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Yield is a quantitative trait known to be influenced by changes in the environment in which the crop is 
grown, suggesting the need to evaluate soybean lines in different growing regions to assess their 
adaptability and stability. The objective of this study was to evaluate the performance, yield stability, 
and genotype × environment interaction (G×E) in soybean cultivars, and the informativeness of six 
environments in Southern Africa. A group of 62 soybean lines was grown and tested in six locations in 
Malawi and Zambia during the growing seasons in 2018 and 2019 using a 6 x 5 and 5 x 5 alpha lattice 
design. Genotype plus genotype × environment (GGE) biplots were used to reduce data complexity and 
analyze genotypes performance and stability; environments discriminativeness and representativeness; 
and traits associated with yield. The GGE analyses showed a significant effect of genotypes, 
environments, and G×E. Genotypes with local and wide adaptation and environments with desirable 
characteristics for testing cultivars were identified. A number of agronomic traits were identified to be 
positively and negatively associated with soybean yield. These results reinforce the utility of GGE 
analysis for ranking cultivars and environments in soybean breeding programs in Southern Africa. 
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INTRODUCTION 
 
Soybean (Glycine max (L.) Merr.) is an important protein 
and oilseed crop throughout the world. Its high protein 
content (40 - 42%) makes it suitable and desirable in 
human diet (Patil et al., 2018). Soybean seeds have an 
oil content of approximately 18 to 22% (Patil et  al., 2018) 

making it a major source of both edible and inedible oil 
products. Its high-quality oil is used in food product 
manufacturing as well as in the production of inedible 
products such as caulks, mastics, plastics, and resins. 
Additionally,   when  integrated  with  a  rotational  system 
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with cereals, it enhances the level of nitrogen in the soil 
(Kumudini, 2010) playing an important role in soil fertility.  

Soybean is grown in most parts of the world, with Brazil 
being the leading producer, followed by the USA and 
then Argentina. Africa produces 12,537 tons (about 2.2% 
of the global production) with South Africa being the 
leading soybean producer followed by Nigeria and then 
Zambia (FAOSTAT, 2019). Soybean production has 
gradually been increasing in Zambia making it the leading 
exporter to southern African countries such as Zimbabwe 
and Botswana (Abate et al., 2012). However, further 
growth of Zambia’s soybean export market within the 
southern African region is constrained by its low yields. 
One of the contributing factors to low yields is the limited 
availability of varieties that are adapted to local and 
regional climatic conditions.  

Soybean yield is controlled by multiple genes and it is 
affected by the interactions between the genotype and 
the environment, in previous studies soybean seed yield 
has been found to be associated with up to 17 QTL (Han 
et al., 2012). Varietal stability is a key factor affecting 
cultivar’s response in varying environments. Stability 
analysis aims at examining the performance of a 
genotype relative to other genotypes in different 
environments (Bernardo, 2020). Breeders may require a 
variety that is stable across different production 
environments; however, there could be a genotype that 
may perform well in a specific environment but poorly in 
other environments. This lack of varietal stability may be 
challenging for breeding programs driven by the 
development of soybean varieties adapted to multiple 
environments in multiple countries such as the soybean 
breeding program of the International Institute of Tropical 
Agriculture (IITA). Therefore, it is important to determine 
the stability of a given genotype in multiple production 
environments to inform variety release decisions.  

To fully express their genetic potential, cultivars require 
ideal environmental conditions; hence, their performance 
will vary depending on the production environment 
(Reynolds et al., 2001). This relative change in 
performance of cultivars across environments is termed 
genotype by environment interaction (G×E). G×E reduces 
the association between phenotypic and genotypic 
values, which may cause selections from one 
environment to perform poorly in another. An 
understanding of G×E in multi-environment trials (MET) is 
important in identifying locations that are efficient in 
distinguishing tested genotypes and in providing 
information on the most representative and descriptive 
environment.  

As G×E complicates the identification of ideal 
environments, and superior and stable genotypes, 
multiple data reduction tools such as cluster analysis, 
joint plots and biplots have been used by breeders (Yan 
and Tinker, 2006). Biplots allow the identification of 
associations between genotypes, environments, and their 
interaction. Biplots include the  Additive  Main  effect  and  

 
 
 
 
Multiplicative Interaction (AMMI) and Genotype plus 
genotype by environment (GGE) analyses. GGE biplots 
are powerful tools that combine principal component 
analysis (PCA) and graphical explanation of G×E to 
identify patterns associated with genotypes and G×E in 
the evaluation of cultivars in MET (Hoyos-Villegas et al., 
2016. GGE allows a better understanding of G×E, and in 
turn facilitates the identification of representative and 
discriminative environments (Yan and Tinker, 2006). In 
contrast, AMMI analysis explain less of the GGE variation 
compared to GGE biplots, and does not allow an 
accurate visualization of genotypes in a given 
environment since the inner-product property is not 
considered (Hoyos-Villegas et al., 2016; Yan et al., 
2007). The objective of this study was to assess the 
performance, yield stability, G×E in soybean cultivars, 
and the informativeness of the tested environments in 
multiple locations in Southern Africa. 
 
