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The study on genotypes by environment interaction (GEI) and stability analysis was conducted to 
determine the G, E, and GEI variance magnitudes. The experiment was carried out at three locations in 
two consecutive years on 26 soybean genotypes using randomized complete block design (RCBD) 
design with three replications. The objectives were to (i) estimate the magnitudes of G, E, and GEI 
effects, (ii) stability analysis of 26 genotypes, and (iii) to identify the highest yielding genotypes for both 
specific and wide adaptability. The combined analysis of variance (ANOVA) of seed yield data was 

confirmed strongly significant (p0.001) for G, E, and GEI variances. At Kamash, the yield was 
increased by 47.6% as compared to Begi might be due to soil factors differences. The soybean plants 
therefore grew more produced, more yield where soil fertility is the highest as compared to poorest 
areas. The G, E, and GEI effects contributed 15.1, 51.6, and 30.2%, respectively. Such that the main 
variability is due to E and GEI variances being the largest proportions of the total treatment sum of 
square (TTSS). The genotypes main effect and genotypes by environment interaction (GGE) biplot is 
therefore the most appropriate recently used model's for stability analysis in efficiently utilizing and 
exploiting the existed GEI SS. The first two PC (PC1 and PC2) axes were used to create the two 
dimensional GGE biplots that explained 40.35 and 26.38% of GGE TSS, respectively. The biplots 
polygons vertex genotypes were categorized as the strongest and weakest as well as stable and 
unstable genotypes. The result of GGE biplot for G3 and G5 providing the best niche at A15, B15 and 
B16, G5, and G4 the highest at A16 and K16, while G4 and G12 are also best at K15. The highest and 
specifically performing polygon vertex genotypes contributed maximum MS for GEI SS. The highest 
scores for PC1, near zero absolute values for PC2, and the highest means were recorded from G5, G6, 
G19, G17, and G25 contributing nothing or little MS for GEI SS. These consistently performing 
genotypes showed high stability based on GGE biplots analysis growing vigorously in producing 
maximum means without changing their ranking across all sites for this economically interesting trait. 
 

Key words: Genotypes main effect and genotypes by environment interaction (GGE) biplot, genotypes by 
environment interaction (GEI), seed yield, soybean genotypes, stability analysis. 

 
 

INTRODUCTION 
 
Soybean (Glycine max (L.) Merr.) is categorized under 
Fabaceae family, genus Glycine, and sub-genus Soja 

(Lackey, 1977). The Soja contains wild (Glycine soja) and 
cultivated (G. max (L.)) species where the G. soja  species 
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is the probable ancestors and gene sources for cultivated 
species (Hymowitz, 1970). Soybean is well adapting at 
1300 to 1800 m altitudes receiving from 900 to 1300 mm 
rainfall, and 25 to 30°C temperature (Amare, 1987; 
Summerfied, 1975). The ideal soil types are light textured 
loams and medium black clay with pH of 6.5 to 7.0 (EIAR, 
1982). Ethiopia is endowed with 18 main and 32 sub-
agro-ecologies. This wide agro-ecological variability is the 
major challenges for field crops which resulted in high 
genotypes by environment interaction (GEI) effect. This 
GEI effect is a function of inconsistent responses of 
varieties due to genetic vs. location effects. The results of 
Rao et al. (2002) and Fekadu et al. (2009) confirmed 
strongly significant genotypes (G), locations (L), 
genotypes by locations interaction (GLI), and GEI effects 
for soybean genotypes. The ultimate goal of stability 
analysis is developing of consistently responding superior 
genotypes for broad adaptability (Kang, 1998). But, 
achieving of these objectives is generally difficult due to 
the probability of significant GEI effect (Gauch and Zobel, 
1996). Accordingly, different parametric methods were 
developed for GEI partitioning (Kaya et al., 2006). The 
genotypes main effect and genotypes by environment 
interaction (GGE) model is more preferable for cross-
over-type GEI describing via visual displaying of the 
which-won-where, and high mean vs. stability (Yan, 
2001; Ding et al., 2007). The bilinear GGE model 
practically describes the first two PCs for effectively GEI 
partitioning via G vs. GEI effects variability exploring (Yan 
et al., 2000; Guach, 2006). This method is also 
graphically visualizing the G vs. GEI effects for means vs. 
stability estimation via mega environment (ME)'s 
identification (Yan and Tinker, 2006; Yan et al., 2007; 
Yan, 2014). The objectives of the study were (i) to 
determine the G, E, and GEI variances magnitudes, (ii) 
estimate the stability of 26 genotypes for seed yield, and 
(iii) to identify the highest yielding genotypes for both 
specific and broad sense adaptability. 
 
