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Viscosity is one of the most important governing parameters of the fluid flow, either in the porous 
media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at 
various operating conditions. In the literature, several empirical correlations have been proposed for 
predicting crude oil viscosity. However these correlations are not able to predict the oil viscosity 
adequately for a wide range of conditions. In present work, an extensive experimental data of oil 
viscosities from different samples of Iranian oil reservoirs was applied to develop an artificial neural 
network (ANN) model to predict and calculate the oil viscosity. Validity and accuracy of these models 
has been confirmed by comparing the obtained results of these correlations and with experimental data 
for Iranian oil samples. It was observed that there is an acceptable agreement between ANN model 
results with the experimental data.  
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INTRODUCTION 
 
Crude oil viscosity is an important physical property that 
controls and influences the flow of oil through porous 
media and pipes (Abdini and Abedini, 2011). The 
viscosity, in general, is defined as the internal resistance 
of the fluid to flow. Oil viscosity is a strong function of 
many thermodynamic and physical properties such as 
pressure, temperature, solution gas-oil ratio, bubble point 
pressure, gas gravity and oil gravity (Abedini and Abedini, 
2011). 

Numerous correlations have been proposed to 
calculate the oil viscosity. These correlations are 
categorized into two types. The first type which refers to 
black oil type correlations predict viscosities from 
available field-measured variables include reservoir 
temperature, oil  API gravity, solution gas- oil ratio, 
saturation pressure and pressure (Beal, 1946; Chew and 
Connally, 1959; Beggs and Robinson, 1975; Glaso, 1980; 
Vasquez and Beggs, 1980; Labedi, 1992; Kartoatmodjo 
and Schmidt, 1994; Elsharkawy and Alikhan, 1999).   

The second type which refers to compositional models 
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derives mostly from the principle of corresponding states 
and its extensions. In these correlations beside previous 
properties, other properties such as reservoir fluid 
composition, pour point temperature, molar mass, normal 
boiling point, critical temperature and acentric factor of 
components are used (Lohrenz et al., 1964; Little and 
Kennedy, 1968; Ahrabi et al., 1987; Sutton and Farshad, 
1990). 
 
 
MATERIALS AND METHODS 

 
Experimental data 

 
In this study, PVT experimental data of five sample oils from Iranian 
oil reservoirs have been used. These data include oil reservoir 
temperature, saturation pressure, API gravity and solution gas-oil 
ratio at reservoir temperature. Reservoir oil viscosities have been 
measured at various pressures above and below the bubble point 
pressure for different temperatures. Statistical experimental data 
are shown in Table 1. 
 
 
Crude oil viscosity correlations 

 
Undersaturated oil viscosity correlations, which usually use 
saturated crude oil viscosity and pressure above the bubble point to  
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Table 1. Statistical experimental data of sample oils. 
 

Oil properties Oil 1 Oil 2 Oil 3 Oil 4 Oil 5 

API 15.4 24.2 30.3 36.7 41.6 

Temperature (ºF) 134 - 272 134 - 272 134 - 272 134 - 272 134 - 272 

Solution gas-oil ratio(SCF/STB) 647 823 954 1167 1542 

Saturation pressure (psia) 2490 - 3500 2520 - 3328 1340 - 2040 1585 - 2914 1638 - 4513 

Undersaturated viscosity (cp) 0.394 - 2.211 0.374 - 0.726 0.683 -18.435 0.316 - 8.253 0.341 - 1.146 

 
 
 

Table 2. Summary of undersaturated oil viscosity correlations. 
 

Author (year) Correlation 

Beal (1946)     1.6 0.56
0.001 0.024 0.038
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Kartoatmodjo and Schmidt (1994)   1.8148 1.59
1.00081 0.001127 0.006517 0.038
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Figure 1. Schematic of network in an artificial neural network 
model. 
 
 
 

predict viscosity of undersaturated oil reservoirs. These correlations 
are Beal (1946), Vasquez and Beggs (1980), Khan Correlation 
(1987) and Kartoatmodjo and Schmidt (1994). These correlations 
are shown in Table 2. 

 
 
Artificial neural network 

 
Neural networks are composed of simple elements operating in 
parallel. These elements are inspired by biological nervous systems 
(Abedini et al., 2011). As in nature, the network function is 
determined largely by the connections between elements. One  can 

train a neural network to perform a particular function by adjusting 
the values of the connections (weights) between elements (Ashoori 
et al., 2010, Abedini et al., 2011). Commonly neural networks are 
adjusted, or trained, so that a particular input leads to a specific 
target output. Such a situation is depicted in Figure 1. 

