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Genetic “biofortification” presents an opportunity to provide sustainable and cost effective solution to 
the perennial problem of ‘hidden hunger’ prevalent in most marginalized regions of the world. Diets in 
households across many developing countries typically consist of high calorie crops which are mostly 
cereals with limited diversified food. Production of cereal crops with elevated quantities of 
micronutrients needed by the human body is thus imperative. This review outlines “biofortification” of 
cereal crops with emphasis on existing genetic variability, genetic and molecular basis for essential 
amino acids, zinc and iron accumulation in crops. Key issues emerging are that in most crops there is 
scope to undertake conventional improvement given the sufficient variability influenced by additive 
genes or associated with polymorphic molecular markers. Availability of high potential non-
commercialized genetically modified cereals points to prohibitive legislative frameworks and the need 
to adopt other tools such as gene editing, mutation breeding not subject to stiff restrictions. 
Furthermore, given the output nature of “biofortification” traits there is need to integrate this genetic 
enhancement in a pipeline breeding approach which integrates breeding objectives so that 
communities and processors can access these peculiar traits in every new improved variety. 
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INTRODUCTION  
 
Global incidence of micronutrient malnutrition across the 
world population is estimated to be above 2 billion, with a 
greater percentage of this statistic being resource poor 
households (Cashman, 2020). Children of pre-school 
age, adolescent women and reproductive women in 
general are at high risk of suffering from micronutrient 
deficiency health related conditions (Bouis et al., 2020). 
Inadequate essential micronutrients quantity, 'hidden 
hunger' can culminate into various physical, mental, 
social and economic ills such as increased morbidity, 
disability,   stunted   and   physical   growth  and  reduced 

national socio-economic development (Ekholuenatale et 
al., 2020). High mortality amongst children of school 
going age and complications in pregnant women due to 
micronutrient deficiencies in low to medium income 
countries has also been reported (Ahsan et al., 2017; 
Castrogiovanni and Imbesi, 2017). The World Health 
Organization (WHO) and Food and Agricultural 
Organization (FAO) report of 2003, listed Zinc, Iron, 
Iodine and Vitamin A deficiencies as the most prevalent 
deficiencies in developing countries which lead to various 
notable   health   conditions.  There  is  however  growing  
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concern in deficiency of folates, Vitamin D, Thiamine 
(B1), Lysine, Tryptophan, and Selenium (Strobbe et al., 
2017; Holick, 2017; Cashman, 2020; Motukuri, 2019; 
Ligowe et al., 2020). 

The prevalence of micronutrient deficiency in resource 
poor communities is largely attributed to dysfunctional 
food systems, depending heavily on inherently 
micronutrient poor staple cereal crops (maize, wheat, 
rice, sorghum, millets) with limited access to diverse 
foods which supply a variety of micronutrients (Conti et 
al., 2021). Global food systems have always been largely 
a direct function of the output from agricultural systems 
which largely focused more on increasing yield output 
with little regard to the quality of the produce. This has 
contributed significantly to the rise of unprecedented 
consequences such as micronutrient malnutrition 
amongst resource poor communities (Davis et al., 2019). 
Studies show that apart from food security, nutritional 
security is also equally important and as such, a robust 
and sustainable approach to agriculture production, 
which addresses both the energy as well as nutrition and 
health requirements, is thus required (Conti et al., 2021).  
 
 
FOOD FORTIFICATION STRATEGIES TO COMBAT 
MICRONUTRIENT DEFICIENCIES 
 
Developed economies have made significant strides in 
combating malnutrition through various interventions 
which include, fortifying processed foods, 
supplementation, and diversifying diets (Mannar et al., 
2018). However, in low to middle income countries, these 
strategies have low feasibility due to the associated high 
cost factor. As such, remediation approaches that can 
reach low-income rural populations with limited access to 
commercially marketed fortified foods are a strategic 
solution. The following sections focus on highlighting the 
merits and demerits of the common food fortification 
strategies.  
 
 
Industrial fortification 
 
This is the enrichment of processed food products with 
specific essential nutrients during processing. It can be 
done either as a commercial product enhancement 
strategy by the food processors or as a policy influenced 
intervention stipulated by governments. Industrial 
fortification normally targets basic food commodities such 
as sugar, cooking oil, milk, butter, maize meal, table salt 
and wheat flour, due to their widespread and regular 
consumption in almost all households (Kumar et al., 
2019). This malnutrition combating strategy is fairly 
effective owing to its wide reach of consumers; however it 
also notably has a number of downside factors. In cases 
of inefficient quality monitoring, systems, there is a huge 
risk    of    exposing   consumers   to   mineral   toxicity   if  
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excessive doses of the micronutrients are added 
(Maqbool and Beshir, 2019). Another major concern also 
comes on the cost implication of the industrial fortification 
process which is factored into the fortified products thus 
transferring the cost burden to consumers (Lalani et al., 
2019). Consequently, this makes industrially fortified food 
products more expensive than unfortified products. This 
has greater disadvantages for resource poor communities 
in developing countries who cannot bear such costs. 
 
 
Dietary supplements 
 
Dietary supplements are normally acquired through 
nutritional intervention programs by governments, non-
Governmental Organizations (NGOs) or direct purchases 
from pharmacies (Marra and Bailey, 2018). Several 
supplements, supplying micronutrients such as Zinc, 
specific vitamins like Vitamin A and C as well as protein, 
creatine and other amino acid supplements are available 
on the markets for open purchase (Goredema-Matongera 
et al., 2021). The positive impact of government or NGO 
driven dietary supplementation programs in Africa, for 
instance, cannot be ignored but however an evaluation of 
dietary supplementation as a strategy to reduce 
micronutrient deficiencies suggests low sustainability. 

Like industrial “biofortification”, overdosing on dietary 

supplements can lead to toxicity in consumers (Dwyer et 
al., 2018). The intervention is also limited by the absence 
of critical supporting infrastructure or health services like 
pharmacies or clinics in malnutrition prone regions. The 
socio-economic environment in most of the malnutrition 
prone regions is also not favorable to enable regular 
supply of supplements more so pricing of the 
supplements is beyond the reach of target consumers 
(Garg et al., 2018).  
 