 
MATERIALS AND METHODS 
 
Descriptions of testing sites 
 
The experiment was carried out at Assosa centre and also at 
Kamash and Begi sub-center experimental fields. The Assosa 
centre is one of the 17th centre for Ethiopian Institute of Agricultural 
Research (EIAR) positioned at Western Ethiopia at 10° 02.922 'N 
latitude and 34° 33.868 'E longitude at 1547 m elevation at a 
distance of 660 km from Addis Ababa city. The Begi is also situated 
at 9° 23.165 ′N latitude vs. 34° 24.380 ′E longitude at altitude of 
1783 m and 125 km East of Assosa town. The Kamash is located at 
1223 m and at a distance of 270 km at Northwest from Assosa 
town. The Assosa and Begi are characterized by a unimodal rainfall 
patterns receiving maximum mean during Jul, Aug, Sep, and Oct 
(AsARCMS, 2016). The mean annual rainfall during 2011 to 2016 
was 1092.38 and 1289.10 mm for Assosa and Begi, respectively. 
The mean annual maximum and minimum temperatures, 
respectively was also reached at 28.6 and 15.4°C for Assosa and 
26.0 and 13.0°C for Begi. The dominant soil types for Assosa are 
Dystric Nitosols and Fluvisols, while it is Eutric  Nitisols  followed  by  
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Orthic Acrisols and Eutric Fluvisols for Tongo-Begi areas 
(AsARCFSS, 2007). The soil textures are, respectively clay and 
sandy-clay for Assosa and Kamash with sand (22.5 and 51.0%), silt 
(22.5 and 12.0%), and clay (55.0 and 37.0%). 
 
 
Breeding materials and experimental design  
 
The study was carried out for two consecutive years (2015 to 2016) 
on 26 soybean genotypes in RCBD with three replications. The 
experimental materials used for the study were TGX-1740-2F, TGX-
1935-10E, TGX-1987-10F, TGX-1987-62F, Gizo, Gishama, 
Awassa-95, Davis, Williyams, Nova, Crownford, Boshe, Jalele, 
Cocker-240, AGS-7-1, Clark-63k, Wello, Nyala, Gozela, TGX-1987-
18F, Bellesa-95, TGX-1332644, Wegayen, Afgat, TGX-1987-38F, 
and TGX-1987-11F. The net area of each plot was 1.8 m2 with one 
harvestable row. The inter and intra row planting distance was 60 
and 5 cm, respectively. The yield data harvested from one central 
row of each net harvestable plot in g was converted into kg/ha by 
adjusting the grain weight at 12.5% moisture content.  
 
 
Stability analysis  
 
SAS PROC GLM of V-9.2 was used for both combined and 
separate analysis of variance (ANOVA) MS analysis to examine the 
existence of significant F-test for G, E, and GEI variances to 
discriminate the weakly performing as well as to identify superior 
genotypes (SAS, 2002). The error MS for individual environment 
was tested for homogeneity of error variance prior to pooling data 
for combined analysis. The homogeneity of error variance was 
determined by Bartlett's test. The objectives of pooled ANOVA for L 
vs. Y were to partition the total treatment sum of square (TTSS) into 
G, E, GEI, and pooled error variances as well as also to quantify 
magnitudes for main effect describing (SAS, 2002). The ANOVA 
explains only main effects, but it does not indicate the stability 
patterns vs. high mean squares (MS) contributed genotypes for 
GEI. The GGE model could implied the highest MS contributed as 
well as visually displaying the superior vs. stability for broad 
adaptability via GEI effectively partitioning. The contribution of G, E, 
and GEI effects were estimated by plotting of the means against 
PC1 scores (Zobel et al., 1988). These G vs. GEI effects displaying 
were effectively done by GGE model (Yan et al., 2000, 2007). The 
genotypes means of each environment were used for GGE biplots 
analysis, only GEI MS F-test was significant (Kang and Magari, 
1995; R-V 3.4.3, 2017). The ANOVA for GGE was done by SAS 
(Burgueno et al., 2001). The GGE biplot GUI package of R-version 
3.4.3 was used for GGE stability analysis following Yan et al. (2000) 
model. The polygon view for GGE biplots was also graphically 
plotted by connecting the highly projected vertex genotypes 
magnitudes on the first two PC axes for visual displaying of which-
won-where patterns, environmental vectors, genotypes ranking for 
means vs. stability and environments comparison with ideal 
environment (R-V-3.4.3, 2017; Yan et al., 2000; Yan, 2001; Yan 
and Kang, 2003).  
 