 

MATERIALS AND METHODS 
 
Genotypes and evaluation environments  
 
Fifty-five (F7) elite soybean lines developed by the International 
Institute of Tropical Agriculture (IITA) along with seven commercial 
checks (released varieties) from seed companies were used to 
generate the data used in this study. The genotypes being 
evaluated have an early to medium maturity group with determinate 
and indeterminate growth habit (Table 1). The multi-environment 
trials (MET) were carried out at six different locations in Zambia and 
Malawi. In 2018 season, the locations were Chipata, Seedco-
Zambia, International Institute of Tropical Agriculture Southern 
African Region Administration (IITA-SARAH), and Chitedze 
(Malawi). In 2019 season, the locations were Bvumbwe (Malawi), 
Kabwe (Zambia), IITA-SARAH, and Chitedze (Malawi). According 
to their characteristics, locations were grouped into four 
environments (Table 2). 
 
 
Experiment design and data collection 
 
The soybean genotypes were planted in a 6 × 5 and 5 × 5 alpha 
lattice design with three replications. Each genotype occupied a plot 
comprising four rows of 4 m long each, 0.5 m between rows, and 
0.05 m between plants. Basal dressing fertilizer (25 kg N/ha, 30 kg 
K2O/ha, 60 kg P2O5/ha) was applied at planting, and Metolachlor 
and Imazethapyr were applied as pre-emergence herbicides for 
control of weeds. Quizalofop-p-ethyl and Fomesafen were applied 
as post-emergence control of weeds and hand weeding control was 
also done. Data collected involved grain yield (GY, kg ha

-1
), 100 

seed weight (SWT100), plant height (PLHT), days to maturity (DM), 
days to flowering (DFFL), lodging, and shattering. Lodging was 
recorded for each plot based on a descriptive scale (Woods and 
Swearingin, 1977) where 1 = almost all plants erect, 2 = either all 
plants leaning slightly or a few plants down, 3 = either all plants 
leaning moderately (<45° angle) or 25-50% of plants down, 4= 
either all plants leaning considerably (>45° angle) or 50-80% of 
plants down, and 5 = all plants down. For shattering the scale 
proposed by Krisnawati and Muchlish Adie (2017) was used, where 
1 = No pod-shattering (Very Resistant); 2 ≤ 25% pod-shattering 
(Resistant); 3 = 25-50% pod-shattering (Moderately Resistant); 4 = 
51-75% pod-shattering (Highly Susceptible); 5 ≥75% pod-shattering 
(Very Highly Susceptible). 
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Table 1. List of the evaluated soybean genotypes. 
 