 
Dietary diversification 
 

Consuming diets based on a variety of food sources 
decreases the risk of suffering from micronutrient 
deficiency related illnesses. This strategy is one of the 
most efficient, long-term solutions to militate against 
malnutrition. Consumption of a balanced diet supplies the 
body with all the nutrients it requires in sufficient 
quantities. Some of the micronutrient rich foods include 
animal based food sources like eggs, milk, red meat, 
vegetables, fruits, fish and sea food (Aakre et al., 2020; 
Wallace et al., 2016; Manwaring et al., 2016). Despite the 
benefits, adequate dietary diversification is beyond the 
financial capacity of many households in low to medium 
income countries (Manwaring et al., 2016). A number of 
donor funded organizations have tried to bridge this gap 
by introducing programs that promote establishment of 
nutritional gardens in rural areas; however the extent of 
coverage is still  not  wholesome.  Such  programs  would 
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also require the support of governments through their 
agricultural extension services to maintain the nutritional 
gardens if NGO funding pulls out of those areas (Singh et 
al., 2016). 
 
 
Bio-fortification 
 

Amongst the many available agricultural tools that can be 
implemented to increase micronutrient concentrations in 

food crops, “biofortification” is the first agricultural tool 

that has been implemented at a global scale with notable 

success (Bouis et al., 2013). “B 
iofortification” of cereal crops is the deliberate and 

targeted enrichment of grain micronutrient density, 
through conventional and molecular plant breeding; 
transgenic, micro-flora and fertilization techniques. 

“Biofortification”  is considered cost effective, long term 

and sustainable approach to address malnutrition in 
resource poor communities (Sharma et al., 2016).   

Agronomic “biofortification”  involves the application of 

specific fertilizers to the soil or directly to foliage to 
increase the mineral concentration available for uptake 
by the plant. Various studies with different minerals have 
proven that increasing mineral concentration available for 
uptake by plants translate to increased levels of the 
micronutrient in edible portions of the crop (Zhang et al., 
2018; Wang et al., 2016; Joy et al., 2017). Successful 

implementation of agronomic “biofortification” is however 

affected by several factors which include availability of 
the mineral in a form that can be available for uptake by 
the plant roots, physiologically related interferences to 
efficient translocation of the mineral in the crop plant, and 
remobilization of minerals from vegetative tissues into 
storage tissues (Rehman et al., 2021). The cost of 
fertilizers is also another huge obstacle to the successful 

implementation of agronomic “biofortification” as a 

mitigation measure against malnutrition (Bouis et al., 
2020).  

Recent novel discoveries on the role of certain bacteria 
strains that solubilize metals such as zinc, making them 
more available for uptake by plant roots have presented 

an additional approach towards “biofortification” 
(Mumtaz et al., 2017). Inoculating crop seeds with such 
microbial strains have the potential of not only increasing 
micronutrient densities in edible portions but also can 
significantly enhance soil fertility and crop yield (Hussein 
et al., 2018).   

Genetic “biofortification” on the other hand involves 

the use of both conventional and transgenic breeding 
techniques to introgress genes that promote high 
micronutrient accumulation into elite genotypes or 
manipulate the crop genetic makeup using genome 
editing tools in order to express proteins that enhance 
micronutrient accumulation (Ludwig and Slamet-Loedin, 

2019). Genetic “biofortification” of staple crops presents  

 
 
 
 
a sustainable, low cost and durable solution to delivering 
micronutrients in the diets of malnourished populations. 
 
 
ADVANTAGES OF GENETIC BIOFORTIFICATION 
 
Cost effective and inexpensive 
 
Developing bio-fortified staple crops is a one-time 
investment, with very low recurrent costs (Sharma et al., 
2016). Upon release, bio-fortified germplasm can be 
shared across communities and considering the global 
extent of cultivation of staple crops such as maize, 
sorghum and wheat impacts are far reaching.  
 
 
Bio-fortified varieties can be grown sustainably 
 
Seed of released bio-fortified crop varieties, especially 
self-pollinating crops, can be retained and grown without 
losing the trait. HarvestPlus programs supported by 
partnerships with country Agricultural Research 
Institutions have supported the development and 
promotion of bio-fortified crops. The focus has mainly 
thrived to reach marginalized communities and seed 
supply to ensure access to bio-fortified germplasm by 
vulnerable communities (Sharma et al., 2016; Yadav et 
al., 2020). 
 
 
Breeding for higher micronutrient density in some 
crops has no yield penalty 
 
Several character association studies performed on some 
bio-fortified crops, have revealed absence or no 
correlation between micronutrient accumulation in edible 
portions and yield (Welch and Graham, 2004; Velu et al., 
2012; Kumar et al., 2015). Thus breeding for high 
micronutrient density can be done successfully without 
reducing the yield output that is expected for a given 
genetic background. Where yield penalty exist, 
exploration of other crop improvement tools such as 
genetic engineering can be exploited with minimal linkage 
drag.  
 
 
STRATEGY FOR SUCCESSFUL GENETIC BIO-
FORTIFICATION 
 

Success in genetic “biofortification” depends on 

increasing the existence of sufficient genetic variability for 
the nutrient in question in the final edible portion. Where 
variability is non-existent within the crop gene pool 
techniques such as mutation breeding, gene editing and 
genetic engineering can be employed depending on the 
likelihood for successful commercialization of the final 

product.  A  pipeline  approach  of fitting “biofortification”  



 
 
 
 
objectives within regular crop improvement programs can 
be a sustainable way of ensuring consumer acceptance. 

Integrating an additional “biofortification” trait to farmer 

preferred varieties can be useful for enhanced adoption. 
If the sensory attributes of the crop are not affected and 
preparation methods are the same bio-fortified crops can 
thrive. 
 
 
Bio-fortification of maize 
 
Maize (Zea mays) remains one of the most targeted 

cereals for “biofortification” owing to its widespread 

cultivation as a staple crop and key source of diverse 
products in developing regions of sub Saharan Africa 
(SSA), South America and South Asia. The wide native 
genetic variability in micronutrient concentration enables 
elite breeding lines of the crop to be nutritionally 
enhanced through plant breeding approaches. 
Furthermore, the cultivation of maize is possible across a 
broad agro-ecosystem coverage which further justifies its 

continued inclusion in “biofortification” programs. 