 
RESULTS AND DISCUSSION 
 
Analysis of variances 
 
The ANOVA showed that environments have significantly 

(p0.001) affected the seed yield of 26 tested genotypes 
(Table 2). The mean was highly varying with a range of 
1545.79 at B16 to 3396.61 kg/ha at K15 for L vs. Y wise 
combined data analysis (Figure 1).  The  higher  mean  at  
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Table 1. General soil chemical characteristics values for experimental sites at Assosa centre and 
Kamash and Begi sub-center, Ethiopia.  
 

Soil property parameter Assosa Kamash Begi 

PH 1:1 H2O 5.48 6.51 5.94 

Nitrogen (%) 0.18 0.22 0.17 

OC (%) 3.75 2.76 6.15 

P (ppm) in Olsen method 4.30 18.80 14.80 

CEC (meq/100 g) 21.78 13.00 28.26 

Exchangeable K (cmol (+) kg
-1

) 0.17 1.73 1.50 

Exchangeable Na (cmol(+) kg
-1

) 0.09 0.11 1.20 

 
 
 

 
 

Figure 1. Average mean seed yield of six testing environments (Ls vs. Ys) across 26 genotypes in 2015 and 2016 at Assosa 
centre and Kamash, and Begi sub-center, Ethiopia.  

 
 
 
Kamash might be due to soil fertility variation indicating 
that Kamash is a more potential site for soybean 
production (Table 1). The mean was reduced by 47.6% at 
Begi due to location effect (Figure 1). The genotypes 
produced low yield at areas where soil fertility is a limiting 
factor as compared to those grown at a fertile soil. The 
soil at Kamash is more favorable for plant growth than 
Assosa and Begi with N (0.22 vs. 0.18 and 0.17%), P 
(18.8 vs. 4.3 and 14.8), K (1.73 vs. 0.17 and 1.5%), and 
pH (6.51 vs. 5.48 and 5.94), respectively (Table 1). The 
results of combined ANOVA also showed significant 

(p0.001) differences for genotypes (Table 2). This 
significant genotypes variance indicates adequate genetic 

variability. Strongly significant (p0.001) G, E, and GEI 
variances were reported by Fayeun et al. (2016). The G5 
(3202.2), G19 (3170.9), and G17 (2933.2 kg/ha) were 
proved for the highest mean, ranked 1st, 2nd, and 3rd, 

respectively. The G5 and G19 were significantly superior 
except G17, G4, G13, G25, G3, and G6 (Table 5). Seven 
genotypes (G8, G9, G10, G11, G14, G15, and G16) were 
low yielding. The G3, G4, G12, G13, and G23 showed 
specific adaptability only at favorable sites (Figure 2). The 

GEI MS was also strongly significant (p0.001) and it 
might result from magnitude differences changing among 
tested genotypes (Table 4). This GEI effect was approved 
by the 1st and 2nd axes consisting both positive and 
negative values that resulted in cross-over-type 
interaction (Table 5). Strongly significant GEI effect was 
also reported by Fekadu et al. (2009). The breeders 
should be looking either for non-cross-over or absences 
of GEI effect in selecting of broadly adapting genotypes 
(Matus Cadiz et al., 2003).  

The TTSS of ANOVA due to G+E+GEI was partitioned 
into G, L, Y, GLI, GYI, LYI, and GLYI variances attributed  
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Table 2. Mean squares of combined analysis of variance for 26 soybean genotypes studied in 2015 and 2016 at 
Assosa centre and Kamash and Begi sub-center, Ethiopia. 
 

Source of variation Degree of freedom Mean square % 

G(DF=25) 25 2954344.2*** 15.14 

E(DF=5) 5 50340889.7*** 51.58 

Rep(DF=2) 2 263499.0
NS

 0.11 

L×Rep (DF=10) 10 1460634.5*** 2.99 

GEI (DF=125) 125 1178311.3*** 30.18 

Error (DF=300) 300 452808.9 - 

CV (%) - 26.58 - 

 
 
 
 

 
 

Figure 2. Mean performances of 26 soybean genotypes for combined data across three Ls vs. two Ys in 2015 
and 2016 at Assosa centre, and Kamash and Begi sub-center, Ethiopia. 

