 
correlated with aflatoxin production and in vitro trials 
demonstrated that resveratrol could inhibit aflatoxin 
production (HouMiao et al., 2012). An association 
between total phytoalexin production and genotype 
resistance to major peanut diseases was observed being 
trans-resveratrol was one of the main compounds found 
in stress-resistant genotypes (Sobolev et al., 2007). 

The grouping of the genotypes according to their ploidy 
level (Table 2), helped to observe that the tetraploids 
genotypes (peanut cultivars and hybrids) showed 
significantly higher resveratrol contents than the wild 
diploid species. The effect of polyploidization has been 
studied in Arachis comparing synthetic allotetraploids, 
their corresponding diploid parental species and peanut 
cultivars. The comparison among A. duranensis (V14167), 
A. ipaënsis (KG30076), a synthetic allotetraploid (A. 
duranensis V14167 × A. ipaënsis K 30076)

4×
 and A. 

hypogaea subsp. hypogaea var. hypogaea ‘Runner IAC 
886’ showed some diploid traits such as chlorophyll 
meter readings are maintained through hybridization and 
polyploidization and most characters are substantially 
modified (Leal-Bertioli et al., 2012). An increase in 
resistance to the foliar diseases rust (Puccinia arachidis) 
and late leaf spot (Cercosporidium personatum) was 
observed in the synthetic allotetraploids compared to 
their diploid parental species (Kumari et al., 2014). More 
recently, it was also demonstrated that Arachis 
allotetraploids have some general phenotypic trends that 
are common, regardless of the combination of their wild 
parental diploid suggesting that nucleotypic effect is more 
important than new allelic combination (Leal-Bertioli et 
al., 2017). The effect of polyploidization on the increase 
of bioactive compounds has also been studied in some 
other species. The concentrations of some 
phytoconstituents, such as emodin, physcion, piceatannol, 
resveratrol and rutin were determined by LC–MS in three 
species of Rumex and a positive correlation could be 
detected with the increasing ploidy status in different 
chromosomal races (Jeelania et al., 2017).  

Our data suggested that the polyploidization could be 
one of the causes of the increase in the resveratrol 
content observed in the polyploidy compared to diploid 
samples analyzed. 

The resveratrol content among the synthetic 

allotetraploids (Table 1) ranged from 88.9  44.9
f
 μg/g for 

A. ipaënsis x A. villosa to 627.0  213.2
b
 μg/g for A. 

batizocoi   x   A.   duranensis   V14167.  Interestingly,  the 

 
 
 
 
parental diploids of A. ipaënsis X A. villosa that had the 

lowest resveratrol content (88.9  44.9
f
 μg/g for) among 

the synthetic allotetraploids displayed the second and 
third lowest concentrations of resveratrol among the wild 

diploids (61.7  26.8
f
 and 84.5  46.4

f
 μg/g for A. villosa 

and A. ipaënsis, respectively). Likewise, the synthetic 

allotetraploid with the highest resveratrol content (513.3  
145.0

c
 μg/g for A. batizocoi X A. duranensis V14167) had 

at least one parental diploids with high content (162.1  

147.0
f
 and 415.8  118.0

d
 μg/g for A. batizocoi and A. 

duranensis, respectively). Overall, we observed that the 
hybrids that produced high quantities of resveratrol 
resulted from crosses between parents with the highest 
levels of resveratrol. Increase on ginsenoside content 
was also obtained using a interspecific Panax F1 hybrids 
(Kim et al., 2016). The use of hybridization to increase 
flavonoids using wild relatives in many cultivated species 
was recently reviewed (D’Amelia et al., 2018). Thus, our 
results suggest that, besides the polyploidization, the 
allelic composition of the allotetraploids might also be 
positively related to the production of resveratrol in 
Arachis. 

The three hybrids resulting from the crosses between 
peanut cultivars and synthetic allotetraploids presented 
significant differences compared to the other genotypes 
analyzed, showing the highest resveratrol content 
averages (Table 2). Those hybrids were the most 
heterozygous among genotypes analyzed in this study 
since each of their four chromosomes sets came from 
peanut and two of the wild species used in the synthetic 
allotetraploids synthesis. This suggested that increase in 
heterozygosity might also have contributed to increase of 
resveratrol content. Besides, those hybrid chromosomes 
were the only ones among the material evaluated that 
had their chromosomes resultin from the recombination 
between A and B genomes from the cultivated with A and 
B or K genomes from the wild species. The other 
genotypes (diploid and synthetic polyploidy) were most 
probably homozygous since wild species are most 
autogamous and because of that recombination would 
not result in any new allelic combination as it happened in 
BC1 hybrids.   

On average, the three hybrids between synthetic 
allotetraploids and peanut cultivars had the highest 
resveratrol content. Previous study showed that hybrids 
of peanut with interspecific synthetic allotetraploids 
showed an increased concentration of flavonoids than 
their parental that resulted in an increased larval mortality 
of Spodoptera litura (Mallikarjuna et al., 2004).  

Variation on resveratrol content was found among the 
three BCs hybrids analyzed (Table 1). The hybrid [‘cv 
886’ X [‘cv 886’ X (A. batizocoi X A. stenosperma)] that 

had ‘cv 886’ (275.2  88.0
e
 μg/g) as a parental showed 

lower resveratrol content concentration (351.7  151.6
e
 

μg/g) than the one that had Caiapó’ (579.5  85.8
b 

μg/g) 
as parental [‘Caiapó’ X [‘Caiapó’ X (A. batizocoi X A 

stenosperma)]  that  had 743.0  103.9
a
 μg/g). This result
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Table 2. Average of resveratrol content in the different genotypes evaluated by level of significance between groups.  
 

Genotype Average  resveratrol content (µg/g) SK (%) 

Synthetic allotetraploids x peanut cv 540.5±199.0 a 

Synthetic allotetraploids 356.2±225.6 b 

Peanut cultivars 355.82±183.5 b 

Wild diploid species 192.80±173.5 c 
 

The analysis was done with Scott-Knott's (SK) 5% Test. 

 
 
 
suggested that peanut cultivar used as the parental in 
these crosses highly influences the resveratrol content in 
the resulting hybrids. 
 
 
Conclusion 
 
This study data suggest a positive effect of polyploidy 
and hybridization in resveratrol content in Arachis 
hybrids. Resveratrol can be synthesized by a few species 
and the major dietary natural sources include grapes, 
wine, peanuts, and soybeans (Burns et al., 2002). Our 
data opens the possibility to create and provide new 
sources of natural resveratrol by the used of interspecific 
synthetic Arachis hybrids analyzed, mainly the BCs 
genotypes, which displayed higher resveratrol contents 
than wild and the cultivated species. 
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