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A stuck drill pipe has been recognized as one of the most costly and non-productive challenges in 
drilling operations. Fishing jars are routinely used to un-lock or loosen the stuck (jammed) pipes which 
in many cases are expensive and the time taken to complete the job can reach several days of 
continuous jarring. The use of surface mounted vibratory systems has offered an alternative cost 
effective means to free the stuck pipes. Almost all of these systems are based on eccentric-weight 
oscillators which impart simple harmonic vertical forces that are transmitted down the pipe via elastic 
standing waves through the pipe material. A more recent development also uses a suspended oscillator 
but imparts a sinusoidal oscillatory displacement (rather than force) to the drill pipe at the top surface 
end, which again is transmitted down the pipe via elastic standing waves. This paper provides a 
generalized technique for solving the governing equations describing this top oscillatory system and 
the transmission of the elastic waves along the drill pipe. The transfer matrix technique is used to 
describe the travelling/standing waves along the pipe, the connecting couplings and the top suspended 
drive system. Effects of damping are introduced in the complex wave number and at the coupling 
locations. Examples of drill pipe scenarios are presented to elucidate the usefulness of the technique to 
determine the resonance condition, that is, the excitation frequencies for maximum retrieving forces at 
the stuck end, for any given drill pipe geometry. The resulting force amplitudes at the top driver end 
and the resulting retrieving forces imparted at the stuck end are quantified for any given imposed 
displacement amplitude at the drive end. A more complex system involving a drill pipe, spear and an 
elastic liner is also described where the transfer matrix technique is demonstrated to be an effective 
means to determine the overall system dynamics and resonance conditions. 
 
Key words: Drilling, drill pipe, spear, liners, solid elastic dynamic, elastic waves. 
 

 
 
INTRODUCTION 
 
Drilling or fishing jars have been known and used almost 
since the start of the  drilling  industry  (Gonzalez,  1987).  
 

They are classified as mechanical or hydraulic jars, the 
operations of which are similar  in  that  they  both  deliver 
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approximately the same impact blow. Jars are designed 
to be reset by simple string manipulation and are capable 
of repeated operation or firing before being recovered 
from the well. As such, they require downhole tool 
intervention such as spears, over-shots, taper taps, 
wash-over pipes, etc. Jarring operations may require 
anywhere from a few to sometimes thousands of impacts 
to release a fish, and the total time involved for a 
successful jarring operation can reach over 50 h of 
continuous impacts (Gonzalez et al., 2007, 2009). 
Therefore, operations involving jarring usually last days, 
sometimes weeks, resulting in a considerable loss of 
productive rig time (Scolfield et al., 1992). 

An alternative method of freeing a stuck drill pipe is by 
means of surface mounted vibratory systems, which 
perhaps originated in the 1940s, and probably stemmed 
from the use of vibration to drive pilings. The early use of 
vibration for driving and extracting piles was confined to 
low frequency operation; that is, frequencies less than the 
fundamental resonant frequency of the system and 
consequently, although effective, the process was only 
an improvement on conventional hammer equipment. 
Early patents of this concept are by Bodine (1961, 1987, 
1993) which introduced the concept of resonant vibration 
that effectively eliminated the reactance portion of 
mechanical impedance, thus leading to the means of 
efficient sonic power transmission. Another patent along 
the same concept is by Vogen (1986). The first published 
work on this technique was outlined by Gonzalez (1987) 
and was demonstrated by Baker Oil Tools (1994). It is 
based on surface mounted vibratory systems, whereby 
eccentric-weight oscillators impart simple harmonic 
vertical forces that are transmitted down the pipe via 
elastic standing waves through the pipe material. A 
derivative of this concept is a suspended oscillator but 
imparts a sinusoidal oscillatory displacement (rather than 
force) to the drill pipe at the top surface end, which again 
is transmitted down the pipe via elastic standing waves. 