 
 
 
15.1, 20.9, 25.5, 15.9, 5.5, 5.2, and 8.8%, respectively 
(Table 3). The largest variance was explained by E 
(51.6%) consisted L, Y, and LYI effects. The GEI 
variance was also almost twice than the G that explained 
30.2% of G+E+GEI variance. The interaction is not 
ignored for such large GEI than G (Yan and Kang, 2002). 
This large GEI effect was suggested by the differential 
responses of genotypes and possibility of ME existence 
with different winning genotypes (Yan and Kang, 2003; 
Fayeun et al., 2016). The larger GEI variance also 
indicated both predictable and unpredictable effects 
leading to specifically or broadly performing genotypes 
developing (Dehghani et al., 2006).  

The ANOVA due to G+L+GLI also provided G, L, and 
GLI variances (Table 4). The G and GLI variances were 
28.3 and 50.3%, respectively, out of the 94.4% for 2015. 
The G and L effects were also 27.1 and 50.1%, 
respectively, from total 96.9% variance for 2016. The GLI 
variance in comparison with G effect suggested the 
possibility of ME existence. This large variation due to  G, 

L, and GLI effects suggested the suitability of SREG 
model for stability analysis (Gauch and Zobel, 1996). The 
GGE model is efficient for G vs. cross-over-type GEI 
effect interpretation (Karimizadeh et al., 2013). This 
model is also effective to identify highly stable vs. 
specifically adapting genotypes via GEI variance 
demonstrating vs. ME's delineating (Santos et al., 2016). 
Moreover, Kang et al. (2006) confirmed that the GGE 
biplot strength for stability vs. superiority was determined. 
The limitation of GGE biplot is the capturing of small 
portion of total variability (Yang et al., 2009). 

The ANOVA of site regression model was significant 
(p<0.001) for G, E, and GEI variances (Table 6). The E 
(53.23%) and GEI (31.15%) effects took the largest 
proportion of the TTSS variance. The GGE MS variance 
was strongly significant for PC1, PC2, and PC3 with 81 
df, cumulatively accounted 81.95% of the TSS. The 1st 
and 2nd PC axes with 40.35 and 26.38%, respectively 
and df of 29 and 27, respectively, effectively partitioned 
the existed GEI (Table 6).  This  66.73%  attributes  was  
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Table 3. Percent contribution of sum of squares of each component variance to TTSS of 26 soybean [Glycine max (L.)] 
genotypes in 2015 and 2016 at Assosa centre and Kamash and Begi sub-center, Ethiopia. 
 

Source of variation Degree of freedom Sum of squares Mean squares % 

G 25 73858605 2954344.2*** 15.1 

L 2 101806746.9 50903373.4*** 20.9 

Y 1 124646535.8 124646536*** 25.5 

L×Y 2 25251166 12625583*** 5.2 

R (L×Y) 12 15133342.7 1261111.9** 3.1 

G×L 50 77951262.2 1559025.2*** 15.9 

G×Y 25 26639534.3 1065581.4*** 5.5 

G×L×Y 50 42698115.1 853962.3*** 8.8 

 
 
 
Table 4. Mean square of ANOVA for G, L, and GLI Variances for year wise combined analysis of 26 soybean [Glycine max (L.) genotypes in 
2015, and 2016 at Assosa centre and Kamash and Begi sub-center, Ethiopia. 
 

Sources of variation  
2015  2016 

SS MS %C  SS MS %C 

G (DF=25) 45281729.1 1811269.2*** 28.3  55216410.3 2208656.4*** 27.1 

L (DF=2) 25212886.3 12606443.0*** 15.8  101845027.0 50922513.3*** 50.1 

R (DF=2) 1969496.0 984748.0
NS

 1.2  1176197.4 588098.7
NS

 0.6 

L×R (DF=4) 6936869.8 1734217.4* 4.3  5050779.5 1262694.9* 2.5 

GLI (DF=50) 80439736.3 1608794.7*** 50.3  40209641.0 804192.8*** 19.8 

G+L+GLI (DF=77) 150934351.6 16026506.9 94.4  197271078.3 53935362.5 96.9 

Error (DF=150) 74884451.7 499229.7 -  60958206.0 406388.0 - 

 
 
 
Table 5. VIPC1, and VIPC2 of GGE, and seed yield (kg/ha) of 26 soybean genotypes in 2015, and 2016 at Assosa centre and Kamash and 
Begi sub-center, Ethiopia. 
 