No. Genotype Source 
Growth 
habit

*
 

Maturity 
group

§
 

 
No. Genotypes 

†
 Source 

Growth 
habit

*
 

Maturity 
group

§
 

1 Dina MRI I L  32 TGx2001_9DM IITA I M 

2 Kafue IITA D E  33 TGx2002_14DM IITA D M 

3 Lukanga ZAMSEED D M  34 TGx2002_17DM IITA D M 

4 SC_Safari SEEDCO I E  35 TGx2002_23DM IITA I M 

5 SC_SAMBA SEEDCO D M  36 TGx2002_35FM IITA D E-M 

6 SC_SPIKE SEEDCO I M-L  37 TGx2002_3DM IITA D E 

7 SC_SQUIRE SEEDCO I M  38 TGx2002_3FM IITA D E 

8 TGx1987_62F IITA D M  39 TGx2002_4DM IITA D E 

9 TGx2001_10DM IITA I M  40 TGx2002_5FM IITA I M 

10 TGx2001_11DM IITA I M  41 TGx2002_6DM IITA I M 

11 TGx2001_13DM IITA I M  42 TGx2002_6FM IITA I M 

12 TGx2001_13FM IITA I M  43 TGx2002_7FM IITA I M 

13 TGx2001_14DM IITA I M  44 TGx2002_8FM IITA I M 

14 TGx2001_14FM IITA I M  45 TGx2002_9FM IITA I M 

15 TGx2001_15DM IITA I M  46 TGx2014_15FM IITA I M 

16 TGx2001_16DM IITA I M  47 TGx2014_16FM IITA D E-M 

17 TGx2001_18DM IITA I M  48 TGx2014_17FM IITA I M 

18 TGx2001_18FM IITA I M  49 TGx2014_19FM IITA I M 

19 TGx2001_19DM IITA I M  50 TGx2014_21FM IITA I M 

20 TGx2001_1DM IITA I M  51 TGx2014_23FM IITA I M 

21 TGx2001_20FM IITA I M  52 TGx2014_24FM IITA D E-M 

22 TGx2001_22DM IITA I M  53 TGx2014_27FM IITA I M 

23 TGx2001_24DM IITA I M  54 TGx2014_31FM IITA I M 

24 TGx2001_24FM IITA I M  55 TGx2014_33FM IITA I M 

25 TGx2001_26FM IITA I M  56 TGx2014_34FM IITA I M 

26 TGx2001_2DM IITA I M  57 TGx2014_38FM IITA I M 

27 TGx2001_5DM IITA I M  58 TGx2014_43FM IITA I M 

28 TGx2001_5FM IITA I M  59 TGx2014_44FM IITA I M 

29 TGx2001_6FM IITA I M  60 TGx2014_4FM IITA I M 

30 TGx2001_8DM IITA I M  61 TGx2014_5GM IITA I E-M 

31 TGx2001_8FM IITA I M  62 TGx2014_9FM IITA I M 
 

*I = Indeterminate, D = determinate; 
† 

TGx (Tropical glycine max); 
§
M= Medium maturity (100-111 days), E= Early maturity (85-99 days), L= Late 

maturity (112-120 days). 
 
 
 

Statistical analysis 
 

Genotype plus Genotype × Environment biplots and stability 
analysis 
 

Datasets from Chipata, IITA-SARAH, Chitedze, and Seedco-
Zambia in 2018 were combined with datasets from Chitedze, IITA-
SARAH, Bvumbwe, and Kabwe in 2019, respectively, to establish 
four environments (Table 1). Normality was also checked in data 
using residuals. 

Multi-environment data were analyzed to visually identify GE 
interactions. The package metan in R (Olivoto and Lúcio, 2020) 
was used to calculate ANOVA-based stability statistics, variance 
components, and broad-sense heritability (H

2
) in mixed-effect 

models, and best linear unbiased prediction (BLUP) values for GY, 
SWT100, PLHT, DM, DFFL, lodging, and shattering, using the 
model: 
 

 

where µ is the grand mean,  is the random effect of the ith line 

(genotype),  is the random effect of the jth environment,  

is the interaction of genotype i and environment j,  is the random 

effect of the kth block within the j environment, and  is the 

random error. BLUP-adjusted means were obtained by resolving 
the random effects for each line (Olivoto and Lúcio, 2020). 

Different biplots were created using the environment-centered 

model (  where the E main effect 

( ) is removed and the biplot only considers G ( ) and GE ( ) 

as the relevant sources of variation. The biplot analyses were 
carried out using the package GGE Biplot GUI in R (Frutos et al., 
2014). In the biplots, no scaling was used, except for the genotype 
by trait biplot where data were scaled with the standard deviation 
(SD). When evaluating test environments or traits, data were 
represented  using  column-preserving, singular-value; whereas, for  
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Table 2. Trial locations and their geographical information. 
 

Environment Location Country Longitude Latitude 
Elevation 
(mamsl)* 

Rainfall (mm) Temperature  

2018 2019 
2018 
(min) 

2018 
(max) 

2019 
(min) 

2019 
(min) 

Soil type 

E1 
Chipata Zambia E32°39′ S13°40′ 1098 1249 234.46 13 28 12.6 29.089 Loamy sand 

Chitedze Malawi E33°38′ S13°59′ 1100 929 114.533 12 28.6 13 30 Sand clay 

             

E2 IITA-SARAH Zambia E28°30′ S15°30′ 1193 703 127.98 12.6 27.98 11 30.88 Red clay loam 

E3 Bvumbwe Malawi E35°067’ S15°.917’ 1146 930 180.28 13 24.67 12.33 27.89 Sand clay 

             

E4 
Seedco. Zambia Zambia E28°33′ S15°67′ 1301 826 138.04 11 29 13 28.46 Red clay loam 

Kabwe Zambia E28°4514’ S14°4285’ 1182 804 104.517 12.38333 29.11667 13.1 28.95 Sandy loam 

 
 
 
the comparison of G and GE, biplots were drawn using 
row-preserving, singular value partitioning (Yan and Tinker, 
2006). 