In SSA, 30% of the total calories in cereal based diets 
of 20 countries are provided by maize grain. High 
dependency on the cereal pushes its daily per capita 
consumption in the region up to 450 g/person/day (Ekpa 
et al., 2019). Consumption of maize in SSA is primarily as 
boiled, roasted green mealies or alternatively as a thick 
porridge prepared from ground maize meal and served 
with an accompanying relish. The dependency on 
consumption of maize in these poor and marginalized 
regions coupled with the inherent low essential 
micronutrient density characteristic of normal maize 
(Cakmak and Kutman, 2018), puts such consumers at 
greater risk of suffering various micronutrient deficiency 
related conditions.  

Extensive work on “biofortification” of maize has been 

done by the International Maize and Wheat Improvement 
(CIMMYT) in partnership with HarvestPlus whose 
mandate is to improve nutrition and public health through 
development of bio-fortified food crops. Most of the 
interventions in bio-fortifying maize have targeted 
improvement of proteins (lysine and tryptophan), zinc and 
pro-vitamin A grain concentration (Goredema-Matongera 
et al., 2021).  
 
 
Quality protein maize (High Lysine and Tryptophan 
Content)  
 
Maize kernels have a large portion of zein proteins in the 
endosperm which is deficient of essential amino acids. As 
a result nutritional enhancement efforts for the crop 
commenced as early as the 1960s with development of 
Quality Protein Maize (QPM) by CIMMYT after the 
discovery of the mutant opaque-2 (o2) gene (Listman et 
al., 2019).  
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Genetic variability for grain lysine and tryptophan 
content in maize germplasm 
 
Any crop improvement program primarily depends on the 
amount of genetic variability present for the given trait of 
interest. The extend of diversity enables effective 
selection and generation of an improved population with 
a higher population mean as compared to the mean of 
the original population. Singh et al. (2020), in a study to 
evaluate the protein content, lysine and tryptophan 
content in maize inbred genotypes, reported existence of 
broad diversity in lysine and tryptophan content in QPM 
germplasm. The concentration of lysine in QPM ranges 
from 3.3 to 4.0 g/100 g of total endosperm protein 
compared to normal maize grain, QPM has lysine and 
tryptophan content that is 30 and 55% higher (Nuss and 
Tanumihardjo, 2011).  
 
 
Genetic basis for high grain lysine and tryptophan 
production and breeding efforts in maize 
 
The genetic basis for QPM breeding is based on 
homologous recessive alleles of the mutant opaque-2 
gene which is normally homozygous dominant or 
heterozygous (Tripathy et al., 2017). The homozygous 
recessive genotype confers production of increased 
levels of the amino acids tryptophan and lysine than 
conventional maize (Maibvisira et al., 2018). However, 
initial efforts in breeding QPM revealed that, expression 
of the opaque-2 mutant produced a soft chalky 
endosperm which was undesirable among consumers. It 
was however discovered that breeding for the presence 
of the mutant gene together with its accompanying genes 
produced a hard endosperm preferred by consumers. 
The ultimate success of QPM breeding thus requires a 
multi-pronged approach that manipulates 3 different 
genetic systems which are: (i) replacing the normal gene 
with the mutant gene on the opaque-2 locus, (ii) modifier 
genes that enhance the expression of the opaque-2 gene 
relative to lysine and tryptophan content, and (iii) modifier 
genes that induce development of a hard endosperm 
(Prasanna et al., 2020). 
 
 

BREEDING STRATEGIES FOR QPM 
 

Different breeding strategies have been employed to 
manipulate and improve the performance of specific 
maize genotypes with regards to grain lysine and 
tryptophan content. The most utilized strategy is 
hybridization done with the objective of exploiting 
heterosis. Using this breeding method, open pollinated 
varieties (OPVs) or hybrids can be produced (Tripathy et 
al., 2017). The preponderance of additive gene action for 
Quality Protein trait enables development of QPM OPVs 
through recurrent selection. This can be accomplished by 
crossing a recurrent parent which  must  be  an  improved  
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OPV and a trait donor parent with high lysine and 
tryptophan content followed by successive backcrosses 
with the recurrent parent to retain most of its original 
genome (Goredema-Matongera, 2021). Another breeding 
approach for production of QPM is hybrid development. 
The success of hybrid development largely depends on 
heritability of the trait, gene action governing expression 
of the trait as well as combining ability of different 
genotypes upon crossing (Goredema-Matongera, 2021). 
A study by Machida et al. (2010) reported significant GCA 
and SCA for tryptophan/protein content (Quality Index) 
from a diallel cross of QPM inbred lines. This indicates 
the possibility of producing hybrid QPM through exploiting 
the non-additive gene effects that can contribute 
significantly to increasing heterosis for the quality protein 
trait.  

There is also evidence of current research on use of 
recent breeding tools such as Marker Assisted Breeding 
(MAB) and genome editing for producing QPM. MAB 
significantly increases the efficiency of the selection 
process since it is based on the operational principle 
where presence of a specific trait linked marker confirms 
presence of a trait (Maqbool et al., 2021). Tandzi et al. 
(2017) reported 3 simple sequence repeats (SSR) 
markers and these are phi057, phi112 and umc1066. As 
such introgression of the o2 gene to non-QPM genetic 
backgrounds can be made possible with relative ease 
and efficiency using the highly polymorphic markers. 
According to Goredema-Matongera et al. (2021), to date 
a number of QPM varieties have been released across 
the world for instance HQPM-5 (India), Obatanpa 
(Ghana), ZS261 (Zimbabwe), BHQP542 (Ethiopia), Q623 
(South Africa), and Yanrui-1 (China). 
 
 
Zinc bio-fortified maize 
 

Maize grain is rich in calories but deficient in some 
essential micronutrients that include zinc (Ignjatovic-Micic 
et al., 2015).  

Consumers who subsist on maize as a staple crop are 
thus at risk of suffering from zinc deficiency if other 
sources of zinc are not available. The maize zinc 

“biofortification” drive has been largely driven by 

CIMMYT and International Institute of Tropical Agriculture 
(IITA) in partnership with other private and public sector 
organizations, for widespread alleviation of the 
micronutrient deficiency in communities that subsist on 
cereal based diets was initiated (Prasanna et al., 2020).  
 
