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Heritability is a basic genetic parameter for quantitative traits that may determine their selection 
generation and intensity as well as predict their selection response and efficiency in plant breeding. 
Estimation of heritability varies based on experimental design. The type 2 modified augmented design 
(MAD2) as an unbalanced experimental design, has been proposed for evaluating numerous 
unreplicated test genotypes with several replicated control genotypes to adjust for soil heterogeneity. 

Here, we define an inter-environment correlation (  ), that is, the mean Pearson’s correlation coefficient 
of trait performance for test genotypes between all pairs of environments, to approximate broad-sense 

heritability (   . Computer simulation and empirical results demonstrated that    was consistent with 

   estimates on a plot basis by ANOVA for non-missing data sets, and similar to those by the restricted 
maximum likelihood (REML)-based method for missing data sets. The    method was shown to 
generally outperform the ANOVA- and REML-based methods.  
 
Key words: Broad-sense heritability, analysis of variance, inter-environment correlation, modified 
augmented design, restricted maximum likelihood, flax. 

 
 
INTRODUCTION 
 
Heritability is a basic genetic parameter for quantitative 
traits that may determine their selection generation and 
intensity as well as predict their selection response and 
efficiency in plant breeding. Heritability estimation varies 
depending on the experimental design (Holland et al., 
2003). The  modified  augment  design  (MAD)  has  been 

proposed for square plots (Type 1) (Lin and Poushinsky, 
1983) and  specifically for rectangular plots (Type 2 - 
MAD2) (Lin and Poushinsky, 1985) for field  evaluation of 
a large number of breeding lines and used in many crops 
such as flax (Soto-Cerda et al., 2014a; Soto-Cerda et al., 
2014b;  Kumar  et  al.,  2015),  wheat  (Golparvar  et   al.,
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2015), potato (Schaalje et al., 1987), soybean (Lin and 
Voldeng, 1989), and barley (May et al., 1989; May and 
Kozub, 1995). This design can accommodate a large 
number of unreplicated test genotypes with typically only 
three control genotypes for error control (You et al., 
2013).  
    Our earlier study (You et al., 2013) demonstrates that 
soil heterogeneity can be sufficiently adjusted for traits in 
MAD2 trials. The adjusted observations for test and 
control genotypes are expected to exclude the effect of 
soil heterogeneity; thus, the variation among replications 
of each control genotypes should be solely caused by 
random errors. A method based on analysis of variance 
(ANOVA) to approximately estimate broad-sense 

heritability (  ) for this design has been developed (You 
et al., 2016b), in which genetic variance is calculated 
based on the total phenotypic variance estimated from 
test genotypes minus the error variance estimated from 
control genotypes. Because    is always overestimated 
in single trials, joint analysis over multiple environments 
for heritability estimation was proposed in which the error 
variance is jointly estimated using the three replicated 
control genotypes (You et al., 2016b). However, a caveat 
to this estimation method is the requirement for the same 
control genotypes to be used in all environments or trials, 
and this limits its potential use for joint analysis of data 
from multi-environment trials with different control 
genotypes or experimental designs.  

There are two units for measurement of phenotypic 
variances in heritability estimation: on a plot basis and on 
an entry (or genotype)-mean basis. Estimates of 
phenotypic variance on an entry-mean basis are always 
larger than those on a plot basis because the error and 
interaction variance components are divided by the 
corresponding numbers of observations (You et al., 
2016b). From the perspective of breeding, usually our 
interest is the heritability estimated from a set of trials. 
Thus, heritability is usually estimated on an entry-mean 
basis, that is, the genotype × environment variance is 
divided by the number of environments. However, we 

found from empirical results  that    on an entry-mean 
basis was overestimated in multi-environment MAD2 

trials (You et al., 2016a); thus,    estimates on a plot 
basis were put forward and used in MAD2 trials of flax 
(You et al., 2016a) and in this study.  

Herein, we define an inter-environment correlation (  ) 

to approximately estimate    in multi-environment MAD2 
trials and which does not rely on control genotype data. 

   estimates from two traditional methods, ANOVA and 
restricted maximum likelihood (REML), are compared 
with    using computer-simulated and empirical data sets 
with and without missing data.  
 
 

MATERIALS AND METHODS 
 

Simulation data 
 

For multi-environment MAD2 trials, a linear  model  for  an  adjusted 

 
 
 
 
observation (   ) of g test genotypes at e environments can be 

written as: 
 

    = µ +    +    +        +    , (i = 1, 2, …, g; j = 1, 2, …, e),         (1) 
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 ,    
 , and   

  are phenotypic, genetic 

(G), environment (E), genotype-by-environment (G × E) interactions, 

and error variances, respectively.   
  is jointly estimated based on e 

environments with t replicated control genotypes in each trial (You 
et al., 2016b). Typically, t is three in MAD2 trials.  

For a typical multi-environment MAD2 trial, the data set includes 
observations for g unreplicated test genotypes and three control 
genotypes at each of e environments (representing individual trials 
in multiple years or/and locations). For the three control genotypes, 
one main plot control has m replications and each of two subplot 
controls are replicated n times. The values of g, m, n and e depend 
on the design. Thus, a total of (g + m + 2*n)*e data points will be 
generated from a typical multi-environment MAD2 trial. For 
example, an individual MAD2 trial with a grid of 10 rows by 10 
columns contained 100 whole plots with each whole plot being split 
into 5 subplots, resulting in a total of 500 subplots. The main plot 
control was placed in the center subplot of each whole plot and so 
m = 100. Two additional subplot controls were randomly assigned 
to two subplots of 5 randomly selected whole plots and thus n = 5 
or 2n = 10. Test genotypes were accommodated to the remaining 
390 subplots (g = 390), and the ratio of m to g and that of m to all 
subplots were 25.6 and 20%, respectively (see Figure 1 in You et 
al., 2013). To simplify the process, all simulations comprised the 
same percentage of test genotypes for the main plot control 
replicates (m = 0.25 * g) and the same number of subplot control 
replicates (n = 5). 

To assess the effect of the number of environments (e), number 
of test genotypes (g), and theoretical heritability of a trait on    
estimation, simulation data sets for a total of 180 parameter 
combinations of    (0.1 to 0.9 with an interval of 0.1), e (2, 4, 6, 8, 
and 10), and g (50, 100, 200, and 300) were generated. For each 
parameter combination, 500 simulations were replicated, which was 
sufficient to represent the sampling distribution of a parameter 
combination based on results of different simulation runs.  

Data sets with 5, 10, 15 and 20% missing data for test genotypes 
were constructed from each complete data set generated for 
parameter combinations. Missing data were distributed in all 
environments at random. The R sample function was applied to all 
simulated observations from e environments to randomly assign 
NULL as missing values. Consequently, a total of 450,000 data sets 
were generated for analysis. 

According to empirical results, plot-based    estimates were 
more accurate than entry-mean-based estimates in MAD2 trials 
(You et al., 2016a). Accordingly, heritability estimates on a plot 

basis were used in this study. Given   ,    
 , and   

  for a trait,   
  

can be estimated as   
  =     

    
             on a plot basis. 