 
 

RESULTS AND DISCUSSION 
 

Average agronomic performance, analysis of 
variance and heritability 
 

Grain yield in E1 ranged from 1.89 t/ha (TGx2001-
8FM) to 2.86 t/ha (TGx2014-9FM) with an 
average of 2.33 t/ha. In E2, grain yield ranged 
from 2.20 t/ha (TGx2001-19DM) to 2.99 t/ha (SC 
SQUIRE) with an average of 2.56 t/ha. E3 had a 
grain yield ranging from 1.71 t/ha 
(TGx2001_9DM) to 2.69 t/ha (TGx2014_24FM) 
with an average of 2.24 t/ha. In E4 grain yield 
ranged from 2.92 t/ha (TGx2001_8DM) to 3.58 
t/ha (TGx2001_2DM) with an average 
performance of 3.21 t/ha. The agronomic 
performance of traits across environments 
showed that grain yield ranged from 2.27 t/ha 
(TGx2001-8FM) to 2.88 t/ha (TGx2014_24FM) 
with an average of 2.58 t/ha. Similar findings were 
reported, in which soybean yield ranged from 1.77 

(SC Semeki) to 2.43 t/ha (Lukanga) with an 
average of 1.95 t/ha (Manda and Maata, 2020). 
SWT100 ranged from 13.10 g (Dina) to 17.96 g 
(TGx2001_14DM) with an average of 14.88 g, 
PLHT ranged from 67.49 cm (TGx2002_14DM) to 
85.19 cm (TGx2014_23FM) with an average of 
75.35 cm, DM oscillate between 103 days 
(TGx2014_31FM) and 118 days (Dina) with an 
average of 111 days; these results indicate that 
most of our genotypes have a medium maturity 
period, following the scale developed by Kawuki 
et al. (2003), in which early maturing varieties 
takes 85 to 99 days, medium maturing varieties 
take 100 to 111 days to maturity and late maturing 
varieties take 112 to 121 days to maturity, DFFL 
varied from  45 days (TGx2014_31FM) to 56 days 
(TGx1987_62F) with an average of 51 days, 
lodging score ranged from 1.82 (TGx2014_24FM) 
to 2.41 (TGx2002_4DM) with an average of 2.09, 
and shattering score was between 1.17 (Dina) 
and 2.38 (TGx2002_6FM) with an average of 
1.68. 

In the analysis of variance, all the sources of 
variation had a significant effect (p<0.001) on GY, 
DM, DFFL,  and  shattering. The  environment  did 

not have a significant effect on PLHT or lodging. 
Lodging showed the highest variation (CV = 
58.7%) followed by shattering (CV = 38.4%). In 
contrast, DM and DFFL had the lowest CV with 
4.8 and 8.5%, respectively (Table 3).  

Table 4 shows the proportion of variance 
explained by the Environment, Genotype, and 
G×E interaction, and the broad-sense heritability 
(H

2
) for the traits evaluated. Overall, the 

environment explained a higher proportion of the 
variance, accounting for 4.56 to 50.03%, followed 
by G×E (5.03-18.06%), and the genotype (0.54-
15.46%). For yield, the environment explained 
14.36% of the variability, genotype 1.02%, and the 
interaction 5.06%. The magnitude of the 
contribution of the E and G×E are attributed to 
contrasting conditions between testing 
environments (Ahakpaz et al., 2021). In the 
present study, environments in the two countries 
vary in terms of soil type, precipitation, 
temperature, and humidity (Table 2), differences 
that explain the observed effects. Previous studies 
have also reported a higher contribution of the 
environment than G×E on soybean yield (Gurmu 
et al., 2017; Rakshit et al., 2012; Temesgen et al.,  
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Table 3. ANOVA for soybean traits. 
 

SOV 
GY 

 
SWT100 

 
PLHT 

 
DM 

 
DFFL 

 
Lodging  Shattering 

df Mean Sq. 
 

df Mean Sq 
 

df Mean Sq 
 

df Mean Sq 
 

df Mean Sq 
 

df Mean Sq 
 

df Mean Sq 

Environment 3 80532.75*** 
 

3 388.3*** 
 

3 3980
ns

 
 

3 2163.9* 
 

3 2991.1*** 
 

3 244.41
 ns

 
 

3 34.068*** 

Rep (ENV) 68 12679.94*** 
 

61 22.5
ns

 
 

61 3806*** 
 

59 660.4*** 
 

65 79.9*** 
 

46 1.63*** 
 

61 2.158*** 

Genotype 61 1284.55*** 
 

61 51.4*** 
 

61 465*** 
 

61 350.3*** 
 

61 232.3*** 
 

61 1.52*** 
 

61 2.096*** 

G × E 183 860.99*** 
 

183 31.9*** 
 

183 299*** 
 

183 80.6*** 
 

183 62.8*** 
 

183 1.32*** 
 

183 0.833*** 

Error 1358 497.75 
 

1152 22.8 
 

1021 110 
 

1158 26.5 
 

1286 18.8 
 

748 0.82 
 

1155 0.412 

CV (%) 29.5 
 

31.7 
 

14.7 
 

4.8 
 

8.5 
 

40.8 
 

38.4 

BLUP-adjusted mean 2.58 t/ha 
 

14.88 g 
 

75.35 cm 
 

111 days 
 

51 days 
 

2.09 
 

1.68 
 

*, **, and *** indicate significance at the 0.05, 0.01 and 0.001 probability levels, respectively. ns, not significant at p ≤ 0.05. Mean Sq.: Mean square. 