The present paper provides a generalized technique in 
solving the governing equations describing these top 
oscillatory systems and the transmission of the elastic 
waves down the drill pipe. The transfer matrix technique 
is used to describe the travelling/standing waves along 
the pipe, the connecting couplings and the top 
suspended drive system. Effects of damping are 
introduced in the complex wave number and at the 
coupling locations. Examples of drill pipe scenarios are 
presented to demonstrate the usefulness of the technique 
to determine the resonance condition, that is, the 
excitation frequencies for any given drill pipe geometry. 

 
 
DESCRIPTION OF ELASTIC WAVE MOTION IN LONG 
RODS 
 
The governing equation for the elastic wave motion in a 
long, thin rod and  the  basic  propagation  characteristics 
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will be described. Consider a straight, prismatic rod of a 
cross–sectional areas S as shown in Figure 1. The 
coordinate x refers to an axial distance along the rod, 
while u(x,t) represents the longitudinal displacement at 
location x and time t. 

The equation of motion applied to the differential 
element (dx) can be written as (Graff, 1975): 
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where: D = pipe (or rod) outside diameter; q = body force 
per unit volume of the pipe material; t  = time; x = axial 

distance; u = displacement;  = density of the rod 

material; stress (positive when compressive);  = 
external shear force 

Assuming the material behaves elastically and follows 
a simple linear Hooke’s law (Mead, 1975 and Gei, 2010): 
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Where:  = strain (positive in the x-direction);  = stress 
(positive when compressive); E = elastic modulus of the 
rod material. 

The negative sign in Equation (2) is imposed because 

the stress () is defined as positive when compressive. 
Substituting Equation (2) in Equation (1), we get: 
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Where, co is the speed of elastic wave in the rod material 
defined as: 
 



E
co                (4) 

 
 
TRANSFER MATRIX TECHNIQUE 
 
Now, we will introduce the concept of the transfer matrix 
[T.M.] technique to facilitate the solution of the above 
wave equation for elastic rods, and extend it to 
mechanical systems involving mass-spring-damping. 
 
 
Transfer matrix for a uniform section of elastic rod 
 
If we neglect for a moment the body force (q) and the 

external damping force () in Equation (3), it reduces to 
the fundamental wave equation, namely: 
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Figure 1. Definition of parameters along an elastic thin rod, and 

compressive stresses acting on a differential element (dx). 
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The form of solution of Equation 5 for the displacement 
ucan be obtained by the method of separation of 
variables (Arfken, 2005) in that it can described as a 
product of a function X(x) which depends only on the 
distance (x) and a harmonic function e  which depends 

on time and frequency  (where  = 2πf; f is the 
frequency in Hz), that is, 
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Likewise, the stress (s) and the velocity 
t
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also be expressed by similar functions in the form: 
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Where: 

ock /


 is the wave number. 

Introducing the compressive force (f = S), where S is 
the cross-sectional area of the rod, Equations (8) and (9) 
can be written as: 
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The term 

ooo ZSc  is known as the mechanical 

characteristic impedance of the elastic rod.  
Now, we shall introduce the concept of the transfer 

matrix [T.M.]. The transfer matrix relates the force and 
velocity amplitudes at two stations (1) and (2) along a 
straight rod as shown in Figure 2, in the form of a 2x2 
matrix: 
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Where the 2x2 matric on the R.H.S. of the above 
equation is called the transfer matrix whose elements (A, 
B, C and D) are all complex numbers. They can be 
obtained by writing Equations (10) and 11 at the two 
stations (1) and (2), and substituting x=0 at station (1) 
and x=L at station (2), and solving for the constants a and 
b in terms of (F1, V1), and (F2, V2). Here (F1, V1), and (F2, 
V2) are the amplitude of compressive force and velocity 
oscillations at stations (1) and (2), respectively, which are 
also complex numbers, that is, 



Botros et al      73 
 
 
 

(1) (2)

x=0 x=L

F1,V1 F2,V2

 
 