Because traits may have different    
  and   

 , these two variances 
were randomly and independently generated. In addition, the 

environmental variance (  
 ) was also randomly generated. Thus, 

the effects of G, E, G × E, and random error can be simulated 
according to Equation 1 for a multi-environment MAD2 trial. Similar 
simulation procedures for data generation have been described 
previously (You et al., 2016b). The R pipeline program for 
simulation is available at 
http://probes.pw.usda.gov/bioinformatics_tools/MADPipeline/index.
html. 

 
 
Empirical data 
 
Three flax  biparental  genetic  populations,  namely  243 F6-derived 



 
 
 
 
recombinant inbred lines (RILs) generated from a cross between 
CDC Bethune and Macbeth (BM), 90 F6-derived RILs from a cross 
between E1747 and Viking (EV), and 78 F1-derived doubled haploid 
lines from a cross between SP2047 and UGG5-5 (SU), plus a core 
collection (CC) of 391 accessions, were field evaluated at two 
locations in Canada (Morden, Manitoba and Kernen Farm near 
Saskatoon, Saskatchewan) from 2009 to 2012. The same MAD2 
design was employed with the same population in all environments 
but the designs differed across populations. The experimental 
designs and phenotyping for the  22 traits in CC, 14 in BM, 19 in EV, 
and 11 in SU over six to eight environments have been previously 
described (Cloutier et al., 2010; Soto-Cerda et al., 2014b; Kumar et 
al., 2015; You et al., 2016b). The adjusted observations in each 
environment were used for    estimation and evaluation.  
 
 

Traditional estimation of    
 

The simulated and empirical adjusted observations were used to 
estimate    on a plot basis (You et al., 2016a; You et al., 2016b). 

   was estimated as  ̂  =  ̂ 
  /( ̂ 

 +  ̂  
  +  ̂ 

 ), where  ̂ 
 ,  ̂  

 , and  ̂ 
  

are the genetic, G × E, and error variance, respectively. These 
variance components were estimated using the method of moments 
based on both ANOVA (You et al., 2016b) and REML (Holland, 
2006; Piepho and Möhring, 2011). The R (https://www.r-
project.org/) package lme4 (Bates et al., 2015) was used to 
calculate the REML-based variance components.  A test for 
homogeneity of error variance across environments was performed 
before parameter estimations to satisfy the assumption of the 
model (Equation 1). 
 
 

Inter-environment correlation as a    statistic 
 
Based on Equation 1, the inter-environment correlation of adjusted 
observations (y) for two environments (E1 and E2) was defined as: 
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Here,            is the covariance of adjusted observations 

between two environments. It is equal to   
  because G, E, and 

random error are hypothesized to be independent of each other and 

thus the covariance between them is zero, whereas    
   

=   
  

because, for a single environment, the environmental variance   
   

0. Therefore,           corresponds to an   estimate. To validate 
this definition, independent observations were simulated in two-

environment MAD2 trials at given    values (0.1 to 0.9 with 0.1 
intervals) and for a number of test genotypes (50, 100, 200 and 
300). 
    For a multi-environment MAD2 trial,    was defined as the mean 
inter-environment correlation coefficient of all possible pairs of 

environments to estimate the    of a trait: 
 

   ∑      
 
         

      

 
  (i, j = 1, 2, …, e),                 (3) 

 

Where e is the number of environments and    = 0 if    < 0. 
 
 

Standard error of    estimates 

 
The delta method was implemented for MAD2 (You et al., 2016b) 

and used to estimate the standard error (SE) of  ̂  by ANOVA and 
REML for the empirical data sets. For simulation data, the standard 
deviation of  500  replicates  for  each  parameter  combination  was  
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calculated to represent the SE of three    estimates (    ̂   or 

     ).  
Owing to the properties of    as a mean Pearson’s correlation 

coefficient, the SE of    can also be approximated based on the SE 
formula of Pearson’s correlation (Bowley, 1928; Kendall and Stuart, 
1977) using: 

    

       
     

 

    
  

      

 
    ,                                             (4) 

 
Where e is the number of environments and g is the number of test 
genotypes.  

The bootstrap method (Efron, 1979; Xie and Mosjidis, 1997) was 
also used to estimate the standard error of three heritability 
estimates for either simulated or empirical data. Bootstrapping was 
performed by resampling test genotypes with replacement from the 
original population, and each bootstrap sample had the same size 
as the original population. The R sample function was used to 
generate the bootstrap samples. The standard deviation of    in 
500 bootstrap samples was calculated to represent the standard 

error of   , denoted as      ) to distinguish from and compare with 

SE(  ) in Equation 4,    ̂  , or       estimated by simulation.  
An R pipeline program was developed to automate the 

simulations and, consequently, the    estimation for three 
heritability estimation methods. A separate R program for 

calculating    and its SE (bootstrap method) for empirical test 
genotype data was also created and is available at 
http://probes.pw.usda.gov/bioinformatics_tools/MADPipeline/index.
html.  
 
 

Statistical power  
 

Statistical power (P) of three heritability estimation methods (  , 
ANOVA, and REML) was calculated for all parameter combinations 
to determine the minimum number of environments and test 
genotypes required for heritability estimation and for method 
comparison. The power of a trait heritability estimate is the 
probability of correctly rejecting the null hypothesis that heritability is 
zero when the true heritability of the trait is greater than zero. First, 
the Z score for the power of a heritability estimate was calculated 
using (Klein, 1974): 
 

         ̂     ̂ ,                 (5) 

 
Where    is the Z score of the significance level α used for a one-

tailed test (             ;    ̂   is the expected value of the 
heritability, here the given or parametric heritability value; and   ̂  

is the SE of the expected  ̂  value, estimated by the standard 
deviation of 500 simulated samples. The one-tailed test was 
adopted to test whether a heritability estimate is greater than 0 
because heritability should be always equal to or greater than zero. 
The statistical power was defined as the area under the standard 
normal curve from Z to plus infinity, and can be calculated using an 
R function: 
 

P = 1 - pnorm(-Z),                                (6) 
 

Where pnorm is the R function for calculating the cumulative 
density of the normal distribution. 
 
 

RESULTS 
 

Genetic and phenotypic variance estimation in the 

definition of    
 
Simulation    results    showed    a    perfectly    consistent 
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Figure 1. Covariances (   ̂   ,   )) of trait performance between two environments in relation to genetic variances (  
 ) 

estimated by ANOVA (A), and the product of standard deviations of trait performance from two environments ( ̂   ̂  ) in 

relation to phenotypic variances (  
 ) on a plot basis estimated by ANOVA (B).   

 
 
 

relationship between    ̂   ,   ) and  ̂ 
  (r = 1.000) 

(Figure 1A) and between  ̂   ̂   and  ̂ 
  (r = 0.999) 

(Figure 1B) for the ANOVA-based method, confirming the 
definition in Equation 2.  
 