 
Genetic variability for grain zinc content in maize 
germplasm 
 

HarvestPlus set 33 μg/g as the breeding target for maize 
grain zinc content that would address deficiencies 
assuming 90% zinc retention after processing and 25% 
bioavailability    (Andersson  et  al.,  2017).  The  baseline 

 
 
 
 

grain zinc level in maize is 20 μg/g thus a target 
increment of 13 μg/g would achieve the breeding target 
(Akhtar et al., 2018). Several screening procedures have 
revealed sufficient grain zinc variability in maize that can 
suffice to attain the breeding target. Mageto (2020) 
synthesized data from 23 reports on grain zinc screening 
studies done since the year 2000 on over 3000 
genotypes that included landraces, inbred lines, hybrids, 
core accessions, improved genotypes, and QPM inbreds 
from various agro-ecological regions across the world 
and found grain zinc variability spanning a range of 3.8 to 
95.6 μg/g. Such wide variability affirms the practicality of 
breeding for high grain zinc in maize through selective 
breeding. 
 
 
Genetic and molecular basis for grain zinc 
accumulation in maize 
 
The ultimate goal of zinc breeding is to increase zinc 
uptake and transport efficiency, increase the amount of 
bioavailable zinc and reduce concentration of anti-
nutritional factors or increase concentration of promoters 
(Mulualem, 2015). Zinc accumulation in maize grain is 
reported to be a polygenic trait (Gupta et al., 2015). Apart 
from the genetic effects, it is also significantly dependent 
upon the integrated action of several other factors such 
as environmental effects, genotype × environment 
interaction, micronutrient availability in the soil, 
translocation and partitioning to different plant parts and 
uptake by roots (Hussain et al., 2018). This implies 
differential zinc concentration among genotypes 
depending on where they are grown. 

Combining ability studies have revealed that the 
inheritance of zinc accumulation in maize grain is largely 
controlled by additive than non-additive gene effects (Fan 
et al., 2014; Fasahat et al., 2016), with heritability of 
maize grain zinc reported to be in the range of 59 to 76% 
(Fan et al., 2014; Cheah et al., 2020; Mageto et al., 
2020). The extent of these genetic parameters suggests 
significant influence of genetic factors in determining 
grain zinc content as well the potential of realizing high 
genetic gains through selection.    

Marker Assisted Breeding (MAB) for complex traits like 
zinc grain accumulation in maize realizes quicker results 
than using conventional breeding and phenotypic 
characterization methods. As such, several QTL mapping 
and Genome Wide Association (GWAS) studies for zinc 
accumulation have been conducted in maize. The results 
from these studies however, have not been consistent 
with regards to gene loci, total variance explained by 
identified QTL and confidence levels (Mageto, 2020). 
Most researchers however concur that genomic regions 
associated with zinc accumulation in maize are located 
on chromosomes 1, 2, 6, 7, 9 and 10 (Zhang et al., 2017; 
Hindu et al., 2018; Guo et al., 2020; Mallikarjuna et al., 
2020). These studies have further identified some of the 
important   gene   families   that   influence    maize    zinc 



 
 
 
 

accumulation such as Natural Resistance Associated 
Macrophage Protein (NRAMP), Ferritin, Cation Efflux 
(CE), Yellow Stripe (YS), and Zinc Regulated Transporter 
Protein) family (ZIP) (Goredema-Matongera, 2021).  
Prasanna et al. (2020) reported the presence of 3 high 
utility SNPs from a total of 20 SNPs found to be 
associated with grain zinc. These SNPs can be used for 
Marker Assisted Selection (MAS) and Genomic Selection 
to accelerate genetic gain for grain zinc in maize.  
 

 

BREEDING STRATEGIES AND PROSPECTS FOR 
ZINC BIOFORTIFIED MAIZE 
 

Successful breeding of zinc dense maize depends on 
genotype × environment interactions as well as genetic 
correlation between zinc accumulation with other 
attributes such as concentration of other micronutrients or 
yield. Plant breeders can exploit the prevalence of 
additive gene action for grain zinc accumulation to 
develop improved Open Pollinated Varieties (OPVs) 
through recurrent selection (Goredema-Matongera, 
2021). Narrow sense heritability of 72% was reported for 
grain zinc in maize (Hindu et al., 2018) thus with such 
high heritability and non-additive gene action reported for 
specific genotypes suggests high zinc hybrids can be 
developed. Plant breeders can also safely expedite the 
exploitation of SNP markers already identified as being 
strongly associated with grain zinc accumulation in maize 
for marker assisted or genomic selection purposes thus 
accelerating the breeding progress (Prasanna et al., 
2020).  
 
 
Pro-vitamin A maize 
 

Yellow and orange maize contains carotenoids such as 
α-carotenoids, β-carotenoids and β-cryptoxanthin, which 
are precursors of the physiologically active Vitamin A or 
retinol by humans upon consumption (Kondwakwenda et 
al., 2019). Elevation of the carotenoids in maize, a crop 
that constitutes a significant percentage in the diet of 
communities in Sub-Saharan Africa is of paramount 
importance given the scarcity of cheap vitamin A sources 
in many developing countries. 
 
 

Genetic variability for PVA content in maize 
germplasm 
 

Maize grain normally contains 0.5 to 1.5 μg/g Pro-vitamin 
A (PVA). This amount weigh below the minimum amount 
required to address vitamin A deficiency (Mengesha et 
al., 2019). The breeding target for maize PVA was set at 
15μg/g in order to provide 50% of the mean daily vitamin 
A requirement through normal consumption habits (Bouis 
et al., 2020). Initial screening studies of more than 1500 
genotypes revealed considerable variability for carotenoid 
profiles   in   temperate,   tropical  and  subtropical  maize  
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germplasm, with results indicating PVA content between 
0 and 19 μg/g (HarvestPlus, 2014; Muthusamy et al., 
2015; Muzhingi et al., 2017). Great polymorphism was 
also observed in alleles of genes encoding enzymes that 
affect concentration of grain PVA carotenoids 
(Kondwakwenda et al., 2019). This ultimately enables the 
stacking of these promoter genes into one genotype 
using Marker Assisted Breeding. 
 