Geno Genotypes PC1 PC2 Mean  Geno Genotypes PC1 PC2 Mean 

G1 TGX-1740-2F  -0.63 -0.58 2390.5  G14 Cocker-240  -1.66 1.67 2291.8 

G2 TGX-1935-10E  -1.03 1.77 2436.7  G15 AGS-7-1  -0.49 -0.91 2374.6 

G3 TGX-1987-10F 0.69 3.56 2806.7  G16 Clark-63k  -2.73 0.47 2024.6 

G4 TGX-1987-62F 2.00 -1.77 2903.4  G17 Wello  2.25 -0.02 2933.2 

G5 Gizo  3.03 0.77 3202.2  G18 Nyala  0.67 -1.20 2662.6 

G6 Gishama  1.25 -0.39 2796.2  G19 Gozela  3.93 -0.93 3170.9 

G7 Awassa-95  -1.23 0.24 2363.3  G20 TGX-1987-18F  0.13 1.25 2573.9 

G8 Davis  -2.99 -0.42 1914.1  G21 Bellesa-95  0.46 -0.53 2632.8 

G9 Williyams  -3.59 -1.02 1817.2  G22 TGX-1332644  1.40 -1.36 2706.2 

G10 Nova  -4.60 0.17 1553.6  G23 Wegayen  0.30 -2.44 2549.2 

G11 Crownford  -2.25 -1.04 2072.7  G24 Afgat  0.65 2.20 2623.9 

G12 Boshe  0.51 -3.17 2617.3  G25 TGX-1987-38F  2.36 0.13 2887.7 

G13 Jalele  0.87 2.30 2903.3  G26 TGX-1987-11F  0.69 0.27 2591.9 

 
 
 
predicted on the 1st and 2nd PC axes of the total G+GEI 
derived by G+GE centered to SVD for existed GEI 
variance visualizing. The results are in accordance with 
that of Edmore et al. (2015) who explained 36.8% (PC1) 
and 29.5% (PC2) of the GGE SS. This justifies the 
efficiency of GGE model in exploiting the G plus GEI 

variability. Similar reports were confirmed by Yan et al. 
(2000); Gauch (2013) captured 67% variation with the 
first two PCs. The positioning of G vs. GEI effects on PC1 
vs. PC2 of GGE biplot is as shown in Figure 3. The GGE 
biplot is an effective method for which-won-where pattern 
and superiorly performing stable genotypes displaying via  
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Table 6. The results of ANOVA for GGE sum of squares of 26 soybean genotypes in 2015 and 2016 at Assosa centre and 
Kamash and Begi sub-center, Ethiopia. 
 

SV DF SSGGE MSGGE %E 

G 25 73858671.8 2954346.9*** 15.62 

E 5 251704507.4 50340901.5*** 53.23 

GEI 125 147288871.0 1178310.9*** 31.15 

IPCA1 29 89227410.0 3076807.2*** 40.35 

IPCA2 27 58336574.0 2160613.9*** 26.38 

IPCA3 25 33653544.0 1346141.8*** 15.22 

IPCA4 23 22802505.0 991413.3** 10.31 
 

DF, Numbers in parentheses, degrees freedom; CV, coefficient of variation, NS, non-significant, *, **, and *** indicate the significance 
levels at 0.05, 0.01, and 0.001, respectively, and mean=2530.79 kg/ha, R

2
=0.78, and CV=26.58% for all listed tables. 

 
 
 

 
 

Figure 3. Vector views of GGE biplot when PC2 is plotted against PC1 
for environments relations, winning genotypes, and MEs for yield of 
A15 vs. A16=Assosa year one vs. two, K15 vs. 16=Kamash year one 
vs. two; B15 vs. 16=Begi year one vs. two in 2015 and 2016. 

 
 
 
GEI vs. ME's visualizing (Yan et al., 2007; Atnaf et al., 
2013; Massaine et al., 2018). The results of GGE biplot 
showed that G3, G5, G4, G12, G9, and G10 were the 
highest and poorest located at the vertexes of polygon 
responding either positively or negatively for seed yield 
(Figure 3). G3 and G5 were the best winning at A15, B15 
and B16, G5 and G4 are the highest, so niche at A16 and 
K16, while G4 and G12 are also well performing at K15 
(Figure 3). The G3 and G12 were specifically adapted at 
favorable sites; contributed maximum MS to GEI SS  due 

to high values for 2st PC (Figure 3). The polygon vertices 
are markers for highly projected genotypes indicating 
specific adaptability (Melkamu et al., 2015; Pavel et al., 
2015). G8, G9, G10, G14, and G16 were the poorest that 
lied in opposite side of the vectors of all environments; 
not performed at all testing sites. The polygon vertexes 
G9 and G10 are the poorest genotypes that lied in 
opposite side of all vectors. Similar results were reported 
by Ashraful et al. (2017). Moreover, Figure 3 also 
provides  a  summary  of  E   vs.   G  relationship.   These  
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Figure 4. GGE biplot for mean vs. stability of 26 soybean [Glycine max 
(L.)] genotypes, and GEI in 2015 and 2016 at Assosa centre and 
Kamash, and Begi sub-center, Ethiopia. 