 

   estimates for simulated data sets without missing 
data  
 

   estimates by   , ANOVA ( ̂ (A)), and REML ( ̂ (R)) 

were calculated for all complete simulated data sets.    

was perfectly correlated with the given    values (r = 
1.000) independent of the number of environments 
(Figure 2A) or test genotypes (Figure 2C). However, 
standard errors of    (      ) declined with increasing 
number of environments or test genotypes (Figure 2B 

and D). For a trait with    equal to or greater than 0.5, 
the heritability can be correctly estimated at as few as 
two environments with 50 test genotypes at a statistical 
power of > 0.999 (Table 1). For traits with low heritability, 
a larger number of environments and test genotypes 

contribute positively to more reliable    estimates 

through increasing statistical power. For an    estimate 
of 0.2, a statistical power in excess of 0.95 can be 
achieved from data sets with 300 test genotypes at two 
environments, 100 test genotypes at four environments, 
or 50 test genotypes at ≥ six environments when there 
was no missing data (Table 1). 

   was consistent with  ̂ (A) for different numbers of 

environments and test genotypes (Table 2) (r = 1.000).    

also highly correlated with  ̂ (R) (r > 0.993) (Table 2). 

High similarity between  ̂ (A) and  ̂ (R) (r > 0.993) was 
observed (Table 2). 

   estimates for simulated data sets with missing 
data 
 

   estimates by   , ANOVA, and REML were calculated 
for all simulated data sets with missing data of 5 to 25%. 

The SEs of    estimates by all three methods increased 
with the rate of missing data. Among the three estimation 
methods, REML yielded smaller SEs than the   - and 
ANOVA-based methods for both non-missing and 

missing data sets (Table 3).  ̂ (A) had SEs consistent 

with    for non-missing data sets (R
2
 = 1.000) but larger 

SEs for missing data sets (Figure 3A);    had more 

consistent REs with  ̂ (R) (R
2
 =  0.974) for missing data 

sets (Figure 3B). 

The statistical power of    estimates was markedly 
affected by missing data rates (Tables 3 and 4). Owing to 

the small SEs,    estimates by REML had higher power 
than those by   , which was also higher than those by 

ANOVA. The power of    and  ̂ (R) was relatively less 

affected by missing data. For an    estimate of 0.2 in 
data sets with a missing data rate of ≤5%, a statistical 
power over 0.95 can be achieved from data sets with 300 
test genotypes at two environments, 100 test genotypes 
at ≤ four environments, or 50 test genotypes at ≤ eight 
environments for all three estimation methods (Table 4). 

Estimates of    and  ̂ (R) were less affected by missing 
data, remaining largely constant with increasing missing 

data rate at different given    values (Table 3).    was 

consistent with  ̂ (R) for different numbers of 
environments and test genotypes (Table 5) (r = 0.995-

0.999) but less correlated with  ̂ (A) (r = 0.955-0.996) 

(Table 5). Bias of  ̂ (A) and  ̂ (R) from their true 

heritability values  was  observed.  At  a  given      ≤ 0.3,  
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Figure 2. Inter-environment correlations (  ) and their standard deviations (    )) in terms of heritability (  ) for different numbers of 
environments (A and B) and test genotypes (C and D), respectively.   

 
 
 

 ̂ (A) was overestimated (Table 3). However, at a given 

   ≥ 0.4 for  ̂ (A) and ≥ 0.2 for  ̂ (R),  ̂  values were 
slightly underestimated (Table 3). A negligible deviation 
of    estimates from their true values was also observed 

when given    ≥ 0.3 (Table 3). 
 
 

   estimates for empirical data 
 

As a case study,   ,  ̂ (A), and  ̂ (R) and their SEs were 
estimated for 22 traits in the CC, 14 in the BM population, 
19 in the EV population, and 11 in the SU population 
(Table S1). These traits varied greatly in estimated 
heritability (0.00-0.94), were phenotyped in a different 
number of environments ranging from two to eight, and 
evaluated in different populations, that is, one natural and 

three biparental populations of varying size (Table 6). 
Here, heritability of some traits was estimated to be 0 due 
to large experimental errors in data and the ANOVA 
based model used which resulted in negative genetic 
variances. The negative genetic variance was treated as 
0 in calculation although the real genetic variance should 

be greater than 0.    was highly correlated to both  ̂ (A) 

(r = 0.948-0.998) and  ̂ (RP) (r = 0.974-0.998) in 
individual populations (Table 6). Similar relationships 

among    ,  ̂ (A), and  ̂ (R) were observed in different 
populations despite different numbers of test genotypes 
(Table 6). Figure 4 depicts the similar overall relationship 

of    with  ̂ (A) and  ̂ (R) for all 66 data points. In 

addition, a strong correlation between  ̂ (A) and  ̂ (R) (r 
= 0.995-1.000), similar to the results in the simulation 
data sets, was also observed in the different populations 
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Table 1. Statistical power (P) of broad-sense heritability estimates (  ) by inter-environment correlation (  ), ANOVA and REML for α = 
0.05 (one-tailed test) as a function of number of environments and test genotypes.  
 

No. 
environments 

No. test 
genotypes 

Method 
P for    

0.1 0.2 0.3 0.4 ≥ 0.5 

2 50    0.765 0.533 0.769 0.940 ≃1 

  ANOVA 0.715 0.533 0.786 0.935 ≃1 

  REML 0.699 0.544 0.795 0.951 ≃1 

 100    0.692 0.686 0.940 0.998 ≃1 

  ANOVA 0.670 0.685 0.941 0.998 ≃1 

  REML 0.652 0.711 0.947 0.999 ≃1 

 200    0.555 0.890 0.999 ≃1 ≃1 

  ANOVA 0.549 0.889 0.999 ≃1 ≃1 

  REML 0.540 0.899 0.999 ≃1 ≃1 

 300    0.551 0.977 1.000 ≃1 ≃1 

  ANOVA 0.558 0.977 1.000 ≃1 ≃1 

  REML 0.543 0.974 1.000 ≃1 ≃1 
        

4 50    0.549 0.872 0.986 ≃1 ≃1 

  ANOVA 0.567 0.872 0.983 0.999 ≃1 

  REML 0.535 0.875 0.989 ≃1 ≃1 

 100    0.685 0.986 ≃1 ≃1 ≃1 

  ANOVA 0.698 0.986 ≃1 ≃1 ≃1 

  REML 0.692 0.990 ≃1 ≃1 ≃1 

 200    0.912 ≃1 ≃1 ≃1 ≃1 

  ANOVA 0.892 ≃1 ≃1 ≃1 ≃1 

  REML 0.896 ≃1 ≃1 ≃1 ≃1 

 300    0.979 ≃1 ≃1 ≃1 ≃1 

  ANOVA 0.981 ≃1 ≃1 ≃1 ≃1 

  REML 0.981 ≃1 ≃1 ≃1 ≃1 
        

6 50    0.649 0.962 0.996 ≃1 ≃1 

  ANOVA 0.673 0.964 0.995 ≃1 ≃1 

  REML 0.673 0.969 0.997 ≃1 ≃1 

 100    0.908 0.999 ≃1 ≃1 ≃1 

  ANOVA 0.905 0.999 ≃1 ≃1 ≃1 

  REML 0.909 0.999 ≃1 ≃1 ≃1 

 200    0.991 ≃1 ≃1 ≃1 ≃1 

  ANOVA 0.990 ≃1 ≃1 ≃1 ≃1 

  REML 0.992 ≃1 ≃1 ≃1 ≃1 

 300    0.999 ≃1 ≃1 ≃1 ≃1 

  ANOVA 0.999 ≃1 ≃1 ≃1 ≃1 

  REML 0.999 ≃1 ≃1 ≃1 ≃1 
        

8 50    0.757 0.990 ≃1 ≃1 ≃1 

  ANOVA 0.779 0.990 ≃1 ≃1 ≃1 

  REML 0.805 0.994 ≃1 ≃1 ≃1 

 100    0.958 ≃1 ≃1 ≃1 ≃1 

  ANOVA 0.953 ≃1 ≃1 ≃1 ≃1 

  REML 0.959 ≃1 ≃1 ≃1 ≃1 

 200    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA 0.999 ≃1 ≃1 ≃1 ≃1 

  REML 0.999 ≃1 ≃1 ≃1 ≃1 

 300    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 ≃1 ≃1 
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Table 1. Contd. 
 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 
        