Figure 2. Relationship between amplitudes of force and velocity at different stations along 

elastic rod. 
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and 
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After some arithmetic manipulation, and replacing the 
exponential terms by trigonometric functions, we obtain: 
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Where: 

oc
iikk





 

The 2x2 matrix on the RHS of Equation (15) is the 
[T.M.] of a straight section of elastic rod (drill pipe), which 
is expressed as: 
 

 
   

    














kLkL

Z

kLZkL

MT

o

o

rod coshsinh
1

sinhcosh

..          (16) 

 
The above [T.M.]rodis very useful in facilitating analysis of 
the dynamic response of a drill pipe subjected to 
oscillatory force or displacement at the top end, while the 
bottom end is stuck as depicted in the simple drill pipe 
schematic shown in Figure 3. Here, station (1) is the top 
end of the drill pipe while station 2 is the bottom (stuck) 
end. In this case, the boundary condition at station (2) is 
V2=0. Hence, from Equations (12) and (15), the 
mechanical impedance at station (1) is: 
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Equation (17) is plotted as function of frequency of the 
driving oscillatory system on top for drill pipe parameters 
shown in the Figure. With the aid of the [T.M.] expression 

of Equation (15), it can be shown that when the top end 
of the drill pipe is excited by an oscillatory force of 
amplitude F1, the force amplitude exerted at the bottom 
(stuck) end, F2, is maximum when impedance Z1 is at 
minima, e.g. at frequencies = 0.41, 1.23 Hz, etc. in the 
example of Figure 4. That is when the length of the drill 

pipe (L) is equal to odd multiples of /4 (where  is the 
wave length = co/f). Conversely, when the top is excited 
by an oscillatory displacement (or velocity of amplitude 
V1, the force amplitude exerted at the bottom (stuck) end, 
F2, is maximum when impedance Z1 is at maxima, e.g. at 
frequencies = 0.82, 1.64 Hz, etc. also in the example of 
Figure 4. That is when the length of the drill pipe (L) is 

equal to even multiples of /2. 
Figure 5 shows the force amplitudes (F1 and F2) 

resulting from exciting the top end of a drill pipe with an 
oscillatory displacement of amplitude X1 = 0.0254 m (1 

in), that is, V1 = iX1. Since the bottom end is assumed 
stuck, V2 = 0, and hence Equation (15) can be solved for 
the amplitudes of forces (F1 and F2) shown in Figure 5. 
The maximum force amplitude at the stuck end of the drill 
pipe is realized when the displacement excitation 
frequency at the drive end is 0.81 Hz, that is, when Z1 is 
at maximum. Conversely, if the top end is excited with an 
oscillatory force (as in the case of an eccentric rotating 
weight), the maximum ratio of force amplitudes (F2 /F1) is 
realized at f = 0.41 Hz, that is, when Z1 is at minimum. 
Note that the magnitude of F2at this frequency is simply 

equal to iX1Z0, according to Equation (15) since sinh(kL) 
= 1. Note also the overall trend of increasing the 
amplitude of the force F2 with frequency which is due to 
the fact that V1 is linearly increasing with frequency for 
the same amplitude of displacement X1. 

Finally, the effect of damping due the shear force () in 
Equation (1) can be accounted for in the transfer matrix 
solution of the wave equation via introducing a real 

parameter () in the complex wave number as a damping 
parameter, or a damping coefficient )( in the form: 
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Drive Mechanism
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Drill Pipe

Z2

Stuck End

X2=0  
 
Figure 3. Simple drill pipe stuck at the bottom end and a vibrator at 

the top end. 
 