There, the network is adjusted, based on a comparison of the 
output and the target, until the network output matches the target. 
There are multitudes of different types of ANNs and some of them 
include the multilayer perceptron (MLP), which is more popular and 
generally trained with the back-propagation of error algorithm, 
Radial Basis Function (RBF), Adaptive Linear Neuron (ADALINE) 
and Adaptive Network Based Fuzzy Inference System (ANFIS). 
Some ANNs are classified as feed forward, while others are 
recurrent, depending on how data is processed through the 
network. Another way of classifying ANN types is by their method of 
learning, as some ANNs employ supervised training, while others 
are referred to as unsupervised or self organizing (Koolivand 
Salooki et al., 2011). 

Back-propagation-type neural networks have an input, an output 
and in most of the applications, have one hidden layer. The number 
of inputs and outputs of the neural networks are determined by 
considering the characteristics of the application. In most of the 
cases, one hidden layer is satisfactory. Each neuron of a layer is 
generally connected to the neurons in the proceeding layer. 
Repeating forward propagating and backward-propagating steps 
performs the required learning. When a pattern is given to the input 
pattern, the forward propagation step begins. The activation levels 
are calculated and the results are propagated forward through the 
following hidden layers until they reach the output layer. Every 
processing unit sums its respective inputs and then applies a 
function to compute its output. Sigmoid is the most commonly used 
function (Abedini et al., 2011). 

The output of the network is created at the output layer. The  bias
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Figure 2. Back-propagation multilayer ANN with one hidden layer. 

 
 
 

 
 

Figure 3. Multi layer perceptron 

 
 
 
units of input and hidden layers add a constant term in the weighted 
sum, which improves convergence. After the network's output 
pattern is compared with the target vector, error values for the 
hidden units are calculated and their weights are changed. The 
backward propagation starts at the output layer and moves 
backward through the hidden layers until it reaches the input layer. 
Figure 2 shows a summary of the network topology illustration 
(Abedini et al., 2012). 

The goal of every training algorithm is to reduce this global error 
by adjusting the weights and biases. An output of a three-layer MLP 
networks (Figure 3) is defined by: 
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Where superscript 1 denotes hidden layer and superscript 2 
denotes output layer. R, S

1
 and S

2
 illustrate the numbers of the 

input, hidden and output units, respectively. Also, f, w and b 
represent transfer function, synaptic weight parameter and bias, 
respectively. 

RESULTS AND DISCUSSION 
 
Validation of undersaturated oil viscosity 
correlations 
 
The accuracy and ability of each mentioned correlation 
for predicting undersaturated oil viscosity was checked 
with experimental data and Figures 4 shows this 
comparison. These figures confirm the disability of 
correlations for accurate prediction of oil viscosities. 
 
 
Development of artificial neural network (ANN) model 
 
Inputs of a network should be selected carefully if fully 
satisfactory results are expected to be achieved. The 
input variables should reflect the underlying physics and 
fundamentals of the process to be analyzed. 
Temperature and  liquid  mole  fraction  are  used  as  an
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Figure 4. Experimental values compared with calculated values calculated by each correlation. 

 
 
 
input data. The back-propagation learning with one 
hidden layer network has been used for each ANN set. 
Scaled Conjugate Gradient (SCG), Levenberg-Marquardt 
(LM), Gradient Descent with Momentum (GDM), Resilient 
Back-propagation (RB) and adaptive learning rate Back 
propagation (GDX) has been implemented for training 
algorithm. As the network trained with LM gave much 
better results for training sets than the other algorithms, it 
was used for modeling of prediction of undersaturated 
crude oil viscosity. The developed ANN model has one 
input, three hidden and one output layers which has 3, 5 
and 1 neuron. 65% of all experimental data was used to 
train the network and the rest was used to test the 
network. 

Pressure, bubble point pressure and bubble point 
viscosity used as  an  input  data  and  the  corresponding 

undersaturated oil viscosity for each system was used as 
an input data and the corresponding undersaturated 
crude oil viscosity was used as a target data. Figure 5 
shows the designed ANN for simulation undersayurated 
viscosity. Figure 6 depicts the comparison of 
experimental values of viscosity with predicted ones by 
ANN model for undersaturated oil respectively. It is 
obvious from the figure that the ANN provides results in 
good agreement with experimental values. 
 
 
Accuracy of the proposed artificial neural network 
(ANN) models 
 
Here, the accuracy of the proposed models in this work, 
as   well   as   the   correlations  previously  discussed,  is
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Figure 5. Schematic of the designed ANN for simulation of undersaturated viscosity. 

 
 
 

 
 

Figure 6. Experimental values compared with calculated values calculated based on the ANN 
model. 