10 50    0.876 0.996 ≃1 ≃1 ≃1 

  ANOVA 0.869 0.997 ≃1 ≃1 ≃1 

  REML 0.867 0.996 ≃1 ≃1 ≃1 

 100    0.992 ≃1 ≃1 ≃1 ≃1 

  ANOVA 0.991 ≃1 ≃1 ≃1 ≃1 

  REML 0.990 ≃1 ≃1 ≃1 ≃1 

 200    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 ≃1 ≃1 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 

 300    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 ≃1 ≃1 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 
 

Data sets had no missing data. 
 
 
 

Table 2. Correlation of broad-sense heritability ( ̂ ) estimated by three methods inter-environment correlation (  ), ANOVA (A), and 
REML (R) for simulated data sets without missing data. 
 

No. of environments No. of test genotypes         ̂
 (A))       ̂

 (R))     ̂      ̂ (R)) 

2 50 - 300 1.000 0.992 0.992 

4 50 - 300 1.000 0.997 0.997 

6 50 - 300 1.000 0.998 0.998 

8 50 - 300 1.000 0.998 0.998 

10 50 - 300 1.000 0.998 0.998 

2 - 10 50 1.000 0.991 0.991 

2 - 10 100 1.000 0.997 0.997 

2 - 10 200 1.000 0.999 0.999 

2 - 10 300 1.000 0.999 0.999 

2 - 10 50- 300 1.000 0.997 0.997 
 

 ̂ (A):  ̂  on a plot basis estimated by ANOVA;  ̂ (R):  ̂  on a plot basis estimated by REML. Simulated data includes data points generated 
from combinations of environments (2, 4, 6, and 8), test genotypes (50, 100, 200 and 300), and heritability (0.1-0.9 in 0.1 increments) with 500 
replicates for each combination. 

 
 
 

Table 3. Effects of missing data on estimation of broad-sense heritability (  ) and statistical power (P). 
 

   MDR (%) 
 ̂  s P 

   ANOVA REML    ANOVA REML 

0.1 0 0.101 ± 0.047 0.101 ± 0.047 0.100 ± 0.045 0.835 0.836 0.836 

 5 0.101 ± 0.049 0.121 ± 0.063 0.100 ± 0.047 0.821 0.792 0.821 

 10 0.101 ± 0.051 0.136 ± 0.081 0.100 ± 0.048 0.830 0.823 0.831 

 15 0.102 ± 0.053 0.150 ± 0.095 0.101 ± 0.050 0.812 0.749 0.815 

 20 0.102 ± 0.057 0.163 ± 0.108 0.101 ± 0.053 0.806 0.710 0.811 

0.2 0 0.200 ± 0.054 0.200 ± 0.053 0.199 ± 0.052 0.944 0.945 0.948 

 5 0.200 ± 0.056 0.212 ± 0.064 0.198 ± 0.054 0.931 0.913 0.935 

 10 0.200 ± 0.058 0.221 ± 0.077 0.198 ± 0.055 0.936 0.935 0.940 

 15 0.201 ± 0.061 0.229 ± 0.088 0.199 ± 0.057 0.926 0.893 0.931 

 20 0.200 ± 0.064 0.235 ± 0.099 0.198 ± 0.060 0.911 0.866 0.918 

0.3 0 0.298 ± 0.057 0.298 ± 0.057 0.296 ± 0.056 0.984 0.984 0.985 

 5 0.298 ± 0.059 0.303 ± 0.063 0.296 ± 0.057 0.977 0.972 0.980 
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Table 3. Contd. 
 

