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In the traditional well test models, the quadratic gradient term of nonlinear partial differential equation 
was neglected according to the assumption of slightly compressible fluid, which could lead to error 
when the well test time was too long. As time went by, the fluid flowing boundary of low permeability 
reservoirs extended outwards continuously. In order to study the flowing law of low permeability 
reservoirs with deformed media, the flow model of low permeability reservoirs of deformed media was 
built, which considered the influence of starting pressure gradient, moving boundary and quadratic 
gradient term. The numerical solution of the flow model was obtained by the fully implicit finite 
difference method. The pressure dynamic curves were drawn to analyse the seepage law of different 
starting pressure gradient, deformed media and moving boundary. The influence of the quadratic 
gradient term on the pressure dynamic curves was analyzed. The results could help people understand 
the seepage mechanism of low permeability reservoirs and provide the theoretical basis for exploring 
the low permeability reservoirs. 
 
Key words: The quadratic gradient term, moving boundary, starting pressure gradient, deformed media, low 
permeability reservoirs. 

 
 
INTRODUCTION 
 
Along with the continuous development and utilization of 
petroleum resources, it was imperative to exploit the low 
permeability reservoirs on a large scale. In order to 
ensure the increasing growth of petroleum production 
and reserves, the low permeability reservoirs had been 
developed. Fully understanding the seepage law of low 
permeability reservoirs was essential for rational and 
efficient development of low permeability reserves. Years 
of research indicates that the fluid of low permeability 
reservoirs will have to surmount the starting pressure 

gradient to flow (Fuquan and Ciqun, 2000; Xiaodong and 
Xiaochun, 2011; Lijun et al., 2017). Besides, the influence 
of the deformed media should be considered in low 
permeability reserves (Jing et al., 2013; Manping, 2004; 
Odeh and Babu, 1998; Finjord and Adanoy, 1989; 
Hongxuan et al., 2015). The flow behavior of low 
permeability reserves did not follow Darcy's law, and the 
flow equation was strongly nonlinear. According to the 
assumption of slightly compressible fluid, the quadratic 
gradient term in nonlinear partial  differential  equation  of  
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the traditional models was usually neglected. However, 
this assumption was unconscionable for low permeability 
reservoirs. Neglecting the quadratic gradient term would 
lead to error and influence the analysis of actual 
production (Junjie et al., 2014; Wang and Dusseault, 
1991; Dengke et al., 2002; Lili and Dengke, 2008; 
Yongheng et al., 2011; Fuxiang et al., 2010; Jun et al., 
2011). 

Starting with the characteristics of low permeability 
reserves, this thesis gave analyses to the influence of 
starting pressure gradient and the deformation of the 
media on flow. Based on that, starting from the principle 
of mass conservation, the nonlinear partial differential 
equation of low permeability reserves was deduced 
considering the influence of the quadratic gradient term. 
According to above-mentioned equation, mathematical 
model was built and solved by a finite difference method. 
Based on the proposed model, the pressure dynamic 
analysis of low permeability reservoirs along with 
propagation law of moving boundary was studied. The 
changing rule of the difference between the pressure 
solution of traditional model and the new model 
considering the quadratic gradient term was analyzed. 
 
 

ESTABLISHMENT OF NONLINEAR SEEPAGE 
EQUATION WITH QUADRATIC GRADIENT 
 

Assumptions 
 

Considering the condition of a well in the single layer, we 
assume that: 
 

(a) The output of the well is q; 
(b) The isotropy of permeability was obtained;  
(c) The influence of the wellbore storage and the skin 
effect was considered; 
(d) The movement of formation fluid was isothermal 
process; 
(e) The movement of formation fluid was non-Darcy flow; 
(f) Formation fluid was single-phase compressible, while 
the compressibility was constant; 
(g) The influence of gravity and capillary force was 
ignored; 
(h) The medium was slightly compressible and the 
compressibility was constant. But the compression would 
cause the significant change of the permeability. 
 