 
 
 
2015; Vaezi et al., 2017) and other traits (Li et al., 
2020). Nevertheless, higher G×E contributions 
(Atnaf et al., 2013; Bhartiya et al., 2018; Mwiinga 
et al., 2020) or a higher genotype effect (Li et al., 
2020) has also been reported. 

The H
2
 can be divided into high (H

2
 greater than 

50%), medium (H
2
 greater than 20% and less than 

50%), and low (H
2
 less than 20%) (Sulistyo et al., 

2018). According to this, GY, SWT100, and 
lodging showed a medium heritability (37, 44, and 
21% respectively), and PLHT, DM, DFFL, and 
shattering showed a high H

2
 (50-76%; Table 4). 

For yield-related variables, the H
2
 was lower 

compared to those reported by Li et al. (2020) for 
soybean MET in China. However, our H

2 
values 

for yield and other variables are consistent with 
previous reports that showed PLHT, DM, and 
DFFL having a higher heritability compared to 
yield in soybean (Bianchi et al., 2020; Li et al., 
2020).  
 
 
GGE analysis  
 
Although the effect of the environment explained a 
large percentage of  the  total  variance (Table  4), 

significant contributions of G×E to total variation 
for all the variables evaluated were also identified 
(Table 3). When selecting stable genotypes and 
evaluating tester environments, the effect of the 
genotype and G×E are the main factors to be 
examined simultaneously (Yan and Kang, 2003; 
Yan et al., 2007). Here, the GGE analysis allowed 
to graphically evaluate the environments and 
genotypes. 
 
 
Environment evaluation 
 
The discriminativeness vs representativeness is a 
tester-centered (G + GE) and column-preserving 
biplot that assesses environments. In this biplot, it 
is possible to identify environments that are 
similar and could be grouped into mega-
environments. Similarly, the biplot provides 
information about which of the environments is 
more representative within the trials and which 
one has the best discriminating ability. 
Relationships among the four environments can 
be visualized by analyzing their vectors and the 
angles formed among them. Acute angles indicate 
positive  correlations  and  obtuse angles negative 

correlations. All the environments showed a 
positive correlation, where the angles formed 
among the environment vectors allowed to identify 
two major groups, one with E2, E3, and E4 and 
another with E1 (Figure 1). However, E4 is close 
to being in the middle between E2-E3 and E1. 
Information on mega-environments allows a better 
experimental design for the evaluation of multiple 
genotypes and to determine when locations can 
be predictable for a given environment (Gauch et 
al., 2008). As reported here, GGE and other biplot 
analysis such as AMMI have shown to be efficient 
to identify mega environments (Ahakpaz et al., 
2021; Hoyos-Villegas et al., 2016; Li et al., 2020). 
The mega-environments identified here allow the 
use of repeatable G×E in soybean breeding in 
Southern Africa, and contribute to the crop 
production by releasing adapted cultivars 
according to mega-environments (Yan, 2019). 
These results also demonstrate the utility of GGE 
biplots to analyze multiple locations and their 
relevance in the routine MET conducted in 
breeding programs aimed to release cultivars with 
wide adaptation. 

The concentric circles on the biplot are 
proportional  to  the standard deviation and help to  
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Table 4. Proportion of variance explained by the Environment, Genotype, and G×E interaction, and the broad-
sense heritability (H2) for different traits evaluated in 2018 and 2019 season in Zambia and Malawi. 
 

Trait 
Proportion of variance explained (%) 

H
2
 

Environment Genotype G×E 

Grain yield 14.36 1.02 5.03 0.37 

SWT100 4.56 2.34 7.18 0.44 

Plant height 15.67 2.20 7.31 0.50 

Days to maturity 8.08 10.12 11.44 0.76 

Days to flowering 13.24 15.46 18.06 0.75 

Lodging 50.03 0.54 5.61 0.21 

Shattering 8.53 8.27 10.09 0.71 

 
 
 

 
 

Figure 1. General view of relationship among environments and performance of genotypes. PC, 
Principal component; E1, Chipata and Chitedze; E2, IITA-SARAH; E3, Bvumbwe; E4, 
Seedco.Zambia and Kabwe. 