 
 
 
variables were represented by vectors and markers, 
respectively. The correlation between vectors was 
determined by drawing a lines passed across origin 
aligned perpendicular to each polygon's sides. The line 
segments divided the polygon into sites and genotypes 
sectors. The environments were categorized into three 
major growing sectors based on the angles related with 
correlation coefficient (Figure 3). The first group was A15 
and B15 with G3 and G5 as the most favorable 
genotypes. The second sector also includes B16, A16 
and K16 where B16 is with G3 and G5, while A16 and 
K16 are with G5 and G4. The third one is K15 with G4 
and G12 as favorable genotypes. The correlation for 
adjacent vectors was determined by cosine of the angles 
(Yan and Tinker, 2006). A15 and K15 were higher than 
90°

 
projected highly to positive and negative coordinates, 

respectively, witnessed negative association (Figures 3 
and 7). A16, B16, and K16 showed less than 90 which 
implied strong correlation. This less than 90° indicates 
high correlation (Yan and Holland, 2010). The positive 
and negative relations were observed for Ls vs. ys 
combination analysis (Santos et al., 2016).  

The horizontal axis drawn to pass via biplot origin and 
average genotypes was average tester coordinate (ATC) 
line used for visual displaying of both means vs. stability 
(Figure 4). The oval sign of an arrow is showing the 
positive end of ATC line. The average yielding capacity 
was estimated by mean projection onto ATC x-axis 

(Pavel et al., 2015; Ashraful et al., 2017). The double 
arrowed ATC lines passed via biplot midpoint divided the 
genotypes into the poorest (below average) vs. the 
highest (above average), and stable vs. unstable based 
on means and stability (Figure 4). The G5 is the highest, 
while G10 is the lowest for mean. The double arrowed 
ATC lines show the lowest vs. highest and stable vs. 
unstable genotypes (Fayeun et al., 2016). The stability 
was also explored by projection onto ATC vertical axis. 
For instance, G4, G12, G13, G23, G3, and G14 were 
strongly deviated from ATC line. These genotypes were 
unstable contributed high MS for GEI effect. The smaller 
distance between ATC line and genotypes markers also 
indicates high stability (Figure 4). For example, G5, G17, 
G25, G26, G15, G7, G16, and G8 were consistent for 
yield response showing slightly little projection. These 
shorter absolute deviations witnessed high stability 
(Melkamu et al., 2015; Fayeun et al., 2016; Ashraful et 
al., 2017). The term high stability is desirable only when 
associated with high means (Yan and Tinker, 2006). 
Moreover, the yield performance consists of both means 
and stability. Accordingly, the highest scores for PC1 
(3.03, 2.25, 3.93, and 2.36%) and near zero absolute 
values for PC2 (0.77, -0.02, -0.93, and 0.13%) were 
recorded for G5, G17, G19, and G25, respectively (Table 
1). The GGE biplot is effective to evaluate and rank the 
genotypes based on the means vs. stability (Yan et al., 
2007; Amira et al., 2013; Pavel  et  al.,  2015).  The  GGE  
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Figure 5. GGE Biplot for genotypes comparison (ranking) with 
reference to ideal genotypes in 2015 and 2016 at Assosa centre and 
Kamash, and Begi sub-center, Ethiopia.  

 
 
 
biplot was also used to integrate both superior means vs. 
stability (Kang, 2002; Kang and Magari, 1996). According 
to Yan (2001), Yan and Hunt (2001, 2002) and Yan and 
Kang (2003), the first two PCs of GGE biplot are 
completely partitioning the GEI by visual displaying of G 
vs. GEI effects distribution, both poor vs. superior, and 
which-win-where vs. stability pattern for identifying and 
integrating of superior vs. stability as well as 
discriminating vs. representing ME mapping.  