 10 0.298 ± 0.062 0.306 ± 0.072 0.296 ± 0.059 0.982 0.981 0.984 

 15 0.298 ± 0.064 0.308 ± 0.081 0.296 ± 0.061 0.973 0.963 0.978 

 20 0.298 ± 0.067 0.310 ± 0.089 0.296 ± 0.064 0.968 0.951 0.973 

0.4 0 0.398 ± 0.055 0.397 ± 0.054 0.395 ± 0.053 0.998 0.997 0.998 

 5 0.398 ± 0.057 0.397 ± 0.058 0.395 ± 0.055 0.995 0.996 0.996 

 10 0.398 ± 0.060 0.395 ± 0.064 0.394 ± 0.057 0.996 0.997 0.998 

 15 0.398 ± 0.062 0.393 ± 0.071 0.395 ± 0.058 0.993 0.993 0.996 

 20 0.397 ± 0.066 0.389 ± 0.078 0.394 ± 0.061 0.989 0.989 0.994 

0.5 0 0.499 ± 0.052 0.498 ± 0.051 0.494 ± 0.051 ≃1 ≃1 ≃1 

 5 0.499 ± 0.053 0.493 ± 0.054 0.494 ± 0.052 ≃1 ≃1 ≃1 

 10 0.499 ± 0.056 0.488 ± 0.058 0.494 ± 0.053 ≃1 ≃1 ≃1 

 15 0.499 ± 0.059 0.482 ± 0.063 0.494 ± 0.055 0.999 ≃1 ≃1 

 20 0.498 ± 0.061 0.475 ± 0.069 0.493 ± 0.057 0.999 0.999 ≃1 

0.6 0 0.598 ± 0.048 0.597 ± 0.048 0.591 ± 0.047 ≃1 ≃1 ≃1 

 5 0.598 ± 0.050 0.590 ± 0.050 0.591 ± 0.048 ≃1 ≃1 ≃1 

 10 0.597 ± 0.051 0.582 ± 0.053 0.591 ± 0.050 ≃1 ≃1 ≃1 

 15 0.597 ± 0.054 0.574 ± 0.056 0.591 ± 0.051 ≃1 ≃1 ≃1 

 20 0.597 ± 0.056 0.566 ± 0.060 0.591 ± 0.052 ≃1 ≃1 ≃1 

0.7 0 0.698 ± 0.039 0.697 ± 0.039 0.688 ± 0.040 ≃1 ≃1 ≃1 

 5 0.698 ± 0.040 0.689 ± 0.040 0.688 ± 0.041 ≃1 ≃1 ≃1 

 10 0.698 ± 0.041 0.681 ± 0.043 0.688 ± 0.042 ≃1 ≃1 ≃1 

 15 0.698 ± 0.043 0.672 ± 0.045 0.688 ± 0.042 ≃1 ≃1 ≃1 

 20 0.698 ± 0.045 0.663 ± 0.048 0.689 ± 0.043 ≃1 ≃1 ≃1 

0.8 0 0.799 ± 0.028 0.797 ± 0.028 0.784 ± 0.034 ≃1 ≃1 ≃1 

 5 0.799 ± 0.029 0.791 ± 0.030 0.784 ± 0.034 ≃1 ≃1 ≃1 

 10 0.798 ± 0.030 0.783 ± 0.031 0.785 ± 0.034 ≃1 ≃1 ≃1 

 15 0.798 ± 0.032 0.775 ± 0.033 0.785 ± 0.034 ≃1 ≃1 ≃1 

 20 0.798 ± 0.033 0.767 ± 0.036 0.785 ± 0.035 ≃1 ≃1 ≃1 

0.9 0 0.899 ± 0.016 0.898 ± 0.016 0.877 ± 0.030 ≃1 ≃1 ≃1 

 5 0.899 ± 0.016 0.894 ± 0.017 0.878 ± 0.030 ≃1 ≃1 ≃1 

 10 0.899 ± 0.017 0.889 ± 0.018 0.878 ± 0.030 ≃1 ≃1 ≃1 

 15 0.899 ± 0.018 0.884 ± 0.019 0.878 ± 0.030 ≃1 ≃1 ≃1 

 20 0.899 ± 0.018 0.879 ± 0.020 0.879 ± 0.030 ≃1 ≃1 ≃1 
 

MDR, Missing data rate on an entire multi-environment trial basis; H^2 was calculated based on 10,000 data points generated from combinations of 
various numbers of environments (2, 4, 6, 8 and 10) and test genotypes (50, 100, 200 and 300) with 500 replicates for each combination; Statistical 
power was the average of power estimates from 20 parametric sets of different numbers of environments and test genotypes. 
 
 
 

(Table 6). Because the empirical data had missing values 
in some environments (Table S1), a slightly weaker 

relationship among   ,  ̂ (A) and  ̂ (R), and a stronger 

relation between    and  ̂ (R) than that between    and 

 ̂ (A) (Table 6) were observed, which resembled the 
results obtained in missing data sets.  

 
 

Standard error of    
 

To perform a significance test for    estimates, the SEs of 

   determined by Eq. 4 (      ) and by the bootstrap 
method (      )) were compared to the corresponding 

simulated SEs (     ). Although a strong correlation of 

      to        was observed (R
2
 = 0.815)  (Figure 5A),  a 

high correlation (R
2
 = 0.995) was obtained for       with 

     ) (Figure 5B) indicating the bootstrap method yielded 

SE estimates for    that were highly consistent with those 
obtained by simulation. The SE estimates obtained by the 
bootstrap method were systematically smaller (by 0.0015 
on average) than those obtained by simulation. A linear 
regression equation,        1.0802*      ) - 0.0017 
(Figure 5B), may be used to adjust the bootstrap 
estimates. 
 
 

DISCUSSION 
 

   is the ratio of genetic variance to total phenotypic 
variance, representing  the  extent  with which  genotypes 
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Figure 3. Relationship of standard errors (SEs) of inter-environment correlation (  ) with SEs of   estimates by 

ANOVA (A) and REML (R). (A) SEs of    estimated from simulations (    )) vs. SEs of   estimates by ANOVA 

(   ̂    ) using all data sets (missing and non-missing data) (blue) and non-missing data only (red). (B)     )) vs. 

   ̂    ) using all data sets.  

 
 
 

Table 4.  Statistical power (P) of broad-sense heritability estimates ( ̂ ) at a given heritability of 0.2 by inter-environment correlation (  ), ANOVA, 
and REML for α = 0.05 (one-tailed test) as a function of the number of environments, and test genotypes, and missing data rates. 
 

No. of 
environments 

No. of test 
genotypes 

Method 
P for missing data rate (%) 

0 5 10 15 20 

2 50    0.533 0.503 0.518 0.543 0.571 

  ANOVA 0.533 0.527 0.507 0.500 0.528 

  REML 0.544 0.516 0.502 0.523 0.543 

 100    0.686 0.640 0.606 0.611 0.534 

  ANOVA 0.685 0.673 0.653 0.619 0.557 

  REML 0.711 0.666 0.643 0.623 0.563 

 200    0.890 0.859 0.837 0.818 0.733 

  ANOVA 0.889 0.812 0.705 0.639 0.596 

  REML 0.899 0.875 0.858 0.835 0.755 

 300    0.977 0.959 0.953 0.929 0.908 

  ANOVA 0.977 0.889 0.775 0.703 0.642 

  REML 0.974 0.956 0.947 0.929 0.903 
        

4 50    0.872 0.849 0.821 0.793 0.733 

  ANOVA 0.872 0.886 0.835 0.807 0.741 

  REML 0.875 0.859 0.832 0.832 0.763 

 100    0.986 0.976 0.976 0.955 0.913 

  ANOVA 0.986 0.982 0.960 0.918 0.858 

  REML 0.990 0.984 0.982 0.969 0.947 

 200    ≃1 ≃1 ≃1 0.999 0.998 

  ANOVA ≃1 0.999 0.979 0.942 0.888 

  REML ≃1 ≃1 ≃1 ≃1 0.999 

 300    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 0.993 0.966 0.917 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 
        

6 50    0.962 0.946 0.934 0.916 0.894 

  ANOVA 0.964 0.957 0.929 0.897 0.866 

  REML 0.969 0.959 0.949 0.939 0.925 

 100    0.999 0.998 0.997 0.994 0.992 
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Table 4.  Contd. 
 

  ANOVA 0.999 0.996 0.976 0.938 0.903 

  REML 0.999 0.999 0.998 0.997 0.996 

 200    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 0.999 0.994 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 

 300    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 0.999 0.988 0.960 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 
        

8 50    0.990 0.988 0.979 0.971 0.958 

  ANOVA 0.990 0.985 0.970 0.960 0.929 

  REML 0.994 0.992 0.990 0.987 0.977 

 100    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 0.999 0.995 0.986 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 

 200    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 0.999 0.995 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 

 300    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 ≃1 0.999 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 
        

10 50    0.996 0.995 0.990 0.988 0.988 

  ANOVA 0.997 0.994 0.988 0.983 0.971 

  REML 0.996 0.996 0.994 0.992 0.994 

 100    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 0.999 0.995 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 

 200    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 ≃1 ≃1 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 

 300    ≃1 ≃1 ≃1 ≃1 ≃1 

  ANOVA ≃1 ≃1 ≃1 ≃1 ≃1 

  REML ≃1 ≃1 ≃1 ≃1 ≃1 

 
 
 
 

are affected by environments and random error.    also 
represents the repeatability of trait performance in 
different environments. For highly heritable traits, the 
performance of genotypes in one environment has a high 
repeatability in other environments; in other words, the 
trait performance of the genotypes is strongly correlated 
between any pair of environments. In contrast, low 
heritability traits display low correlations of trait 
performance between any two environments. As such, 
the inter-environment correlation (  ) of trait performance 
should be an indicator of trait heritability. The theoretical 
derivation confirms that the    between two environments 

corresponds to    (Equation 2). Both simulation and 
empirical results demonstrate that    is an accurate and 

stable estimate of    on a plot basis.  