 
Continuity equation 
 
The movement of formation fluid is single-phase flow, 
with the porosity being Φ. The continuity equation of 
radial flow was built through the principle of mass 
conservation: 
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Momentum equation 
 
The fluid of low permeability reservoirs will have to 
surmount the starting pressure gradient to flow. So in 
order to adequately describe the rule of starting pressure, 
we take the following methods to describe the fluid flow 
process: 
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Constitutive equation 
 
The medium and the fluid were slightly compressible and 
the compressibility was constant. We can get state 
equation; 
 
For compressible fluid: 
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For compressible porous medium: 
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With (1) to (5), the flow equation: 
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Where: Ct=Cρ+CΦ, and Ct is total compressibility, MPa

-1
. 

Assuming that: γ>>Cρ, Equation 6 reduced to: 
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Definition of the following dimensionless quantities 
 
Dimensionless pressure: 
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Dimensionless time: 
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Dimensionless starting pressure gradient: 
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Dimensionless permeability modulus: 
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Dimensionless distance: 
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With Equations 8 to 13, we transform Equation 7 into the 
following form: 
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Dimensionless initial conditions: 
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Dimensionless inner boundary conditions: 
 

)e( D1

D

D DD

D
G

r

p p

r 






                                           (16) 

 
 
Dimensionless outer boundary conditions 
 
Dimensionless infinite formation: 
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Dimensionless closed outer boundary: 
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Dimensionless pressure outer boundary: 
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Because of the quadratic gradient term, Equation 14 
exhibited nonlinear characteristics which cannot be 
solved unless the equation was linearized. We define the 
following variable: 
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we transform Equation 14 into the following form: 
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Initial conditions: 
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Internal boundary conditions: 
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Outer boundary conditions: 
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SOLUTION OF THE FLOW MODEL 
 
In this thesis, the implicit difference scheme was used to 
discretize the equation by which the numerical solution of 
the model was solved. 
 

Difference scheme of flow equation: 
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We assume
xi  )1(e ; combining similar terms, the 

equation was simplified into the following form: 
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i=1,…,N (N as the number of nodes in the spatial 
direction). 
 
Difference scheme of initial conditions: 
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Difference scheme of inner boundary conditions: 
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Difference scheme of closed outer boundary conditions: 
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When the difference scheme of initial conditions is 
adapted to the difference scheme of the flow equation, 
we can obtain tridiagonal systems of order N, which can 
be solved by Thomas Algorithm. 

The fluid flowing boundary extending outwards 
continuously with time are the remarkable feature of low 
permeability reservoirs. The pressure cannot spread 
instantaneously to infinity as there is a moving boundary, 
which is a function of time, and expands with time. So, at 
any moment, the moving boundary put the reservoir into 
two regions: the dynamic zone affected by pressure 
waves and the silent area outside. We also believe that 
the outer boundary of dynamic area is the supply 
boundary at the moment. On the one side of the moving 
boundary, the fluid flows. On the other side, the fluid 
remains static. The moving boundary spreads outward 
gradually with time. We generally use the finite difference 
method or finite element method to solve the low 
permeability numerical simulation. Because of the 
dynamic characteristic, we need to divide grid each step 
in the calculation. 

Assuming that the location of the moving boundary is 
jrfD , at jt moment, we can get the moving boundary 

condition: 
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From that we can know the location of moving boundary 

at 1jt  moment: 
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moment. p is short for pD. We can use this formula to 

determine the next moment moving boundary location. 

 
 
RESULTS ANALYSIS 
 
The simulation result was obtained by the flow model of 
low permeability reservoirs. With the results, the 
movement rule of the moving boundary was studied. The 
pressure dynamic curves of low permeability reservoirs 
were drawn to analyze the seepage law of different 
starting pressure gradient, deformed media and moving 
boundary. The influence of the quadratic gradient term on 
the pressure dynamic curves was analyzed. 
 