 
 
 
visualize the length of the vectors. Environments with 
longer vectors have higher discriminating ability. Thus, 
E1 and E3 were the most discriminating environments 
followed by E2 and E4, which had shorter vectors and 
may provide less information on the evaluated genotypes 
(Figure 1). In Figure 1, the average environment, 
indicated with an arrowhead and a circle, and an 
Average-Environment   Axis    (AEA)    have    also   been 

included. The AEA is a line that passes through the 
average environment and the biplot origin and helps to 
categorize the environments based on their 
representativeness. A test environment with the smallest 
angle with the AEA is more representative. Therefore, E4 
is the most representative environment, followed by E2, 
E3, and E1 (Figure 1). Test environments that are both 
representative and   discriminating  are   useful  to  select  
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Figure 2. Ranking of environments relative to the “ideal” environment. PC, Principal component; E1, 
Chipata and Chitedze; E2, IITA-SARAH; E3, Bvumbwe; E4, Seedco.Zambia and Kabwe. 

 
 
 
genotypes that have general adaptation. In contrast, 
discriminating but non-representative environments are 
valuable to select genotypes with specific adaptation if 
the environment can be divided into mega-environments 
or eliminate unstable genotypes if the target environment 
is a single mega-environment (Yan and Tinker, 2006). 
Here, the testing environments composed of single 
environments as described in materials and methods, 
hence E1 and E3, which were the most discriminating, 
but were not representative, would be useful 
environments to identify locally adapted genotypes and 
potential parents.  

The ideal environment biplot ranks the tester 
environments based on discriminating ability and 
representativeness considering an “ideal environment”. 
An ideal environment is that with the highest 
discriminativeness and representativeness. Figure 2 
shows the “ideal environment” with the arrowed line in the 
center of the concentric circles and it is located on the 
AEA with  a  distance  from the biplot origin  equal  to  the 

longest vector. The E3 was the closest environment to an 
ideal, followed by E1, E2, and E4. The results are 
consistent with previous reports in multiple crop species 
where GGE biplots have been successfully applied to 
characterize environments that allow a better selection of 
genotypes and the optimization of resources in breeding 
programs (Baraki et al., 2020; Luo et al., 2015; Mwiinga 
et al., 2020). 
 
 
Genotype evaluation 
 
The performance of genotypes in each environment can 
be analyzed by comparing the angles formed among the 
vectors of genotypes and environments. Acute angles 
indicate that a genotype performs better than average in 
a specific environment, obtuse angles suggest that the 
performance is lower than average, and if a right angle is 
formed between a genotype and an environment, the 
performance  of  the  genotype  is  close to the average in 



210          J. Plant Breed. Crop Sci. 
 
 
 

 
 

Figure 3. Mean vs stability biplot. PC, principal component; E1, Chipata and Chitedze; E2, IITA-SARAH; E3, 
Bvumbwe; E4, Seedco Zambia and Kabwe. 

 
 
 

that environment (Hoyos-Villegas et al., 2016). 
TGx2002_35FM, TGx2014_24FM, and TGx2001_11DM 
yielded better than average in E2, E3, and E4, while 
TGx2014_9FM, Squire, TGx2014_33FM, and 
TGx2001_16DM are better adapted to E1 (Figure 1). 

The origin of the biplot is referred to as a “virtual” 
genotype which has a performance close to the average 
in all environments (Hoyos-Villegas et al., 2016). Among 
the evaluated genotypes, TGx2001_13FM and 
TGx2014_16FM were near the biplot origin, which means 
that these genotypes have a lower contribution to 
genotype or GE interactions (Figure 1). Genotypes with 
vectors distal from the biplot origin would have higher 
contributions to genotype or GE interactions with a better 
or worse response across all environments depending on 
the direction of the vectors. TGx2014_24FM, 
TGx2002_17DM, and TGx2014_9FM had the longest 
vectors in the same direction as the environments, 
indicating that these genotypes had the best performance 
across all environments. In contrast, TGx2001_19DM, 
TGx2001_8FM, Dina, and TGx2001_14DM had the 
longest vectors in the opposite direction of the 
environments and thus,  the  lowest  performance  across 

E1 – E4. Our results are consistent with those reported 
by Mwiinga et al. (2020) who evaluated some of the lines 
used in the present study, and found that 
TGx2014_24FM and TGx2002_17DM showed a positive 
performance in different environments.  

By examining the angle formed between the AEA and 
vector of the genotype, it is possible to observe if the 
response of a genotype is mainly due to GE effects. 
Genotypes such as Safari, TGx2002_5FM, 
TGx2014_5GM, and TGx2002_14DM showed right 
angles with the AEA, indicating that their response can 
be mainly attributed to GE interactions (Figure 1). 
Regarding the elite genotypes, Dina and Lukanga had 
lower than average performance in all environments, 
whereas Kafue had a better performance in E1 and 
Safari in E2 – E4. 