The    method has two significant advantages. First, 

because    is a mean correlation coefficient between 
pairs of environments, its calculation is simple. Second, 
only the test genotype data is required for calculation of 
  , eliminating the prerequisite for the use of the same 
control genotypes across all trials and hence permitting 

flexible field designs. Thus, the    method allows joint    
estimation over multiple environments for genetic 
populations that may differ in their MAD2 designs and 
which may not necessarily include the same control 
genotypes. The    method is equally applicable to trials 
with the same test genotypes but where different control 
genotypes are used in the different environments. A 

practical example was the joint   estimation for three flax 
biparental populations: BM, EV, and SU. These three 
populations were evaluated in the same six to eight 
environments using MAD2 designs but with different  
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Table 5. Correlation of broad-sense heritability ( ̂ ) estimated by three methods inter-environment correlation (  ), ANOVA (A), and 
REML (R) for simulated data sets with missing data rates of 5 to 20%. 
 

No. of  

environments 

No. of test  

genotypes 
        ̂

 (A))       ̂
 (R))     ̂      ̂ (R)) 

2 50 - 300 0.955 0.988 0.945 

4 50 - 300 0.984 0.995 0.980 

6 50 - 300 0.991 0.997 0.989 

8 50 - 300 0.995 0.998 0.993 

10 50 - 300 0.996 0.998 0.994 

2 - 10 50 0.980 0.998 0.970 

2 - 10 100 0.982 0.986 0.979 

2 - 10 200 0.984 0.998 0.983 

2 - 10 300 0.985 0.999 0.984 

2 - 10 50 - 300 0.983 0.995 0.979 
 

 ̂ (A):  ̂  on a plot basis estimated by ANOVA;  ̂ (R):  ̂  on a plot basis estimated by REML. Simulated data includes data points generated 
from combinations of environments (2, 4, 6, and 8), test genotypes (50, 100, 200 and 300), and heritability (0.1-0.9 in 0.1 increments) with 500 
replicates for each combination. 

 
 
 

Table 6. Correlation of broad-sense heritability ( ̂ ) estimated by three methods inter-environment correlation (  ), ANOVA (A), and 
REML (R) for empirical data. 
 

Population 
No. of test  

genotypes 

No. of  

traits 
        ̂

 (A))       ̂
 (R))     ̂      ̂ (R)) 

CC 391 22 0.986 0.992 0.995 

BM 243 14 0.982 0.982 1.000 

EV 90 19 0.948 0.974 0.980 

SU 78 11 0.998 0.998 1.000 

Total - 66 0.975 0.985 0.989 
 

CC, Core collection; BM, CDC Bethune/Macbeth; EV, E1747/Viking; SU, SP2047/UGG5-5;  ̂ (A):   ̂  on a plot basis estimated by ANOVA; 

 ̂ (R):   ̂  on a plot basis estimated by REML. The estimate for each trait was used as a single data point to calculate the correlation 

among   ,  ̂ (A), and  ̂ (R). No. of traits in each population represent the number of data points used for calculation of correlation between 
any two methods. Total represents all 66 data points from four individual populations for correlation calculation. 

 
 
 
control genotypes. In each MAD2 design, CDC Bethune 
was used as the main plot control but the subplot controls 
were the two parents of each of the three biparental 
populations to improve error control because the two 
parents shared the genetic background of their offspring. 
As a consequence of the use of different control 
genotypes in the three population trials, neither ANOVA- 

nor REML-based methods could estimate joint    values, 
but this was achievable with the    method using pooled 
data. The results will be reported separately.  

In the ANOVA-based    estimation, the error variance 
of unreplicated test genotypes is estimated by duplicated 
control genotypes. This is based on the assumption that 
control genotypes share the same random error variance 
with all test genotypes. Theoretically, the total mean 
square (MS) of the test genotypes will be greater than the 
error MS in a single trial or the G × E interaction variance 
in a multi-environment trial. As such, the genetic variance 
of the test genotypes can be  estimated  as  the  total  MS 

minus the error MS of a single trial or by the total 
variance minus the G × E interaction MS in a multi-
environment trial. However, the sampling bias caused by 
a limited number of control genotypes (typically three in 
MAD2) may occasionally result in negative genetic 
variance estimates and failure to correctly estimate 
genetic parameters, especially when the heritability of a 
trait is very low. In this case, the    method can avoid this 

potential drawback because the genetic variance in    
corresponds to the covariance of trait performance 
between two environments (         )) (Equation 2 and 

Figure 1A). If the          ) is less than zero then the 
genetic variance can be considered zero, whereas 
negative or null genetic variance obtained by ANOVA or 
REML might be an incorrect estimate in some cases. In 
the core collection, for example, both oil and linolenic 

acid contents have    estimates of zero because their 
genetic variances were estimated to be zero by both 
ANOVA-   and   REML-based   methods.   This   result   is  
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Figure 4. Relationship of inter-environment correlations (  ) with broad-sense heritability ( ̂ ) estimated 

from empirical data by ANOVA and REML. Data points include estimates for    and  ̂  from 22 traits in the 
core collection, 14 in the CDC Bethune/Macbeth, 19 in the E1747/Viking, and 11 in the SP20147/UGG5-5 
populations.   

 
 
 

 
 

Figure 5. Relationship of standard error (SE) of inter-environment correlation (  ) with SE estimates by other methods. (A)     ) vs. SE 
of    calculated by Equation 4 (      ). (B)    ) vs. SE estimated by the bootstrap method (     )). All data sets including missing and 
non-missing data) were used. 

 
 
 
obviously incorrect because oil and linolenic acid content 
are traits of moderate to high heritability (You et al., 

2016a). However,   -based    estimates for the two traits 
were 0.387 and 0.661, respectively, although these 
estimates are still smaller than expected.  

The  REML-based  method,  as  an  alternative   to   the 

more traditional ANOVA techniques, has been widely 
used for estimation of heritability and genetic correlations 
(Holland, 2006; Piepho and Möhring, 2011). The 
advantages compared to ANOVA methods are that 
REML estimates of variance and covariance components 
have known asymptotic distributional properties  and  can  



 
 
 
 
efficiently handle both unbalanced data and complex 
experimental designs (Meyer, 1985; Holland, 2006). 
REML’s main drawback is that it is much more 
computationally intensive than ANOVA, a disadvantage  
that is exacerbated with large data sets. In this study, 
these two    estimation methods were compared to the 

   method using both simulation and empirical data of 
multi-environment MAD2 trials. All results corroborate the 
agreements between the ANOVA- and REML-based 
methods with r > 0.99 in the simulated data sets without 
missing data, especially in the empirical data of BM and 
SU populations where their estimates are nearly identical 
(Table 2). The ANOVA-based   estimates are consistent 
with the    estimates when no missing data exist in the 
data sets. Nevertheless, when missing values occur, the 
  - and REML-based methods show higher power than 
the ANOVA-based method, confirming that the REML-
based method is efficient for tackling unbalanced data. 
Overall,   -, ANOVA-, and REML-based methods can be 

used for non-missing data sets; the   - and REML-based 
methods are suitable for missing data sets; and the 
   method is versatile for all cases of practical data sets in 
multi-environment MAD2 trials.  