 
Pressure dynamic analysis of low permeability 
reservoir 
 
Basic parameters of a low permeability reservoir are all in 
Table 1. From the above parameters, we can obtain the 
typical pressure dynamic curve (Figure 1). From the 
typical pressure dynamic curve, we can see that the log-
log graph can be divided into four different stages. The 
first stage is the wellbore storage stage, in which the 
pressure curve and the derivative curve present a straight 
line with the slope of 45°. The second stage is the 
transitional stage, where the derivative curve presents a 
hump. It reflects the situation of the near wellbore 
reservoir affected by the skin effect. The third stage is the 
radial flow stage. Here the permeability declined with 
increase of the pressure in the low permeability 
reservoirs with deformed media. As a result, the curve of 
the third stage is no longer a parallel straight line. The 
fourth stage is the later period of flow. The curve with 
different boundary value shows different trend. In the 
case of closed boundary, the later stage of the curve 
appears upturned. 
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Table 1. Basic parameters of a low permeability reservoir. 
 

K(μm
2
) 28.5×10

-3
 Φ 0.15 q(m

3
/day) 3 

ρ(g/cm
3
) 0.78 G(MPa/m) 0.05 CD 2 

γ(1/MPa) 0.03 Cρ(1/MPa) 3.09×10
-3

 μ( mPa•s) 6.5 

h(m) 2 CΦ(1/MPa) 3.28×10
-4

 pi(MPa) 0.15 

R(m) 100 rw(m) 0.1 S 5 

 
 
 

 
 

Figure 1. The typical pressure dynamic curve. 

 
 
 
Effects of medium deformation on the pressure 
dynamic curve 
 
In the low permeability reservoir, with the decrease of 
pore pressure, the effective stress of rocks increases, 
after which the skeleton of reservoir will be deformed. 
Therefore, the permeability and the porosity will 
decrease. Permeability modulus γ is induced as 
parameters to express effects of medium deformation. 
Dimensionless permeability modulus is expressed by γD. 

Figure 2 indicates the effect of dimensionless 
permeability modulus γD on the pressure dynamic curve. 
Permeability modulus has main effect on the later period 
of flow. 

At the initial stage, there is a slow rise in pressure. The 
value of γD has little effect on the progress. After the initial 
stage, with the increase of time, pressure curves are 
divergent. The influence of γD on pressure is increasing, 
and dimensionless pressure increases with the value of 
γD reduces. Along with the increasing of the deformation 
medium elasticity, the pressure declines more rapidly. 

Effects of starting gradient on the pressure dynamic 
curve 
 
The fluid of low permeability reservoirs will have to 
surmount the starting pressure gradient to flow. G is 
defined as the starting pressure gradient. Dimensionless 
starting pressure gradient is expressed by GD. 

Figure 3 indicates the effect of dimensionless starting 
pressure gradient on the pressure dynamic curve. 
Dimensionless starting pressure gradient has main effect 
on the radial flow stage and the later period of flow. 

Along with the increase of the dimensionless starting 
pressure gradient, the seepage resistance will grow to 
becoming overcome by fluid to flow; the pressure 
descending rate will become slower, and the warping of 
the curve will reduce. 
 
 
Analysis on effects of the quadratic gradient 
 
In the traditional well test models, the  quadratic  gradient 
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Figure 2. Influence of γD on pressure dynamic curve (a) Semi-log graph (b) Log-log graph. 

 
 
 
term of nonlinear partial differential equation was 
neglected according to the assumption of slightly 
compressible fluid, which could lead to error when the 
well test time was too long. Figure 4 indicates two 
pressure dynamic curves, one of which is obtained by the 
model considering the quadratic gradient term; and the 
other of which is obtained by the model neglecting the 
quadratic gradient term. 

In order to describe the effect of the quadratic gradient, 
we define: 
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ε indicates the difference of the pressure numerical 
solution between two models. pDf and pDnf respectively 
express the dimensionless pressure numerical solution of 
the model considering and neglecting the quadric 
gradient  effect.  From  the  definition,  we  know  that  the  
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Figure 3. Influence of GD on pressure dynamic curve (a) Semi-log graph (b) Log-log 
graph. 

 
 
 
bigger the deviation between ε and 0 is, the greater the 
difference between the two solutions becomes. 

Figure 5 indicates the change regulation of ε with the 
dimensionless radius. When other parameters are 
constant, along with the increasing radius, the pressure 
solution difference increases first and then decreases, 
finally tending to zero. It means that the effect of the 
quadratic gradient term on the calculation increases first 
and then decreases, finally tending to disappear when 
pressure wave is moving away from the wellbore. 