The ATC line drawn to pass via average genotypes vs. 
biplot origin serves as reference to compare the 
genotypes based on means and stability. This ATC 
performance line was used for genotypes ranking 
according to the mean and stability (Yan and Kang, 
2003). The average means for genotypes were estimated 
by projection onto ATC horizontal axis (Figure 5). The 
projection is equal to the longest vectors of all genotypes. 
The center of concentric circles is showing the virtual 
ideal genotypes (Figure 2). The ideal genotypes could be 
high yielding and absolutely better for stability (Yan and 
Kang, 2003; Pavel et al., 2015). The smaller distance 
from ideal genotype indicates absolute stability. The 
highest yielding G5 following G19, G17, and G25 was 
high for both means and stability. The closely positioned 
genotypes were highly desirable due to high means and 
stability (Pavel et al., 2015; Richmond et al., 2015; 
Fayeun et al., 2016). The genotypes located near to ideal 
genotype were also highly productive and stable 

(Olayiwola et al., 2015; Ashraful et al., 2017; Massaine et 
al., 2018). The G10, G8, and G9 were highly projected 
from the center of concentric circles to unstable. 
Moreover, the G13 and G18 are not different from 
apparently inferior G20 and G1 (Figure 5). These highly 
projected genotypes were found to be the poorest and 
unstable (Edmore et al., 2015; Massaine et al., 2018). 
There were different genotypic groups observed from 
overall inter-relationship among all 26 tested genotypes 
(Figures 5 and 7). The G17, G19, and G25 were found to 
be positively and moderately correlated with most 
favorable G5 (Figure 5). There are high correlation 
among the best genotypes namely G5, G17, G19, and 
G25 (Figure 5). The G6, G19, G25, G26, and G21 had 
shown positively strong association with the most 
favorable genotypes (G17 and G5) (Figure 7). Similar 
results of strong correlation among the genotypes were 
reported by Ashraful et al. (2017). They confirmed that 
the genotypes being positioned close to each other on 
GGE biplot responding together similarly to the 
environments were found near to these genotypes.  

The average environment coordination (AEC) line was 
passed via average environment vs. origin for ideal 
environment position delineation. The average means 
was estimated by projection onto AEC horizontal axis. 
The projection is equal to the longest vectors of all 
environments. The center of concentric circles shows 
virtual   ideal   environments.    The   deviation    is    zero  
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Table 7. IPCA1, IPCA2 scores, environmental index (effects), and %CV (scores) for six testing environments (Ls vs. Ys) across 26 
soybean genotypes in 2015 and 2016 at Assosa centre and Kamash and Begi sub-center, Ethiopia. 
 

ENV Mean Rank DF IPC1 IPC2 IPC3 IPC4 EI %CV 

A15 3136.4 2 29 67.87 8.10 -28.00 9.61 374*** -42.8 

A16 1550.7 5 27 0.24 6.72 30.02 35.36 -1145.3*** 0.99 

B15 2607.7 4 25 37.76 -26.87 47.55 -7.19 -199.8
NS

 -23.82 

B16 1545.8 6 23 -1.83 53.96 20.02 1.00 -1036.6*** 0.87 

K15 3396.6 1 21 11.97 31.87 0.79 3.69 716.2*** 34.96 

K16 2947.7 3 19 10.69 16.85 11.71 -40.39 254.9
NS

 30.67 
 
NS 

and *** were respectively non-significant and significant at 0.05 and 0.001 probability levels. ENV: Environments, grand mean=2530.79 
kg/ha, R

2
=0.78, and CV=26.58%. 

 
 
 

 
 

Figure 6. Ranking of environments with reference to virtual ideal 
environment according to discriminating ability vs. suitability of 
representation when plotted IPCA1 vs. IPCA2 of 26 genotypes in 2015 
and 2016 at Assosa, Kamash, and Begi, Ethiopia. 

 
 
 
indicating absolutely representative for average 
environments. The representing vs. discriminating ability 
was also explored by length of projection (Figure 6). The 
AEC concentric circle GGE biplot method is best to 
estimate the discriminating vs. representing ability for 
assessing the genotypes (Yan and Tinker, 2006; Yan et 
al., 2007; Atnaf et al., 2013). For instance, the suitability 
of B16 and K16 were high in representing all genotypes. 
The concentric circles nearest sites were high for their 
stability  in  representing  the  genotypes  (Fayeun  et  al., 

2016; Ashraful et al., 2017). The discriminating ability 
was significant and positive for A15 and K15 where they 
deviated strongly from the center of the concentric circles 
(Table 7 and Figure 6). The closer it is the better it will be 
as virtual ideal environment to all tested soybean 
genotypes. The K16 is highly favorable in representing all 
the tested genotypes considering both mean vs. stability. 
The ideal environments are close to ATC x-axis and zero 
projection onto ATC y-axis (Ashraful et al., 2017). 
Moreover, Blanche and Myers (2006) also witnessed  the  
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Figure 7. Discrimitiveness vs. representativeness for six testing environments 
of 26 genotypes in 2015 and 2016 at Assosa centre and Kamash, and Begi 
sub-center, Ethiopia. 