A significance test for    estimates requires SE values. 

Generally, SEs (     ) estimated by simulation with a 
large sample size (500 in this study) provide a good 
estimate of the sampling error. Thus, they were used as a 
relative standard for comparisons. Two potential methods 
were assessed: the approximate standard error (      ) 
of mean simple correlation coefficients (Equation 4) and 
bootstrap. The non-parametric bootstrap is an effective 
alternative for determining distribution of an estimator 
with an unknown probability density, and has been used 
to estimate standard errors for heritability (Xie and 
Mosjidis, 1997). Results demonstrate that the bootstrap 
method outperforms the SE formula of simple correlation 
coefficient (Equation 4), and provides perfectly consistent 
SE estimates with      . However, a systematic difference 

between       and sb(rE) was observed; adjustments may 

be done using the regression equation in Figure 5B, 
which was constructed using 900 data points generated 
from different numbers of environments (2, 4, 6, 8, and 
10), test genotypes (50, 100, 200 and 300), and missing 
data rates (0, 5, 10, 15 and 20%) at given heritability 
values ranging from 0.1 to 0.9. Therefore, the bootstrap 
method is recommended to estimate the standard error of 
   in significance tests. The bootstrap estimation of SE 
has been implemented in the R pipeline program 
(http://probes.pw.usda.gov/bioinformatics_tools/MADPipe
line/index.html).   

To find the effective sample size for estimating    in 
multi-environment MAD2 trials, the statistical power of 

three    estimation methods was calculated. As 
expected, the power is affected by the number of 
environments and test genotypes, and missing data 

rates. For traits with    equal to  or  greater  than  0.5,  
50  test genotypes at two environments were sufficient 
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to achieve a statistical power over 0.95 (Table 1); for 
traits with lower heritability (e.g., 0.2), 300 test genotypes 
at two environments, 100 test genotypes at four 
environments, or 50 test genotypes at greater than or 
equal to six environments are required to obtain the same 
statistical power (Table 1). Increasing the missing data 
rate decreased the statistical power (Table 4), but an 
increase of the number of environments and/or test 

genotypes markedly improved the statistical power of    
estimates.  

Notably, heritability estimates in the simulation data 
sets were slightly biased from their true values when 

true    values were greater than 0.2 (Table 3). This bias 

was observed in all three   estimation methods, 
especially when the ANOVA-based method was used for 
missing data sets. However, the    method has less 
deviation than other two for both missing and non-
missing data sets. This bias may be inherently owing to 
the MAD2’s unbalanced feature. Piepho and Möhring 
(2007) discussed how estimation of broad-sense 
heritability in unbalanced trials differs from that in the 
case of a balanced design. The    proposed here, as well 
as the ANOVA- (You et al., 2016b) and REML- (You et 

al., 2016a) based methods, provide an approximate    
estimate for MAD2 trials. This approximation is due to not 
only unbalanced data but also approximate assumption 
of independence for adjusted observations from an 
MAD2 trial.  

For adjustment of observations in an MAD2 trial, there 
are four different cases for quantitative traits: (1) 
significant additive soil variation due to row or column 
effects (M1); (2) significant non-additive soil variation due 
to row × column interaction effects (M3); (3) M1+M3, and 
(4) no additive or non-additive soil variation (You et al., 
2013). For case 4, as no data adjustment is required, 
their estimates of heritability  will be unbiased, while for 
the first three cases, data adjustment are needed and the 
adjusted data may be correlated to some extent, resulting 
in biased estimates. In this study, the simulation data was 
completely independent of each other, but the empirical 
data of some traits were unnecessarily completely 
independent due to data adjustment. However, we found 
that highly similar or consistent results were obtained in 
both data sets, indicating small effect of defective 
independence assumption to heritability estimation. In our 
actual trials, especially those with good quality, most of 
the traits would not need data adjustment or have minor 
row or/and column or their interaction effects, the bias 
due to defective independence would be small and may 
be disregarded in breeding applications.      
 
 

Conclusion 
 

A    statistic, rE, representing an inter-environment 
correlation of a quantitative trait, was presented for multi-
environment MAD2 trials. The    method provides a 

simple   approach   to   approximate       in    any    multi- 
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environment MAD2 trial without the limitations of ANOVA- 
or REML-based methods that require the use of the same 
control genotypes across trials and/or environments.  
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Supplementary data 
 
Table S1. Broad-sense heritability estimates ( ̂ ) determined by inter-environment correlation (   , ANOVA (A), and REML (R), and their 
standard error (SE) for traits for three flax biparental populations (BM, EV, and SU) and the flax core collection (CC). 
 