 
Genetic and molecular basis for PVA carotenoids 
accumulation in maize 
 

Accumulation of PVA in maize has been largely attributed 
to the activity of three key enzymes in the carotenoid 
biosynthesis pathway, namely phytoene synthase 
(PSY1), lycopene epsilon cyclase (lycE), and carotene 
hydroxylase 1 (CrtRB1) (Owens et al., 2014). However, 
the contribution of each of these towards PVA 
accumulation varies. 

Phytoene synthase catalyses the condensation of 2 
genanylgeranyl molecules (GGPP) into 1 molecule of 
phytoene. This reaction is responsible for development of 
yellow color in yellow maize (Babu et al., 2013). 
Variability in alleles of the PSY1 gene (Y1 gene) 
accounts for the differences in grain color in maize. A 
homozygous dominant (Y1/Y1) or heterezygous (Y1/y1) 
allelic combination results in production of high levels of 
carotenoids which accumulate in the endosperm of 
yellow maize. Conversely, a recessive combination 
(y1/y1) is typical of white maize (Maqbool et al., 2018).  

Lycopene epsilon cyclase (lycE) catalyses the 
conversion of lycopene into α-carotene or β-carotene, 
however down-regulating the lycE gene favours 
progression of the β-carotene branch over α-carotene 
branch in the carotenoid biosynthesis pathway (Zunjare 
et al., 2017). Mapping analysis and allele mining studies 
revealed that there are 4 lycE polymorphic sites located 
on chromosome 8. These polymorphisms explain 58% of 
phenotypic variance in maize PVA accumulation (Azmach 
et al., 2013). 

β-carotene hydroxylase (crtRB1) facilitates the 
conversion of β-carotene to β-cryptoxanthin (Maqbool et 
al., 2018). The crtRB1 locus has been shown to be the 
major QTL linked with β-carotene accumulation and other 
downstream non PVA carotenoids. Mapping analysis and 
allele mining studies have shown the crtRB1 locus on 
chromosome 10 and also existence of 3 polymorphic 
sites (Maqbool et al., 2018).  

Various studies to evaluate combining ability and 
heritability of high PVA content in maize concur that PVA 
carotenoid content is controlled by both additive and non-
additive gene action with preponderance of non-additive 
gene action (Babu, 2014; Halilu et al., 2016). 
Furthermore, Ewool and Akromah (2017) and Menkir et 
al. (2017), observed medium heritability for both PVA and 
non PVA carotenoids. However, Halilu et al. (2016) 
reported low  broad  and  narrow  sense  heritability for β- 
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cryptoxanthin and α-carotene but high broad sense 
heritability for β-carotene. These results are suggestive of 
response to selection using available diverse material for 
PVA breeding. 
 
 
BREEDING STRATEGIES FOR PVA MAIZE BREEDING  
 
The available information on PVA genetics allows for 
both conventional and molecular breeding strategies and 
selection methods to be used for developing high PVA 
maize cultivars. Azmach et al. (2013), recommended 
backcross breeding use in the early stages of bio-
fortication efforts in tropical and subtropical regions. This 
is because most tropical maize genotypes have low PVA 
carotenoids thus introgressing has to be from donor high 
PVA temperate parents (Menkir et al., 2017).  

Recurrent selection is also another viable strategy, 
especially for development of OPVs, which are the most 
economical and sustainable option for low income 
regions since seed can be retained for 2 or 3 
generations. This exploits additive gene effects and 
medium to high heritability (Suwarno et al., 2014). 
Recurrent selection techniques such as intra-population 
recurrent selection and pedigree selection have been 
evaluated by different researchers for improvement of 
PVA in maize with some significant levels of success. A 
study by Dhliwayo et al. (2014), found that maize PVA 
carotenoid levels were significantly improved after 3 
cycles of S1 recurrent selection on 3 genetically diverse 
maize populations. 

Hybrid development is also a key alternative in 
breeding for PVA in maize as it exploit heterosis, that can 
manifest in a number of other important traits such as 
yield and resistance or tolerance to biotic and abiotic 
stresses. To unlock the heterotic potential of PVA 
associated genes, stable high yielding and high PVA 
inbred lines are developed and these are subsequently  
crossed into single, 2-way or 3-way cross hybrids based 
on high SCA effects for PVA and other desirable 
agronomic traits (Kondwakwenda et al., 2019). Maqbool 
et al. (2018), however points out that, 3-way crosses are 
more ideal for PVA improved in maize due to practical 
implications, being economical in seed production and 
the relative ease of obtaining uniformity for the hybrid 
plants. 

One of the major hurdles in the process of developing 
PVA bio-fortified maize is analysis, specifically 
partitioning and quantification of the different carotenoids 
present. This is because (1) maize contains different 
types of carotenoids, some of which are non-PVA 
associated (2) carotenoids form complex interactions with 
other biological molecules such as proteins or starch (3) 
like other biological molecules, carotenoids are prone to 
degradation (Guild et al., 2017). The practical potential 
for MAS in PVA breeding was exploited for identifying 
high PVA parental lines, tracking PVA-linked alleles 
during backcrossing as well as proteome quantification of  

 
 
 
 

PVA genes (Azmach et al., 2013; Muthusamy et al., 
2014; Suwarno et al., 2014). 

To date, significant progress in PVA Marker Assisted 
Breeding (MAB), a pedigree breeding scheme using MAS 
to target selection of the 2 superior alleles was used to 
develop donor germplasm with >20 µg/g. This was done 
by selecting seeds which were homozygous for the 
favorable alleles at the CrtRB1-3’TE and LcyE3’Indel 
polymorphisms from segregating F2 and F3 populations 
(Zunjare et al., 2018; Ortiz-Covarrubias et al., 2019). 
CIMMYT and IITA developed Single Nucleotide 
Polymorphism (SNP) markers associated with the 
favorable alleles and this has increased the efficacy of 
using MAS for PVA breeding (Prasanna et al., 2020).   
 