 
 

Transfer matrix for a coupling with inherent stiffness 
and damping 
 
Typically, drill pipe segments are connected via couplings 
which affect the transmission and reflection 
characteristics of the elastic wave motion in the 
connected segments. Therefore it is necessary to derive 
a [T.M.] for these couplings to be combined with the 
[T.M.] of the respective connecting drill pipe segments 
(Lin, 1962). Figure 6 shows one type of these coupling 
where it can generally be represented by a mass-spring-
damping system. The quest here is to develop a [T.M.] 
relating the forces and velocities at stations (2) and (3) in 
the form: 
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The equation of motion for the system depicted in Figure 6 

 
 
 
 

Drill Pipe Parameters:

Drill Pipe O.D. 5.5 in 0.1397 m

Drill Pipe W.T. 0.415 in 0.010541 m

Drill Pipe I.D. 4.67 in 0.118618 m

Cross-Sectional Area 6.62962 in2 0.004277 m2

Length of Drill Pipe 10000 ft 3048 m

Elastic Modulus 28275 kpsi 195 GPa

Density 485.917 lb/ft3 7800 kg/m3

Speed of Elastic Wave 16374.8 ft/s 5000 m/s
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Figure 4. Example of amplitudes of mechanical impedance at the 

top end of a stuck drill pipe (Ideal System, that is, no damping, no 
coupling). 

 
 
 
can be written as (Harris and Crede, 1976): 
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Where; 
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And with some mathematical manipulation we get: 
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Hence the transfer matrix for the coupling element of this 
type is: 
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Figure 5. Amplitude of forces at the top and the stuck ends of the ideal drill pipe of Figure 3 
(Top end is subjected to oscillatory displacement of amplitude = 0.0254 m). 
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Figure 6. Mass-spring-damping system representing a coupling between 

two segments of a drill pipe (Type I: Coupling has inherent damping and 
stiffness).  
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The above [T.M.] is also applied to elements of the top 
drive as will be shown later. 

It is interesting to note two special cases that can be 
deduced from the above expression for [T.M.]coup-1. The 
first is the case when station (3) is fixed, that is, V3 = 0. In 
this case, the impedance Z2 is reduced to: 
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Which is the well-known expression for the impedance of 
a mass-spring-damping system mounted on a fixed 
foundation. The other case is when station (3) is free, that 
is F3 = 0, hence the impedance Z2 is reduced to: 
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Which is the simple equation of motion of the mass 
element alone. 
 
 
Transfer matrix for a coupling subjected to external 
stiffness and damping 
 
Another type of couplings is shown schematically in 
Figure 7, where the coupling is actually in contact with 
the borehole which will introduce damping and stiffness 
between the coupling mass and the surrounding ground. 
The relating forces and velocities at stations (2) and (3) 
can be written as follows (Harris and Crede, 1976): 
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With the condition that: 
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The above two equations can be put in the [T.M.] format 
as follows: 
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Hence the transfer matrix for the coupling element of this 
type is: 
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Overall transfer matrix 
 
Having established the transfer matrices for the 
fundamental elements of a drill pipe, namely: [T.M.]rod, 
[T.M.]coup-1 and [T.M.]coup-2, it is now possible to determine 
the overall transfer matrix of a drill pipe system 
comprising all of these elements. Consider the drill pipe 
shown in Figure 8 where the drill pipe is composed of 
three segments connected with couplings of the two 
types (I and II) as shown. 

It can be shown that the relationship between the force 
and velocity amplitudes at the top end (1) and the bottom 
end (2) can be expressed via the following overall 
transfer matrix expression: 
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Where, the overall transfer matrix, [T.M.]overall is 
determined from multiplication of the individual transfer 
matrices corresponding to the elements in the same 
order, that is: 
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That is: 
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In the case of a stuck end (that is, at station 2), the 
impedance at the top end: 
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The example in the following section will illustrate the 
application of this overall transfer matrix technique in 
determining the resonance condition of a stuck drill pipe. 
 
 
STUCK DRILL PIPE PROBLEM 
 
Now   let  us  consider  a  stuck  drill  composed  of  many
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Figure 7. Mass-spring-damping system representing a coupling between two segments of a drill 

pipe (Type II: Coupling subjected to external damping and compliance.  
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Figure 8. Example of drill pipe segments connected by Type I and Type II couplings. 

