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This study is concerned with the water coning phenomenon that takes place around production wells of 
hydrocarbon reservoirs. In this paper, the development of artificial neural networks to predict the water 
saturation buildup around vertical and horizontal wells with a good level of accuracy is described. In 
the development of expert systems, it is assumed that water encroachment originates from an active 
aquifer which is located under the hydrocarbon reservoir (reservoir with bottom water drive). A high-
fidelity numerical model is utilized in generating training data sets that are used in structuring and 
training the artificial neural networks. The artificial expert systems that are developed in this paper are 
universal and are capable of predicting the change of water saturation around the wellbore as a 
function of time and the prediction process is faster than a reservoir simulator and requires less data, 
which saves time and effort. With the help of these models, it will be possible to predict the position of 
high water saturation zones around the wellbore ahead of time so that remedial actions such as closing 
the perforations that produce the water can be implemented on a timely basis. 
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INTRODUCTION 
 
Many hydrocarbon reservoirs contain an active water 
aquifer. The drilled wells are always completed to 
produce only hydrocarbons. As oil production continues, 
water starts to appear in the wellbore. This water is 
undesirable as its presence around the wellbore 
decreases the well productivity and needs more facilities 
to be handled, treated and disposed of at the  surface 
resulting in extra investments and operating costs. The 
height of the water cone stops increasing if the upward 
dynamic flow forces become equal to the downward 
gravitational forces. The water will be produced once the 
height of the water reaches the wellbore. By continuing to 

produce the hydrocarbon with water, formation around 
the wellbore will be saturated with water in the shape of a 
cone, a phenomenon that is referred to as water coning. 
This study analyzes the water coning phenomenon. The 
water coning behavior has significant importance in 
hydrocarbon production, and the ability to predict its 
future behavior will improve and help in better managing 
reservoirs experiencing water encroachment. The 
behavior of the water coning in an oil reservoir is 
predicted successfully using Artificial Neural Networks 
(ANN) by predicting the change of the water saturation 
distribution in the reservoir over time,  and  the  prediction 
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process is faster than a reservoir simulator and 
requires less data, which saves time and effort. The 
developed neural networks were designed to be 
used for vertical and horizontal wells in 
communication with a bottom water aquifer. These 
developed neural networks can be useful in 
optimizing production by finding the optimum 
perforation interval or the optimum production rate to 
delay the water production. 

The first paper discussed the water coning 
phenomenon and its physics was done by Muskat 
and Wyckoff (1935). Muskat and Wyckoff (1935) 
indicated that some of the factors that affect the 
water coning are production rate and length of 
perforated interval. Others performed numerical 
studies on the effects of various parameters on 
water coning in vertical wells (Blades and Stright, 
1975; Byrne and Morse, 1973; Mungan, 1975). Also, 
Kuo (1983) studied the effects of various parameters 
on water coning in vertical wells, and developed 
correlations to predict critical rate, breakthrough time, 
and watercut after water production. Yang and 
Wattenbarger (Yang and Wattenbarger, 1991) studied 
the water coning effects in vertical and horizontal 
wells and developed a method to calculate the 
critical rate, break- through time, and the water-oil 
ratio after breakthrough. Van (1994)  investigated 
the water coning behavior for a fractured reservoir in a 
vertical well and studied various parameters and 
their effects on water coning. Helle and Bhatt (2002) 

developed artificial neural networks that predict the 
underground fluids (water, oil and gas) and their 
partial saturation directly from the well logs. Shokir 
(2004) presented new artificial neural networks that 
predict water saturation in shaly formation using the 
well log data and the core data as the inputs. Al-
Bulushi et al. (2009) developed artificial neural 
network based models to predict water saturation 
from well log data and core data. Mahmoudi and 
Mahmoudi (2014) developed artificial neural network 
that predicts porosity and water saturation of an 
Iranian oil field using well logs as an input data. 
Zendehboudi et al. (2014) developed a hybrid artificial 
neural network with particle swarm optimization to 
estimate breakthrough time and critical production 
rate for fractured system. Hamada et al. (2015) used 
neural network, optimized by particle swarm 
optimization, to determine the parameters of 
Archie’s formula, and then use the formula to 
calculate water saturation. Finally, Gholanlo et al. 
(2016) used radial basis function neural network 
improved by genetic algorithm to predict formation 
water saturation using conventional well-logging data. 
Gharib et al. (2018) developed artificial neural 
network to predict water saturation and porosity for 
shaly sand using core and log data. Baziar et al. 
(2018) performed a comparative study using four 
intelligent methods to determine water saturation in a 
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tight gas sandstone reservoir and the methods are 
support vector machine, multilayer perceptron neural 
network, decision tree forest, and tree boost. 
Alimoradi et al. (2011) pointed out that one of the 
most important parameters in reservoir 
characterization procedure is water saturation, and 
the aim of this study is the future prediction 
performance of water saturation. 
 