The mean performance and stability biplot is 
appropriate for genotype evaluation. In this biplot, it is 
possible to identify the most stable genotype and the one 
with the highest mean performance. Figure 3 shows the 
Average-Environment Coordination (AEC) view of the 
genotype-metric preserving biplot. On the AEC, 
genotypes  that   are   closer  or  above the AEC abscissa  
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Figure 4. Ranking of genotypes relative to the “ideal” genotype. PC, principal component; E1, Chipata and 
Chitedze; E2, IITA-SARAH; E3, Bvumbwe; E4, Seedco.Zambia and Kabwe. 

 
 
 
(single-arrowed line) in the same direction of 
environments, are expected to have the highest mean 
performance. In contrast, genotypes located farther from 
the AEC abscissa arrowhead would have the lowest 
performance. The genotypes TGx2014_24FM, 
TGx2014_9FM, TGx2001_11DM, and TGx2014_4FM 
had the highest mean performance, and TGx2001_8FM, 
TGx2001_19DM, and TGx2001_14DM the lowest (Figure 
3). 

The AEC ordinate on axis y (double-arrowed line) 
points to poorer stability in either direction and genotypes 
near the AEC ordinate have a mean yield similar to the 
grand mean. Longer vectors correspond to genotypes 
with poorer stability and genotypes with short vectors are 
expected to be more stable. TGx2002_17DM, 
TGx2002_3FM, and TGx2002_23DM were found to be 
the genotypes with the greatest variability, compared to 
TGx2002_4DM, TGx2002_8FM, TGx2001_11DM, and 
TGx2014_24FM that were highly stable. Similar results 
have been reported by Mwiinga et al. (2020) who found, 
for instance, that TGx2002_17DM, had the lowest yields 
in some environments and was the winner in some of the 
environments evaluated. In this  way,  our  results  further 

support previous findings and highlighting how variable 
genotypes can be successfully identified by the analyses 
performed here. 

Six genotypes, including TGx2002_5FM, Safari, 
TGx2001_13FM, Kafue, TGx2002_14DM, and 
TGx2001_24FM performed at the grand mean (Figure 3). 
It is worth noting that the two first principal components 
explained 71.4% of the variation, which may not reflect 
the actual stability for some of the genotypes (Hoyos-
Villegas et al., 2016). However, the variability captured in 
our analysis is slightly higher than previously reported in 
a similar experiments using AMMI biplots (Mwiinga et al., 
2020). 

Based on the performance and the stability, genotypes 
can be ranked relative to an “ideal” genotype, which is 
that with the highest performance and the lowest 
variability. Among the genotypes, TGx2014_24FM was 
the closest to an ideal genotype, followed by 
TGx2001_11DM (Figure 4). Therefore, TGx2014_24FM 
and TGx2001_11DM could be considered for release in 
multiple environments. Interestingly, the elite lines (Dina, 
Kafue, Lukanga, and Safari) showed yields lower or close 
to the grand mean and were considerably unstable, being  
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Figure 5. The which-won-where view of the GGE biplot. PC, principal component; E1, Chipata and Chitedze; E2, 
IITA-SARAH; E3, Bvumbwe; E4, Seedco.Zambia and Kabwe. 

 
 
 
far from the ideal environment (Figures 3 and 4). In the 
characterization of genotypes, GGE biplots have been 
shown to be powerful tools to assess the stability and 
adaptation, and to demonstrate how these parameters 
can be increased by the incorporation of other sources of 
information in breeding programs (Merrick et al., 2020), 
highlighting the applicability of the method and our 
results. 

The which-won-where pattern shown by a GGE biplot 
represents concepts such as crossover GE, mega-
environment differentiation, and specific adaptation 
(Hoyos-Villegas et al., 2019; Weikai Yan and Tinker, 
2006). The which-won-where biplot is constructed by 
drawing a polygon on genotypes that are furthest from 
the origin. The polygon will contain all the genotypes, and 
perpendicular lines to the sides allow defining sectors 
where the performance of the genotypes within 
environments can be analyzed. Genotypes within the 
same sector of an environment are expected to have a 
better response in that environment. A total of six  sectors 

were identified, and the environments fell into two sectors 
(Figure 5). E2 - E4 were located in the same sector, 
where TGx2014_24FM had the best performance 
(genotype located at one of the vertices of the polygon), 
followed by TGx2001_11DM. In comparison, in the E1, 
the genotype with the best response was TGx2014_9FM, 
followed by TGx2001_24FM. Therefore, these genotypes 
are recommended to be released in E2 - E4 or in E1, 
respectively. Using GGE evaluation, TGx2014_24FM 
among other genotypes with a similar response, was 
identified as a genotype that showed a wider adaptation 
to more than one environment. This is consistent with 
Mwiinga et al. (2020) who also were able to identify 
genotypes with wide adaptation. 
 