 
 
 
efficiency of GGE for ideal genotypes vs. highly 
representing optimum environment identification for 
widely adapted genotypes selection.  

The yield data vs. PC coordinates plotting for additive 
and interaction effects was done on the same biplot for 
yield variation efficiently partitioning. The A16 and B16 
exhibited nearly additive effect on genotypes (Figure 7). 
The yield performance at A16 and B16 was associated 
with overall mean confirmed average responses to 
genotypes. The strongly projected sites were highly 
discriminated to all genotypes. The A15 and K15 were 
the longest which showed high yield variation for 
genotypes. The genotypes consistencies were better at 
A16 and B16 than inconsistent responses at A15 and 
K15 (Figure7). Environments with longer vectors are high 
in discrimination capability to all tested genotypes (Yan et 
al., 2007; Massaine et al., 2018). The results of the 
present study were strongly allied with Fayeun et al. 
(2016) who noticed little variation to genotypes for short 
vectors, while high variation for strongly projected testing 
sites. Similarly, the entries positioned near to the biplot 
origin were taken as an average means (Figure 7). For 
instance, G1, G18, G15, G21, and G26 showed average 
response for their yield means. G4, G5, G12, and G13 
were the highest for their means being strongly projected 

from the center of the biplot. G3, G8, G9, and G10 were 
the poorest genotypes being deviated negatively (Figure 
7). These polygon vertexes positively vs. negatively 
responding genotypes were unstable, adapted 
specifically at favorable environments (Melkamu et al., 
2015). These two variables projection showed that the 
GEI which resulted from regressing of G over E as well 
as E over G contributed high MS for GEI variance. This 
resulted in inconsistency of the genotypes for mean 
performance due to strongly significant GEI effect in 
MEVT. 

The angles present between the average tester axes 
vs. biplot vectors indicated the environmental stability 
(Figure 7). The distance between the biplot vectors 
represented the similarity vs. differences in discriminating 
vs. representing to all tested genotypes (Fayeun et al., 
2016). The environments near to AEC are high for their 
stability. Accordingly, K16, B16, and A16 were less than 
90° that deviated little from AET axes (Figure7). These 
averagely responding environments were suitable for 
widely adapted soybean genotypes selection. Smaller 
angles for vectors showed strongly positive correlation 
(Massaine et al., 2018). The results of the present study 
were also in accordance with Marcin and Krzysztof 
(2016).  A15  and  K15 were  highly  projected  from  AET  
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showing high discriminating ability to all genotypes. 
Similar results were reported by Fayeun et al. (2016) and 
Bhartiya et al. (2017).  
 
 
Conclusion 
 
The pooled ANOVA showed strongly significant G, E, and 
GEI variances with CV of 26.58%, mean of 2530.79 
kg/ha, and R

2 
of 0.78%. The TTSS was partitioned into G, 

E, and GEI for MS contribution. The maximum was 
contributed by E (51.6%) followed by GEI (30.2%). The 
main variability is therefore due to the E and GEI. 
Genotypes G3, G5, G4, G12, G9, and G10 were located 
at corners of the polygon. Genotypes G3 and G12 were 
unstable significantly contributing to GEI due to high 
scores for PC2. Genotypes G5, G17, G19, and G25 were 
high for PC1 and near zero for PC2. This indicated high 
stability and heritability growing vigorously in producing 
maximum means might be due to broad sense genetic 
constituent for yield vs. stability so there are high 
selection probability and possibility for wide adaptability. 
These consistently performing ideal genotypes were 
proved for yield contributing desirable characters. 
Therefore, including these lines in future breeding 
programs would be advised in enhancing soybean 
productivity in Ethiopia. These two seasons vs. three 
locations data were used for GGE stability analysis; 
accordingly, further GGE vs. AMMI models GEI effect 
partitioning for G vs. L vs. Y should be considered with 
the objectives of promising (means vs. stability) 
genotypes exploring for both specific and broad 
adaptability.  
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