 
 
 

segments of pipes (could be of different geometries and 
materials), and couplings of type I or type II connecting 
these segments as shown on the L.H.S. of Figure 9. 
Again, the drill pipe is assumed stuck at the bottom end. 
In order to free this end, a cable-suspended drive is used 

to generate an oscillatory displacement in a manner such 
that: 

 

AmpXX  21                        (34) 
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Figure 9. Schematic of the physical system and transfer matrix model depiction of a stuck drill pipe. 
 
 

 

Where: Amp is a specified amplitude of displacement, X1 
is the amplitude of upward displacement of the 
suspended drive, while X2 is the amplitude of 
displacement of the top end of the drill pipe. The sign 
convention depicted in Figure 9. The suspended drive 
can be considered as a two-degree of freedom system as 
shown on the model schematic on the R.H.S. of Figure 9. 

Following the above formulation of the overall transfer 
matrix, it is possible to obtain both [T.M.]1 and [T.M.]2 by 
a simple multiplications of the [T.M.]’s corresponding to 
all of the sub-elements in each, and again, in the correct 
order, that is, 
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The corresponding impedances (Z1 and Z2) can also be 
determined since V3 = V4 = 0.  That is: 
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Now, substituting X=V/i in Equation (34), we get: 
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And since F1=F2, Equation (37) becomes: 
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Once F1 is determined, all other parameters (F3, V1, V2, 
X1   and  X2)   are   determined   at   any  given  excitation  
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Table 1. Parameters of the stuck drill pipe system and suspended 
drive shown in Figure 9. 
 

System parameters Values 

Suspended mass (M1) 27273 kg 

Damping (C1) 160000 N.s/m 

Stiffness (K1) 7022190 N/m 

Suspended mass (M2) 9091 kg 

Damping (C2) 16000 N.s/m 

Stiffness (K2) 98310666 N/m 

Drill pipe O.D. 0.1397 m 

Drill pipe I.D. 0.118618 m 

Drill pipe X-Area 0.004277 m
2 

Drill pipe overall length 3048 m 

Weigh per unit length (including Coulings) 37 kg/m 

Drill pipe damping coefficient () 0.05 

Damping at coupling (C ) 1600 N.s/m 

Stiffness at coupling (K) 0 N/m 

Amplitude of X1 + X2 =Amp 0.0254 m 
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Figure 10. Results of the mechanical Impedances (Z1 and Z2) of the drill pipe 
system shown in Figure 9. 

 
 

 

frequency. Table 1 gives values for the relevant 
parameters for an example drill pipe stuck at a depth of 
3048 m (10,000 ft). The drill pipe is divided into 100 
segments and a coupling of Type II is placed between 
each consecutive segments whose mass is combined 
with 1/3 of the mass of the preceding segment. The 
resulting impedances Z1 and Z2 are shown in Figure 10, 
the amplitudes of displacements X1 and X2 are shown in 
Figure 11, and the amplitude of the driving force,  F1,  and  

the retrieving force at the stuck end, F3, in Figure 12.  
The magnitude of Z1 is generally higher than that of Z2 

(Figure 10), which is desirable as it indicates that it is 
‘easy’ to displace down the top end of the drill pipe than 
to push up the massive suspended drive. In other words, 
the mobility (which is the inverse of the impedance) of the 
drill pipe top end is much greater than the suspended 
drive. This is manifested in the resulting displacement 
amplitudes X1 and X2 in Figure 11. Note also  that  at  the



80         J. Petroleum Gas Eng. 
 
 
 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

A
m

p
lit

u
d

e
 o

f 
D

is
p

la
ce

m
e

n
t 

(m
)

Frequency (Hz)

X1

X2

 
 

Figure 11. Results of the displacements (X1 and X2) of the drill pipe system 
shown in Figure 9. 