 
Genotype-by-trait analysis  
 
Yield is a major breeding objective, however, breeding for 
yield  tends  to  be  challenging  because   of   its  genetic  
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Figure 6. Genotype by trait biplot representing 62 genotypes evaluated for seven traits. DFFL, days to flowering; 
DM, days to maturity; PLHT, plant height; GY, grain yield; SW100, 100 seed weight; LODG, lodging; PC, principal 
component. 

 
 
 
complexity, low heritability, and the effect of G×E 
interactions (Bianchi et al., 2020). Besides dissecting 
yield by decomposing the variance attributable to E, G 
and G×E, and the analysis of the G×E through GGE 
analysis, the identification of correlated variables can 
contribute to improving single yield components, and then 
the overall yield performance (Shahriari et al., 2018). 
Furthermore, strongly correlated variables with high 
heritability could help to indirectly select for yield and 
circumvent challenges of direct selection.  

Multiple traits averaged across all environments can be 
correlated with genotypes using genotype × trait biplots. 
These biplots allow to visually recognize relationships 
between variables, genotypes, and their interactions; 
being possible to identify traits that are positively or 
negatively associated, traits that could be redundant or 
that   can    be    used   as   indirect   indicators   of   other 

measurements (Yan and Tinker, 2006). Following the 
same approach in angle formation used for environment 
and genotype evaluation, PLHT, DM, and DFFL were 
positively correlated to each other and were negatively 
correlated to shattering (Figure 6). Regarding lodging, 
DFFL, PLHT, and shattering were positively correlated, 
but DM was independent. Yield variables (GY and 
SW100) were grouped in the biplot and showed a strong 
negative relation with lodging; and a slight negative 
correlation with shattering, PLHT, DM and DFFL. Despite 
GY and SWT100 had medium H

2
, correlated traits such 

as PLHT, DM, and DFFL had high H
2
, reinforcing that 

they could be used for indirect selection for yield. Our 
results complement previous studies on soybean 
breeding programs in Southern Africa (Mwiinga et al., 
2020), where the correlation between yield and other 
traits   was   not   evaluated.   Interestingly,   the  negative  
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correlation found between yield and PLHT differs from 
previous results in soybean where selection for plants 
with higher plant height improved overall yield (Li et al., 
2020), which could be attributed to the adaptation of 
breeding lines to the environmental conditions in 
Southern Africa. In the cultivar development, further MET 
analyses aimed to address these correlations are 
necessary to incorporate them as indirect selection 
strategies. Considering associated variables can simplify 
breeding programs and yield improvement as redundant 
measurements, variables that may be easier to assess, 
and indirect sources of information can be identified, 
which makes genotype × trait analysis a valuable 
decision-making tool for soybean breeding (Hoyos-
Villegas et al., 2016; Li et al., 2020). 

Regarding genotypes, TGx2014_24FM, 
TGx2002_14DM, and TGx2014_9FM had the highest GY 
and SW100, and the lowest lodging, these could be used 
as potential parents for improving yield and reduce 
lodging score. On the other hand, TGx2001_11DM and 
Squire, which had considerable yield performance, had a 
lower shattering score, which did not have an apparent 
effect on TGx2014_24FM and TGx2002_14DM. Among 
the checking lines, Safari and Lukanga showed a higher 
GY and SW100. These findings are consistent with 
previous studies where, as a checking line, Lukanga had 
shown to have a higher yield response to different 
environmental factors such as population density. 
Lukanga and Kafue had a higher shattering score and 
Dina had a higher PLHT, DM, and DFFL, accompanied 
by a lower GY, SW100, and shattering.  
 
 
Conclusions 
 

In the present study, GGE analysis revealed that the 
yields of the 62 soybean genotypes tested were 
significantly affected by genotype, environment, and 
genotype by environment. E1 (Chipata and Chitedze) and 
E3 (Bvumbwe) were identified as the most discriminating 
environments, and E4 (Seedco.Zambia and Kabwe) as a 
highly representative environment. TGx2014_24FM was 
identified as the most ideal genotype, which also had the 
highest yield across environments (2.88 t/ha), followed by 
TGx2001_11DM (2.86 t/ha). Through genotype × trait 
analysis, it was identified that yield was positively 
associated with plant height, days to flowering, and days 
to maturity, negatively associated with lodging, and 
independent of shattering. Our results support the used 
GGE analysis as an analysis tool to dissect complex 
traits largely affected by G×E such as yield by 
decomposing its variance and by identifying related 
variables. 
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