Population Trait MDR (%)    ± SE 
 

 ̂     ± SE  ̂     ± SE 

CC Bolls (m
-2

) 6.07 0.319 ± 0.051 
 

0.313 ± 0.022 0.337 ± 0.023 

CC Cellulose content (%) 2.23 0.306 ± 0.046 
 

0.178 ± 0.014 0.284 ± 0.020 

CC Cell wall content (%) 2.23 0.173 ± 0.050 
 

0.111 ± 0.012 0.170 ± 0.017 

CC Fiber content (%) 2.23 0.331 ± 0.052 
 

0.253 ± 0.018 0.312 ± 0.021 

CC Days to 5% flowering 2.05 0.643 ± 0.043 
 

0.548 ± 0.020 0.595 ± 0.020 

CC Days to 95% flowering 2.40 0.662 ± 0.038 
 

0.546 ± 0.020 0.619 ± 0.019 

CC Plant height (cm) 2.05 0.594 ± 0.033 
 

0.608 ± 0.019 0.650 ± 0.019 

CC Iodine value 3.11 0.800 ± 0.026 
 

0.769 ± 0.014 0.780 ± 0.014 

CC Lignin content (%) 2.23 0.324 ± 0.051 
 

0.247 ± 0.018 0.307 ± 0.021 

CC Linoleic content (%) 3.11 0.934 ± 0.050 
 

0.919 ± 0.006 0.921 ± 0.006 

CC Lodging 1.98 0.104 ± 0.048 
 

0.060 ± 0.010 0.081 ± 0.014 

CC Days to maturity 2.23 0.212 ± 0.055 
 

0.185 ± 0.017 0.212 ± 0.019 

CC Mildew score 5.53 0.522 ± 0.038 
 

0.411 ± 0.028 0.466 ± 0.031 

CC Oleic content (%) 3.11 0.768 ± 0.028 
 

0.722 ± 0.016 0.736 ± 0.016 

CC Palmitic content (%) 3.11 0.822 ± 0.027 
 

0.791 ± 0.013 0.806 ± 0.012 

CC Pasmo score 3.02 0.253 ± 0.042 
 

0.256 ± 0.022 0.288 ± 0.025 

CC Plant branching score 9.85 0.000 ± 0.053 
 

0.004 ± 0.013 0.006 ± 0.018 

CC Shive content (%) 2.23 0.332 ± 0.052 
 

0.254 ± 0.018 0.312 ± 0.021 

CC Protein content (%) 3.46 0.723 ± 0.061 
 

0.631 ± 0.021 0.680 ± 0.020 

CC Stearic content (%) 3.11 0.845 ± 0.023 
 

0.817 ± 0.012 0.822 ± 0.011 

CC Thousand seed weight (g) 0.38 0.770 ± 0.028 
 

0.629 ± 0.030 0.641 ± 0.030 

CC Seed yield (T H
-1

) 2.84 0.405 ± 0.044 
 

0.306 ± 0.020 0.386 ± 0.022 

BM Cell wall content (%) 0.29 0.091 ± 0.064 
 

0.089 ± 0.020 0.089 ± 0.020 

BM Iodine value 0.46 0.783 ± 0.032 
 

0.769 ± 0.018 0.769 ± 0.018 

BM Linoleic content (%) 0.46 0.756 ± 0.030 
 

0.755 ± 0.019 0.755 ± 0.019 

BM Linolenic content (%) 0.46 0.783 ± 0.032 
 

0.774 ± 0.018 0.773 ± 0.018 

BM Days to maturity 0.00 0.427 ± 0.050 
 

0.432 ± 0.031 0.432 ± 0.031 

BM Oil content (%) 0.36 0.564 ± 0.047 
 

0.494 ± 0.027 0.494 ± 0.027 

BM Oleic content (%) 0.46 0.777 ± 0.029 
 

0.764 ± 0.018 0.764 ± 0.018 

BM Palmitic content (%) 0.46 0.803 ± 0.029 
 

0.763 ± 0.018 0.762 ± 0.018 

BM Seeds per boll 0.55 0.366 ± 0.056 
 

0.234 ± 0.028 0.235 ± 0.028 

BM Protein content (%) 0.00 0.215 ± 0.061 
 

0.328 ± 0.029 0.328 ± 0.029 

BM Stearic content (%) 0.46 0.852 ± 0.028 
 

0.822 ± 0.015 0.823 ± 0.014 

BM Straw weight (g) 0.51 0.340 ± 0.055 
 

0.266 ± 0.035 0.266 ± 0.035 

BM Thousand seed weight (g) 0.55 0.324 ± 0.071 
 

0.261 ± 0.028 0.261 ± 0.028 

BM Seed yield (T H
-1

) 0.26 0.029 ± 0.061 
 

0.016 ± 0.013 0.016 ± 0.013 

EV Cellulose content (%) 0.00 0.383 ± 0.087 
 

0.329 ± 0.045 0.368 ± 0.043 

EV Cell wall content (%) 0.00 0.052 ± 0.099 
 

0.034 ± 0.027 0.033 ± 0.028 

EV Fiber content (%) 0.00 0.429 ± 0.084 
 

0.344 ± 0.045 0.368 ± 0.048 

EV Days to flowering 0.00 0.000 ± 0.083 
 

0.024 ± 0.089 0.004 ± 0.115 

EV Plant height (cm) 0.00 0.310 ± 0.090 
 

0.506 ± 0.047 0.330 ± 0.078 

EV Iodine value 0.00 0.916 ± 0.031 
 

0.916 ± 0.012 0.917 ± 0.013 

EV Lignin content (%) 0.00 0.465 ± 0.086 
 

0.304 ± 0.048 0.352 ± 0.050 

EV Linoleic content (%) 0.00 0.928 ± 0.029 
 

0.913 ± 0.013 0.912 ± 0.013 

EV Linolenic content (%) 0.00 0.936 ± 0.026 
 

0.918 ± 0.012 0.918 ± 0.012 

EV Days to maturity 0.00 0.230 ± 0.105 
 

0.226 ± 0.045 0.237 ± 0.048 

EV Oil content (%) 0.00 0.587 ± 0.072 
 

0.612 ± 0.041 0.536 ± 0.055 

EV Oleic content (%) 0.00 0.408 ± 0.092 
 

0.419 ± 0.046 0.409 ± 0.050 
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Table S1. Contd. 
 

EV Palmitic content (%) 0.00 0.758 ± 0.048 
 

0.775 ± 0.029 0.754 ± 0.036 

EV Protein content (%) 0.00 0.664 ± 0.056 
 

0.680 ± 0.040 0.573 ± 0.059 

EV Shive content (%) 0.00 0.486 ± 0.086 
 

0.262 ± 0.043 0.301 ± 0.046 

EV Stearic content (%) 0.00 0.843 ± 0.042 
 

0.756 ± 0.030 0.773 ± 0.026 

EV Straw weight (g) 0.00 0.198 ± 0.085 
 

0.302 ± 0.086 0.171 ± 0.086 

EV Seed yield (T H
-1

) 0.00 0.414 ± 0.098 
 

0.227 ± 0.041 0.172 ± 0.053 

SU Plant height (cm) 0.00 0.278 ± 0.101 
 

0.245 ± 0.055 0.245 ± 0.055 

SU Iodine value 0.00 0.934 ± 0.033 
 

0.921 ± 0.013 0.921 ± 0.013 

SU Linoleic content (%) 0.00 0.939 ± 0.031 
 

0.935 ± 0.011 0.935 ± 0.011 

SU Linolenic content (%) 0.00 0.939 ± 0.033 
 

0.932 ± 0.012 0.932 ± 0.012 

SU Days to maturity 0.00 0.547 ± 0.078 
 

0.537 ± 0.054 0.537 ± 0.054 

SU Oil content (%) 0.00 0.738 ± 0.049 
 

0.685 ± 0.042 0.685 ± 0.042 

SU Oleic content (%) 0.00 0.752 ± 0.052 
 

0.724 ± 0.039 0.724 ± 0.039 

SU Palmitic content (%) 0.00 0.902 ± 0.020 
 

0.878 ± 0.020 0.878 ± 0.020 

SU Protein content (%) 0.00 0.481 ± 0.089 
 

0.450 ± 0.054 0.450 ± 0.054 

SU Stearic content (%) 0.00 0.888 ± 0.031 
 

0.854 ± 0.023 0.854 ± 0.023 

SU Seed yield (T H
-1

) 0.00 0.214 ± 0.105 
 

0.136 ± 0.044 0.136 ± 0.044 
 

MDR, Missing data rate; BM, CDC Bethune/Macbeth; EV, E1747/Viking; SU: SP2047/UGG5-5; CC, core collection. The population sizes of BM, 

EV, SU, and CC are 243, 86, 70, and 391, respectively.  ̂ (A):  ̂  on a plot basis estimated by ANOVA;  ̂ (R):  ̂ on a plot basis estimated by 

REML. The standard error (SE) for   was estimated using the bootstrap method and the SE for  ̂ (A) and  ̂ (R) was calculated based on the Delta 
method implemented in You et al. (2016b). 