Figure 6 indicates the change regulation of ε with the 
time when GD=0.008, rD=6.3164. α indicates the factor of 
the quadratic gradient term. At the initial stage, curve is 
near the horizontal line.  Along  with  the  time  increases, 

the curve gradually diverges up and then tend to be 
horizontal. When the time is 10

4
, the difference goes up 

to 3%. Besides, when time is fixed, with α deciding, the 
pressure solution difference increases. The value of α 
has little effect on the initial stage. Along with the time 
increases, the influence of α on pressure solution 
difference increases. The bigger the value of α, the 
greater the influence becomes. 
 
 
Analysis on moving boundary 
 
By numerical simulation computing, we can obtain the 
location  of  moving  boundary  rfD  of  different  regions  at  
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Figure 4. Contrast on considering and neglecting the quadratic gradient term. 

 
 
 

 
 

Figure 5. Change regulation of ε with the dimensionless radius. 

 
 
 
different moments. We can draw the curves of moving 
boundary rfD changing with time (Figure 7). 

Figure 7 indicates the change regulation of rfD with 
time. When other parameters are constant, moving 
boundary is affected by various values of GD. Along with 
the time increases, the moving boundary is expanding, 
but the speed of expansion becomes slower. In the later 
period of flow, we can believe that moving boundary 
extends to a certain distance after a longer extension. 
The greater  the  reservoir starting  pressure  gradient  is, 

the smaller the region boundary is. Thereafter, the 
affected scope of the pressure becomes smaller and the 
speed of moving boundary becomes slower. 
 
 
Conclusion 
 
(1) The flow model of low permeability reservoirs of 
deformed media was built, which considered the 
influence of starting pressure gradient,  moving  boundary,  
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Figure 6. Influence of α on ε. 

 
 
 

 
 

Figure 7. Influence of GD on rfD curve. 

 
 
 
and quadratic gradient term. The numerical solution of 
the flow model was obtained by the fully implicit finite 
difference method; 
(2) Analysis on the flow model of low permeability 
reservoir indicates that the starting pressure gradient and 
the deformation of the media mainly influences on the 
pressure characteristic curve in the middle and later 
period. The smaller the value is, the bigger the 
descending rate of the dimensionless pressure; 
(3) The factor of the quadratic  gradient  term  affects  the  

middle and later period. The greater the value of α is, the 
greater the difference of the pressure numerical solution 
between two models. With the radius increasing, 
pressure solution difference increases first, then 
decreases, and finally tends to zero. With the increase of 
time, the pressure curves are divergent; 
(4) In the low permeability reservoir, due to the existence 
of the starting pressure gradient, the pressure is not 
instantaneously spread to infinity, but spreads gradually 
over time. And the greater the starting  pressure  gradient  
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is, the slower the speed of moving boundary becomes. 
Thus, in the low permeability reservoir development 
process, we should consider the impact of the moving 
boundary. 
(5) The results could help people understand the 
seepage mechanism of low permeability reservoirs and 
provide the theoretical basis for exploring the low 
permeability reservoirs. 
 
 
SIGN ANNOTATION 
 
v, Seepage velocity (cm/s); K, permeability (10

-3
μm

2
); L, 

length of model (cm); Δp, pressure difference (MPa); μ, 
viscosity (mPa·s); G, starting pressure gradient (MPa/m); 
pi, infinite-acting initial pressure (MPa); h, reservoir 
thickness (m); r,  distance from the well (m); rw, radius of 
the well (m); re, drainage radius (m); t, production time 
(h); K, permeability (μm

2
); q, surface output (m

3
/day); μ, 

Viscosity, mPa·s);  , porosity (f); ρ, density (g/cm
3
); γ, 

permeability modulus (MPa
-1

); Cρ, liquid compressibility 
(MPa

-1
); CΦ, rock compressibility (MPa

-1
); Ct, total 

compressibility, MPa
-1

); η, pseudo pressure (f); rfD, 
moving boundary (m). 
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