 
 
 
checked. Using the 86 real cases data series of Iranian 
oils, the results of this work and other ones for estimating 
the oil viscosity are compared. Figure 7 shows percent 
relative error distribution for all correlations and models 
(Abedini et al., 2011). 
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Conclusion 
 
Generally the most common method for calculating 
viscosity of crude oils is viscosity correlations. However 
these correlations fail to predict oil viscosities at wide 
range of operating conditions such as pressure and 
temperature. In this work a new ANN model for 
estimation of undersaturated Iranian oils have been 
proposed. Input parameters for these models are 
pressure, saturation pressure and saturation viscosity, 
which are easily measured in oil fields. The results 
obtained    using     ANN    model   was   compared    with
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Figure 7. Percent relative error distribution for undersaturated oil viscosity correlations, ANN model. 

 
 
 
experimental data. Finally, it was found that in 
comparison with correlations previously published in the 
literature, the ability and accuracy of new ANN model for 
predicting oil viscosities is better. 

 
 
REFERENCES 

 
Abedini A, Abedini R (2011). Investigation of Splitting and Lumping of 

Oil Composition on the Simulation of Asphaltene Precipitation. Petrol. 
Sci. Technol. 30:1–8. 

Abedini R, Abedini A (2011). Development of an artificial neural network 
algorithm for the prediction of asphaltene precipitation. Petrol. Sci. 
Technol. 29:1565–1577. 

Abedini R, Zanganeh I, Mohagheghian M (2011). Simulation and 
Estimation of Vapor-Liquid Equilibrium for Asymmetric Binary 
Systems (CO2-Alcohols) Using Artificial Neural Network. J. Phase 
Equilib. Diff. 32:105–114. 

Abedini R, Esfandyari M, Nezhadmoghadam A, Adib H (2011). 
Evaluation of Crude Oil Property Using Intelligence Tool: Fuzzy 
Model Approach. Chem. Eng. Res. Bull. 15:30-33. 

Abedini R, Esfandyari M, Nezhadmoghadam A, Rahmanian B (2012). 
The prediction of undersaturated crude oil viscosity: An artificial 
neural network and fuzzy model approach. Petrol. Sci. Technol. 
30:2008–2021. 

Ahrabi F, Ashcroft SJ, Shearn RB (1987). High pressure volumetric 
phase composition and viscosity data for a North Sea crude oil and 
NGL mixtures. Chem. Eng. Res. Des. 67:329–334. 

Ashoori S, Abedini A, Abedini R, Qorbani Nasheghi Kh (2010). 
Comparison   of   scaling   equation  with  neural  network   model  for 



                                                            

  

20         J. Petroleum Gas Eng. 
 
 
 

prediction of asphaltene precipitation. J. Pet. Sci. Eng. 72:186–194. 
Beal C (1946). Viscosity of air, water, natural gas, crude oil and its 

associated gases at oil field temperature and pressures. Trans. AIME 
165:114–127. 

Beggs HD, Robinson JR (1975). Estimating the viscosity of crude oil 
systems. J. Petrol. Technol.  9:1140–1141. 

Khan SA (1987). Viscosity Correlations for Saudi Arabian Crude Oils 
SPE Paper 15720, Presented at the Fifth SPE Middle East 
Conference held in Manama, Bahrain.  

Chew J, Connally CA (1959). Viscosity correlation for gas saturated 
crude oil. Trans. AIME 216:23–25. 

Elsharkawy AM, Alikhan AA (1999). Models for predicting the viscosity 
of Middle East crude oils. Fuel 78:891–903. 

Glaso O (1980). Generalized pressure–volume–temperature correlation 
for crude oil system. J. Petrol. Technol. 2:785–795. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Kartoatmodjo F, Schmidt Z (1994). Large data bank improves crude 

physical property correlation. Oil Gas J. 4:51–55. 
Koolivand SM, Abedini R, Adib H, Koolivand H (2011). Design of neural 

network for manipulating gas refinery sweetening regenerator column 
outputs. Sep. Purif. Technol. 82:1–9. 

Labedi R (1992). Improved correlations for predicting the viscosity of 
light crudes. J. Pet. Sci. Eng. 8:221–234. 

Lohrenz J, Bray BC, Clark CR (1964). Calculating viscosities of 
reservoir fluids from their composition. J. Petrol. Technol. 10:1170–
1176. 

Sutton RP, Farshad FF (1990). Evaluation of empirically derived PVT 
properties for Gulf of Mexico crudes. Soc. Pet. Eng. Reservoir Eng. 
pp. 79–86. 

Vasquez ME, Beggs HD (1980). Correlations for fluid physical property 
predictions. J. Petrol. Technol. pp. 968–970. 

 
 
 