 
 

 

desired drive frequency of 0.69 Hz (corresponding to the 
first maximum impedance in Figure 10), the amplitude of 
X1 = 0.0067 m while the amplitude of X2 = 0.0242 m.  

It probably begs the question as to why the frequency 
at maximum impedance Z2 is now lower (0.69 Hz) than 
that in the case of Figure 4 (0.82 Hz) despite the fact that 
the drill pipe length is the same in both cases (that is, 
3048 m). The main reason is that in the present case 

damping was introduced along the drill pipe ( = 0.05) as 
well as a damping parameter, c, to all of the the 
couplings. Additionally, the weight of the drill pipe 
segments and couplings were accounted for in the 
analysis of this example, while in the example of Figure 
4, it was clearly stated that the drill pipe was clear of any 
damping (that is, ideal). Damping is also manifested in 
decreasing the force amplitude F3 than F2 as shown in 
Figure 12. 
 
 
A MORE COMPLEX PROBLEM OF A STUCK LINER 
 
Let us now consider a more complex geometry of a case 
involving a drill pipe in a liner, where the liner is stuck at 
the bottom end as depicted in the schematic of Figure 13. 
The corresponding transfer matrix model system is also 
shown on the R.H.S of Figure 13. The drill pipe is 
assumed stuck at the bottom end, while it is rigidly 
supported at the top surface. To free the liner, the same 
cable-suspended drive is used to generate an oscillatory 
displacement at the top end of the drill pipe in a manner 
similar to the last example, that is, Equation 34. Similarly, 
it is possible to obtain the overall transfer matrices 
[T.M.]1, [T.M.]2, [T.M.]4 and [T.M.]5 via simple multiplications 

of the respective [T.M.]’s corresponding to each of the 
sub-elements in each sub-system shown in Figure 13, 
that is, 
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The corresponding impedances (Z1 and Z4 and Z5) can 
also be determined from: 
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The condition at the spear is such that: 
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It follows that: 
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Figure 12. Results of the displacements (F1 and F3) of the drill pipe system 

shown in Figure 9. 
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Figure 13. Schematic of the physical system and transfer matrix model depiction of a stuck liner.
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Equation 38 is applied to determine the force F1 and all 
other amplitudes of impedances, forces, velocity and 
displacements. It should be remembered that the 
parameters described in Equations 33 through 43 are all 
complex numbers. 
 
 
DISCUSSION 
 
The transfer matrix technique [T.M.] is demonstrated to 
be a very powerful and useful technique to describe any 
complex drill pipe/liner dynamic response to a top surface 
oscillatory drive to retrieve a stuck bottom end of the 
drilling assembly. The general form of the [T.M.] is a 2×2 
matrix whose elements are generally complex numbers. 
For a drill pipe, the [T.M.] accounts for the length of the 
drill pipe, its cross sectional area, material properties and 
effective damping. The [T.M.] for couplings and surface 
drive elements are derived from the dynamic response of 
generally mass-spring-damping system. The elements of 
these 2×2 [T.M.] are also expressed in complex numbers. 

Once the [T.M.] corresponding to each element in the 
system is formulated, the overall system [T.M.] can be 
obtained. For example elements connected in series 
(such as drill pipe segments connected via couplings), 
the overall [T.M.] of the string of drill pipe will be a simple 
multiplication of the individual [T.M.]’s in the same order 
as connected. Sign conventions of amplitudes of 
impedance, force, velocity and displacement, which all 
are also complex numbers, should be observed in 
formulating the problem. 

It was shown that damping affects the resonance 
frequency as well as the amplitude of the retrieving forces 
at the stuck end. Therefore, it is important to accurately 
quantify all possibilities of damping imposed on the 
system, whether it is from the ground soil contacting with 
the mechanical system, or inherent within the actual 
design of the element.  