 

Bio-fortification of rice 
 

Rice (Oryza species) is a major staple food for many 
Asian countries and feeds more than half of the world’s 
population. Like the majority of cereals rice is deficient in 
micronutrients iron and zinc, which causes various 
disorders that are prevalent in many developing countries 
(Bashir et al., 2013). In rough rice, the micronutrients are 
present but reduce significantly during postharvest 
processing which is crucial to suit consumer needs and 
allow for long term storage of grain without deterioration. 
Dehulling and debranning reduces the micronutrients that 
are confined in the aleurone layer, pericarp and 
embryonic tip which predisposes communities that are 
dependent on rice as a major food to iron and zinc 

deficiency. Accordingly, any “biofortification” efforts in 

rice have greater chances of success if they target the 
endosperm that remains after processing.  
The drive to biofortify rice to address zinc and iron 
deficiencies commenced following the HarvestPlus 

prepared “Biofortification” Index which identified a 

number of Asian countries that were critically zinc 
deficient (Bouis et al., 2020).  

HarvestPlus in partnership with International Rice 
Research Institute (IRRI) have made significant strides in 
developing zinc biofortified rice varieties for target 
countries like Bangladesh, Philippines, India, and 
Indonesia. Significant research and breeding efforts to 
improve rice micronutrient quantities have also been 
done to improve iron and carotenoid concentration with a 
number of varieties released to date. Target values for 
improved grain iron and zinc in rice that can reach 30% of 
human Estimated Average Requirement (EAR) were set 
at 13 and 28 μg/g, respectively (Bouis et al., 2011). 
 

 

Genetic variability of zinc and iron concentration in 
rice 
 

Unlike most staple cereals with elevated zinc and iron 
traits available within the species gene pool, there is 
limited variation for these two in rice. Some wild rice 
relatives  such  as  O. latifolia,  O. nivara, O. officinalis, O. 



 
 
 
 

barthii, O. longistaminata, and O. rufipogon have 
significant iron and zinc with potential use in pre-
breeding. The major impediment is linkage drag during 
introgression that compromises yield (Majumder et al., 
2019). Despite the existence of synergism between iron 

and zinc in rice grain, only zinc “biofortification” has 

gained more traction and several varieties are already 
released in Asia (Calayugan et al., 2021). The success of 

zinc “biofortification” came from the use of aus 

germplasm in conventional breeding programs. However, 
there is need for multi-environment evaluation of 
breeding materials given the significant genotype-by-
environment interaction for zinc.  On the contrary, there is 
no high iron germplasm within the rice germplasm which 
means any improvement in this micronutrient will require 
use of recombinant DNA technology, gene editing or 
mutation breeding (Matres et al., 2021).  In rice 
micronutrient biofortification several mutants and 
products of genetic engineering show great potential but 
commercialization has been limited due to prohibitive GM 
legislative frameworks in the targeted developing 
countries.  
 
 

Genetic and molecular basis for zinc and iron uptake 
and accumulation in rice grain 
 

Numerous studies have shown that zinc and iron uptake 
and accumulation in grain is controlled by several genes. 
Characterization of gene families in zinc homeostasis 
have identified gene families such as OsNAS, OsTOM1, 
OsDMAS, OsSAMS and OsNAAT which increase metal 
uptake by roots through their involvement in biosynthesis, 
transport and secretion of phytosiderophores (Kavakani 
et al ., 2018; Raza et al., 2019; Dixti et al., 2019; Yang et 
al., 2020). Equally important are the ZIP family genes 
responsible for transport of zinc and ferrous iron as well 
as the OsYSL family proteins which are actively involved 
in long distance transport of metals such as zinc and iron 
in the phloem and their subsequent influx into the seed 
endosperm (Swamy et al., 2016).  

Genetic characterization of several rice genes for grain 
zinc have revealed significant phenotypic co-efficient of 
variation (PCV), genotypic co-efficient of variation (GCV), 
genetic advance as well as broad and narrow sense 
heritability (Sala et al., 2015; Ajmeera et al., 2017; 
Umarani et al., 2017; Dhakal et al., 2020; Prasannakumari 
et al., 2020; Rathod et al., 2020). Studies on combining 
ability have also shown significant additive gene effects 
for grain zinc (Zhang et al., 1996; Sharifi, 2013). In other 
studies, heterosis and transgressive segregants have 
also been identified in rice breeding populations by Babu 
et al. (2012) and Stangoulis et al. (2017).  
 
 

BREEDING STRATEGIES FOR HIGH GRAIN IRON 
AND ZINC IN RICE 
 

There is substantial and useful  genetic  variation  in  zinc  
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content sufficient to be exploited in a breeding program to 
develop biofortified rice. On the contrary, genetic 
variability for iron is limited thus most of the available 
literature on conventional breeding of these essential 
metals focuses on zinc breeding. The narrow genetic 
variability coupled with significant losses of the 
micronutrient realised during polishing disqualifies 
selective breeding as a viable option for iron content 
improvement in rice (Boy et al., 2017). However, with 
regard to zinc content improvement in rice, Balakrishnan 
et al. (2020) suggested use of the advanced backcross 
method for genetic dissection of wild rice, and for 
developing high zinc introgression lines, as an attractive 
approach for efficient use of wild rice accessions. Narrow 
sense heritability high, single plant selection can be 
utilized as an effective approach for improving nutrient 

content(Calayagan et al.,2020).Furthermore, use of 

multiple crosses involving several donors and recipient 
parents such as 3-way or 4-way crosses or reciprocal 
crosses to enhance zinc levels and yield potential is also 
a viable alternative.  Meng et al. (2016) highlighted the 
use of Multi-parent Advanced Generation Inter-cross 
(MAGIC) as a viable method to pool genes for high zinc 
as well as providing a good resource for selecting high 
zinc lines and transgressive segregants. Heterosis can 
also be exploited to develop high grain zinc and high 
yielding hybrids since reports show that there is 
satisfactory heterosis in rice (Naik et al., 2021).  

Every breeding effort must ensure that essential 
agronomic attributes such as high yield are not lost as 
other traits are introgressed. Calayagun et al. (2020), 
reported a positive correlation between zinc content and 
grain weight, thus implore that yield related traits must be 
considered during selection. Despite contrasting results 
on the relationship between yield and zinc in rice, most of 
the recent studies have found no significant relationship 
between the 2 traits thus ensuring the possibility of 
developing zinc rich and high yielding varieties (Trijatmiko 
et al., 2016; Jaksomsak et al., 2017; Anusha et al., 2021). 
 