 

MODELS DEVELOPMENT 
 

Numerical model 
 

Data used to train the artificial neural networks were generated 
from a numerical reservoir simulation model. Two reservoir 
numerical models were implemented in radial and rectangular 
coordinates. The reservoir properties are assumed to be 
homogeneous and isotropic. In terms of fluid properties, the 
reservoir conditions are assumed to be above the 
bubblepoint pressure to ensure that no free gas is present 
in the reservoir. Furthermore, capillary forces were ignored 
assuming no transition zone. The reservoirs are assumed to 
be horizontal with uniform thicknesses. The radial reservoir 
model was used to generate data for vertical wells and the 
rectangular reservoir model was used to generate data for 
horizontal wells. The gridding for the radial system was in 
three dimensions, where the number of grid blocks was 
30×1×25. The thickness of all the grid blocks is equal and 
the spacing of grids in the r-direction was designed according 
to the following equation: 
 

                                                             (1) 
 

The rectangular reservoir gridding was 25×25×15 with ∆x = ∆y = 
61 m. The reservoir properties for the radial and the rectangular 
models are tabulated in Tables 1 and 2. For the vertical well 
scenario, six key parameters were selected to be changed to 
create different oil reservoirs. The parameters with their ranges 
are shown in Table 3 for the vertical well scenarios and in Table 
4 for the horizontal well scenarios. 
 

 
Artificial neural network vertical well scenario 
 

A total of 233 data sets were generated randomly.  Each 
combination was used to create a new reservoir model. All 
of the runs were designed for 10 years. The water saturation 
data, for all the blocks as generated by the simulation runs, 
were collected and prepared for the ANN training process. 
The ANN used for training is a feedforward network. The 
principal inputs are six parameters, which are: 
 

(1) Oil density (ρo), 

(2) Oil viscosity (µo), 

(3) Vertical permeability (kv), 

(4) Total liquid flow rate (qL), 

(5) Reservoir thickness (h), 
(6) Open interval to the flow (hp). 
 

The outputs are the water saturation values for all the 
blocks in the reservoir model at the end of each year. The 
233 scenarios were divided into three sets; 210 scenarios 
were used for training,  11  for  validation  and  12  for  blind  
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Table 1. Reservoir properties for the radial system. 
 

Porosity (φ) 0.25 

kr , m
2
 500×10

-15
 

Reservoir radius (re), m 1,829 

Oil formation volume factor, Rm
3
/Sm

3
 1.0 

Oil compressibility (co), MPa
-1

 145×10
-6

 

Initial pressure (pi), MPa 34.5 

Temperature, °C 54 

Initial oil saturation (Soi) 1.00 

 
 
 

Table 2. Reservoir properties for the rectangular system. 
 

Porosity (φ) 0.25 

kx, m
2
 500×10

-15
 

ky , m
2
 500×10

-15
 

Reservoir length, m 1,524 

Reservoir width, m 1,524 

Oil formation volume factor, Rm
3
/Sm

3
 1.0 

Oil compressibility (co), MPa
-1

 145×10
-6

 

Initial pressure (pi), MPa 34.5 

Temperature, °C 54 

Initial oil saturation (Soi) 1.00 

 
 
 

Table 3. The selected reservoir properties were changed within their ranges for the vertical well 
study. 
 

S/N Parameter Range 

1 Oil density (ρo), kg/m
3
 769 - 929 

2 Oil viscosity (µo), cp 1 - 10 

3 Vertical permeability (kv ), m
2
 5×10

-15 
- 500×10

-15
 

4 Total liquid fl w rate (qL), m
3
/Day 79.5 - 1,590 

5 Reservoir thickness (h), m 7.6 - 76 

6 open to fl w interval of pay zone (hp), m 0.04 - 0.96 h 

 
 
 
 
testing. Training and validation data are used in the training of 
the ANN and the testing data are only introduced to the 
network after the end of the training process to test the new 
ANN. Training the neural network started by including all water 
saturation values for all the blocks of each reservoir, which 
will produce a network that can predict the water saturation 
for the entire reservoir. However, this did not result in a 
capable network that could predict the water saturation values 
with a good level of accuracy. The next trial was to reduce the 
amount of data to simplify the problem for the neural network, 
and at the same time not to generate a large catalog of 
neural networks. The volume of data was reduced more to 
simplify the problem by taking the data for only one layer 

instead of the 25 layers, but these efforts were not successful 
once again. Then again, the data was reduced by taking the 
data of a single layer and considering only the 6 blocks. This 
time, a good network was generated and the absolute error 
was less than 10% for all the predicted water saturation 
values. The absolute error is calculated using the following 
equation: 

 
Error = |Sw − Sw (ANN)|                                (2) 

 
After succeeding in designing a satisfactory network, the goal 
now is to increase the complexity of the problem and reduce 
the number  of  the  networks  needed  to  predict  the  water  
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Table 4. The selected reservoir properties were changed within their ranges for the horizontal well study. 
 