Finally, it was shown if the vibrator drive at the surface 
end is imparting an oscillatory force on the drill pipe at the 
top, the resonance condition for maximum force at the 
stuck end is corresponding to the minimum impedance at 
top end. Conversely, if the vibrator is imparting an 
oscillatory displacement at the top, the resonance 
condition for maximum force at the stuck end is 
corresponding to the maximum impedance at top end. 
Therefore, it is necessary to determine the length of the 
drill pipe to the stuck end so as to drive the top vibrator 
close to the resonance frequency for best results. 
 
Nomenclatures: A, B, C, D, elements of the 2x2 transfer 
matrix; Amp, amplitude of excitation displacement; c, 
damping parameter; co, speed of elastic wave in the drip 
pipe; D, pipe (or rod) outside diameter; E, elastic 

modulus; F, force amplitude; I, 1i ; 
k, complex wave 

number or spring stiffness; ko, wave number; L, length of 
drill pipe; m,M, mass; q, body force per unit volume of the 

 
 
 
 
pipe material; S, drill pipe cross-sectional area; t, time; 
[T.M.,], transfer matrix; u, displacement; v, velocity; V, 
velocity amplitude; X, axial distance; X, displacement 
amplitude; Z, impedance (=F/V); Α, damping parameter; 

, strain (positive in the x-direction); F, excitation 

frequency (Hz); ,density of the rod material; , stress 

(positive when compressive); , external shear force;  

excitation frequency (rad/s);, damping coefficient. 
 
 
REFERENCES 

 
Arfken GB, Weber HJ (2005). Mathematical Methods for Physicists.6

th
 

Edition. Elsevier Academic Press. 
Baker Oil Tools (1994). Resonant Systems Product No. 140-52.Product 

Report number PR/FS/94002/2M/4-94. 

Bodine AG (1961). Acoustic Method and Apparatus For Moving Objects 
Held Tight Within a Surrounding Medium. United States Patent 
number: 2972380. 

Bodine AG (1987). Down hole excitation system for loosening drill pipe 
stuck in a well. United States Patent 4667742. 

Bodine AG (1993). Sonic method and apparatus for freeing a stuck drill 

string. United States Patent 5234056. 
Gei M (2010): Wave propagation in quasiperiodic structures: stop/pass 

band distribution and pre-stress effects. Int. J. Solids Structures. 

(47):3067-3075. 
Gonzalez O (1987). Retrieving Stuck Liners, Tubing, Casing And Drill 

Pipe With Vibratory Resonant Techniques. Soc. Petrol. Engrs. Paper 

# 14759. SPE Drill. Engr. J. 2(3):245-256. 
Gonzalez O, Bernat H, Moore P (2007).The Extraction of Mud-Stuck 

Tubular Using Vibratory Resonant Techniques.SPE Annual Technical 

Conference and Exhibition. Anaheim, California, U.S.A.  
Gonzalez O, Bernat H, Moore P (2009). The Extraction of Stuck Drill 

Pipe Using Surface Resonant Vibratory Techniques. American 

Assoc. of Drilling Engineers. National Technical Conference and 
Exhibition. New Orleans, Louisiana. 

Graff KF (1975). Wave Motion in Elastic Solids. Oxford University 

Press. 
Harris CM, Crede E (1976). Shock and Vibration Handbook.2

nd
 Edition. 

Chapter 10. McGraw Hill. 

Lin YK (1962). Free vibrations of a continuous beam on elastic 
supports. Int. J. Mech. Sci. 4:409-423. 

Mead DJ (1975). Wave propagation and natural modes in periodic 

systems I-mono-coupled systems. J. Sound Vib. (40):19-39. 
Scolfield TR, Whelehan OP, Baruya A (1992). A New Fishing Equation. 

Paper SPE 22380 presented at the SPE International Meeting on 

Petroleum Engineering held in Beijing, China. 
Vogen WV (1986). Method and Apparatus for Removing Stuck Portions 

of a Drill String. United States Patent 4:574,888. 