 

Iron biofortified pearl millet  
 

Pearl millet (Pennisetum glaucum) is a crop of economic 
significance in the semi-arid and arid regions of Africa 
and India where it is consumed as a staple crop by some 
communities (Govindaraj et al., 2020). Its grain zinc 
content is comparatively higher than in other cereals such 
as rice and wheat, however major concern is on the grain 
iron content produced by most pearl millet genotypes. 
This prompted the need to undertake crop improvement 
efforts focused on raising iron content in OPVs and 
hybrids for Africa and India, respectively (Boy et al., 
2017). 
 
 

Genetic variability of iron content in pearl millet 
 

A    target   increment   of   +30  ppm   iron   was   set   by  
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HarvestPlus to achieve a target level of 70 ppm iron in 
pearl millet grain from a baseline level of 47 ppm 
(Govindaraj et al., 2020). Germplasm screening by 
different institutions and researchers have revealed wide 
variability for iron across diverse populations that include 
landraces, inbred parents, population progenies and 
hybrids. To date, ICRISAT screening studies report of 
grain iron concentration spanning a range of 18 to 135 
μg/g across the aforementioned populations (Govindaraj 
et al., 2019). 
 
 
Genetic and molecular basis for iron accumulation in 
pearl millet grain 
 
Iron concentration in pearl millet is largely controlled by 
additive gene effects. Studies done to evaluate the 
combining ability of numerous and genetically diverse 
breeding lines and early generations progenies have 
confirmed preponderance of additive gene action 
controlling iron content in pearl millet (Kanatti et al., 2016; 
Gavali, 2018; Warrier at al., 2020). The trait is also 
associated with high heritability thus it has the capacity to 
respond well to selection thereby realising significant 
genetic gain in improved populations (Kumar et al., 2020; 
Anuradha et al., 2017). Gene mapping and molecular 
analysis studies have revealed that grain iron 
accumulation in pearl millet is controlled by several gene 
families which include PgIZIP, PgINRAMP and PgIFER 
(Pujar et al., 2020; Kumar et al., 2016; Mahendrakar et 
al., 2020). These genes play an important role in iron 
metabolism at different stages of the crop development, 
and they provide a foundation for exploitation of iron 
metabolism genes in pearl millet molecular breeding 
programs.  
 
 
BREEDING STRATEGIES FOR HIGH IRON PEARL 
MILLET 
 
Iron content breeding in pearl millet can be done via the 
pedigree method where progeny populations can be 
developed from bi-parental crosses (Srivastava et al., 
2022). In order to advance genetic gains in yield, 
composites can also be used as a base population to 
develop diverse hybrid parents. Development of hybrids 
for exploitation of heterosis is another viable breeding 
strategy for pearl millet (Srivastava et al., 2020). This is 
done by developing high iron inbred lines and later 
evaluating their combining ability. Currently, most pearl 
millet hybrids are produced through utilizing the various 
cytoplasmic male sterility systems available in pearl millet 
(Pujar et al., 2019). Pearl millet has no maternal effects 
for iron accumulation in grain thus high iron inbreds can 
be used as either males or females without affecting the 
outcome of the crosses (Kanatti et al., 2016).  

Key to  biofortification  of  any  crop  is  the  relationship  

 
 
 
 
between the target micronutrient and yield. Govindraj et 
al. (2020) reported that iron is negatively and non-
significantly associated with grain yield thus higher 
productivity does not necessarily lower iron levels in pearl 
millet grain. However, other agronomic traits of 
significance such as grain weight have shown positive 
correlation with grain iron concentration, implying the 
need for careful selection in the initial breeding stages. 
 
 
Zinc biofortified wheat 
 
Wheat (Triticum aestivum) has over the years played a 
very crucial role in the global food systems accounting for 
approximately 20% of the world's dietary needs 
(Mohammadi-joo et al., 2015). It is a fairly good adaptive 
crop that can thrive in various agro-ecosystems of the 
world thus making it one of the widely cultivated food 
crops (Muslim et al., 2015). Although substantially 
enriched with calories, wheat grain is however notably 
deficient in essential micronutrients such as iron and zinc 
and this is exacerbated by the milling process (Sharma et 
al., 2020).  
 
 
Genetic variability for grain zinc content in wheat 
 
A target increment of +12 μg/g was set to increase the 
grain zinc concentration from a baseline level of 25 to 37 
μg/g in improved wheat varieties (HarvestPlus, 2014). 
Large scale germplasm screening for grain zinc content 
across wheat landraces and wild relatives by CIMMYT 
identified significant variability that could suffice to 
achieve target increments for the metal in biofortified 
varieties (http://www.cimmyt.org/germplasm-bank/). More 
than 3000 germplasm accessions were screened and 
zinc content was found to be in the range of 20 to 115 
μg/g (HarvestPlus, 2014). A report by the Bangladesh 
Agricultural Research Institute noted average zinc 
concentration in wheat grain spanning a range of 20 to 35 
μg/g (Das et al., 2019). Furthemore, Gupta et al. (2021), 
reported the presence of higher Zn and Fe levels in 
landraces relative to cultivars. Zinc and iron levels 
reported by Gupta et al. (2021), reached as high as 87.29 
mg/kg Zn (up to 53.3 mg/kg in wheat cultivars) and up to 
122.20 mg/kg Fe (up 56.5mg/kg in wheat cultivars).  

Various high zinc genotypes with potential to be used 
as parental lines in zinc breeding programs were 
identified and most are progenitors of modern high zinc 
hexaploid wheat (Sharma et al., 2020). 
 
 
Genetic and molecular basis for grain zinc 
accumulation in wheat 
 
Grain zinc accumulation in wheat is under quantitative 
genetic control and to date several mapping studies have  

http://www.cimmyt.org/germplasm-bank/


 
 
 
 
identified a number of QTLs (Velu et al., 2014; Velu et al., 
2017; Shariatipour et al., 2021). While the Gpc-B1 gene 
was identified as being highly significant in zinc 
homeostasis and subsequent zinc accumulation in wheat 
grain, a recent study by Velu et al. (2018), further asserts 
the significance of the zinc-finger motif transcription factor 
and phosphatase as playing a major role in zinc loading 
in wheat grain. The same study also highlights group 2 
and 7 chromosomes as holding genes for nutrient uptake, 
translocation and sequestration of mineral elements in 
wheat. It must be noted however that although many 
genes that regulate zinc homeostasis have been 
characterised, their role in genotypic variation is still 
largely unclear (Garcia-Oliviera et al., 2018). Several 
studies reported zinc accumulation in wheat having high 
heritability thus suggesting high potential for responding 
to selective breeding (Velu et al., 2014, 2015; Alomari et 
al., 2018; Zhao et al., 2022).   
 
 
BREEDING STRATEGIES FOR HIGH GRAIN ZINC IN 
WHEAT 
 
It is recommended that zinc breeding be location or 
environment specific since the ultimate zinc concentration 
in grain is largely affected by zinc concentration in soils 
as shown by high genetic correlations between locations 
in some studies (Velu et al., 2015). The presence of 
additive QTLs allows for high zinc wheat varieties to be 
bred through conventional breeding. With the ever-
increasing information on QTLs and molecular markers 
for zinc homeostasis in wheat, the use of Marker Assisted 
Selection to increase the ease and efficacy of selection 
for high zinc expression is another practical approach 
(Saini et al., 2020). 
 
 
Iron and zinc biofortified sorghum 
 
Sorghum (Sorghum bicolor L. Moench) is an important 
food crop in arid and semi-arid regions of Asia and Africa 
and is ranked the 4th most consumed cereal. Its grain is 
known to be rich in starch, protein, crude fibre and other 
micronutrients (Abah et al., 2020). However, significant 
amounts of iron and zinc are lost during the decorticating 
process which removes them from the aleurone layer and 
scutellum (Proietti et al., 2015). Furthermore, 
bioavailability of iron and zinc from sorghum is also low 
~5 and ~20%, respectively (Zhao et al., 2019) largely due 
to the inhibitory effect of anti-nutrients such as phytates 
that form insoluble complexes with these micronutrients.  
 
 
Genetic variability for iron and zinc in sorghum 
 
Under the HarvestPlus Program secondary investments, 
a  target  increment  of  +30 μg/g  iron  and  +12 μg/g zinc  
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was set to increase the concentration of sorghum grain 
iron and zinc to 60 ppm iron and 20 ppm zinc 
(HarvestPlus, 2014). Several screening studies for grain 
iron and zinc in diverse sorghum genotypes including, 
parental lines, cultivars, advanced breeding lines, 
germplasm accessions, yellow sorghum and elite lines, 
have revealed that the crop has wide variability for the 
micronutrients spanning a range of 8 to 133 μg/g and 13 
to 91 μg/g, respectively (Kumar et al., 2010, 2018; 
Hariprasanna et al., 2014; Upadhyaya et al., 2016; Satish 
et al., 2016; Sen et al., 2019; Guild and Stangoulis, 
2021). These results indicate the wide and significant 
variability that can allow for identification of genotypes 
that can be used as parents for high iron and zinc 
breeding in sorghum. 
 
 
Genetic basis for grain iron and zinc accumulation in 
sorghum 
 
Iron and zinc density in sorghum is controlled by both 
additive and non-additive gene effects and was also 
found to have high heritability (Phuke et al., 2017; 
Gaddameedi et al., 2020). Trait association studies have 
also revealed positive correlation between grain iron and 
zinc content which suggest the possibility of simultaneous 
improvement of the two using conventional plant 
breeding methods. Furthermore, no significant correlation 
between iron and zinc accumulation in sorghum grain 
and other agronomic traits including yield were observed 
(Kumar et al., 2015).  
 
 
BREEDING STRATEGIES FOR IRON AND ZINC IN 
SORGHUM 
 
Breeding for high iron and zinc concentration in sorghum 
can be done simultaneously, due to their highly 
significant positive correlation (Motlhaodi et al., 2018; 
Phuke et al., 2017). Iron and zinc accumulation is 
however under the control of different genetic effects 
which determine the most appropriate breeding strategy 
to undertake. Grain zinc concentration is largely controlled 
by additive gene effects while iron concentration is 
predominantly governed by non-additive gene effects 
(Kumar et al., 2015; Gaddameedi et al., 2020). This 
implies that high zinc sorghum lines can be developed 
using progeny selection in pedigree or population 
breeding. Conversely, iron concentration can be improved 
through heterosis breeding as well progeny selection. At 
least one parent in heterosis breeding for grain iron must 
possess high iron concentration whilst for zinc, both 
parents must be having high grain concentrations (Kumar 
et al., 2015). Large genotype × environment effects have 
been observed for iron and zinc content in sorghum thus 
prompting the need for multiple environmental tests for 
improved  genotypes  to  identify  the  highly  stable lines.  
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There is currently limited literature on success stories of 
the use of Marker Aided Breeding for iron and zinc in 
sorghum; therefore, there is an opportunity to develop 
molecular markers to expedite the breeding process for 
these two nutrients in sorghum. 
 
 
FUTURE PERSPECTIVES 
 
As global food prices escalate due to Covid19 induced 
lockdowns, climate change and variability manifestation 
and conflict, alternative nutritious food will continue to be 
beyond the reach of many particularly in developing 
countries. Accordingly, there is need to enhance the 
nutritional value of adapted cereals to curb the nutritional 
deficiencies. Genetic “biofortification” will inarguably 
continue to present an opportunity to sustainably and 
economically address global malnutrition issues due to its 
cost effectiveness in comparison to other food fortification 
approaches. Use of plant breeding will be at fore given 
the low rate of commercialisation of products of 
biotechnology in many developing countries. To 
complement conventional plant breeding there is need for 
mainstreaming of Marker Assisted Breeding (MAB) in 
“biofortification” programs to expedite the crop 
improvement processes.  Moreover given the complexity 
in analysing micronutrients such as zinc and iron there is 
need to integrate cost effective, sensitive, high 
throughput phenotyping tools in the breeding process. 
Crops targeted for “biofortification” should ideally have 
farmer preferred traits to enhance adoption. Alternatively, 
“biofortification” can be integrated into the pipeline 
breeding approach so that all new varieties possess the 
key micronutrients. Overall, the process should involve 
the different end users so that the importance of these 
outputs traits are apparent and maximum benefit is 
derived from the crops in this era of nutrition sensitive 
agriculture.  
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