S/N Parameter Range 

1 Oil density (ρo), kg/m
3
 769 - 929 

2 Oil viscosity (µo), cp 1 - 10 

3 Vertical permeability (kv ), m
2
 5×10

-15 
- 500×10

-15
 

4 Total liquid fl w rate (qL), m
3
/Day 79.5 - 1,590 

5 Reservoir thickness (h), m 4.6 - 73 

6 Depth of the horizontal well from top of formation (hd), m 0.067 - 0.53 h 

7 Length of the horizontal well (hL), m 183 - 1,036 

 
 
 
saturation for the reservoir. 

The complexity was increased by including the data for the 
10 years and not only for one year. The produced networks 
were good. Increasing the number of blocks to 16 blocks was 
tried, but the efforts were not successful. At the end, 25 networks 
were considered, where each network predicts the water 
saturation for each layer at the end of each year for 10 years. 
 
 

 
Horizontal well scenario 

 
A total of 314 combinations were generated randomly and for 
each combination, a reservoir was created. The horizontal well 
was always placed in the center of the square reservoir. This 
created a symmetry, which reduces the amount of data to be 
considered, and in return, will reduce the time needed to train 
the neural network. 

After running the numerical simulation for all the 314 
reservoirs for 10 years, water saturation data was collected and 
prepared for training the neural networks. 

The input list required to generate the blocks’ water 
saturations as outputs, contains seven parameters, which are: 

 

(1) Oil density (ρo), 

(2) Oil viscosity (µo), 

(3) Vertical permeability (kv), 

(4) Total liquid flo w rate (qL), 

(5) Reservoir thickness (h), 
(6) Depth of the horizontal well (hd), 

(7) Length of the horizontal well (hL). 

 

The data collected was only from the vertical plane (x-z 
plane) which contains the horizontal well. The water saturation 
for each block at the end of each year was collected. Training 
the neural network using the water saturation values for the 
blocks in a single column, produced 13 different neural 
networks. The data for the 314 reservoirs were divided into 3 
groups: 284 for training, 15 for validation, and 15 for blind 
testing. The resulting ANN is considered good when the 
predicted water saturation of the testing data has an absolute 
error of less than 10% for all values. The structure of the 
ANN was selected after trial and error. The network with the 
lowest error found was the feedforward network. The learning 
function with the lowest error was the gradient descent with 
momentum weight and bias learning function. The training 
function with the lowest error was the conjugate gradient 
backpropagation with Polak-Ribíere updates. The transfer 
functions which showed the lowest error was the hyperbolic 
tangent sigmoid transfer function. The neural network 

structure consists of the input and the output layers and two 
or more hidden layers. In each layer (input, output and 
hidden), the number of neurons must be specified. The 
number of neurons in the input layer is 7. The number of 
neurons in the output layer is 150. A table of 150 neurons is 
required because each column has 15 blocks and the water 
saturation value for a single block was taken at the end of 
each year for 10 years. 
 
 

RESULTS AND DISCUSSION 
 
Vertical well 
 
As explained earlier, in this case, 25 ANN were created. 
They were tested using data from 12 different reservoirs. 
The average absolute error was less than 10% for all the 
layers of all 12 reservoirs. The structure of all the 
networks consists of one input layer, one output layer and 
two hidden layers. For each network, the outputs were 
the water saturation values for the blocks at the end of 
each year, for 10 years. Figure 1 shows the structure of 
the generated ANN for the first layer. The network 
has 6 inputs in the input layer, 46 neurons in the 
fir st hidden layer, 37 neurons in the second hidden 
layer, and 60 outputs in the output layer. The 
average absolute error for each layer of the 
reservoirs is found to be between 0.07 and 1.67%. 
Two reservoirs (reservoir #230 and #233) were 
selected, from the reservoirs used to test the 
generated ANN, to show the capability of the ANN in 
predicting the water saturation. Reservoir #230 has 
the highest average absolute error (Figure 3c), among 
the 12 tested reservoirs, for the predicted water 
saturation values, and reservoir #233 was randomly 
selected. Figure 2a shows the surface map of the 
water saturation distribution for reservoir #233 from 
numerical simulation data. Figure 2b shows the same 
water saturation distribution but with predicted data 
from ANN. The prediction has a very low error, 
and the water cone shape is captured clearly. 
Figure 2c shows the absolute error on a surface map 
to give a better way of visualizing the error and its 
location. The highest error is 5.9% and it is 
observed in a very small area. Figure 3a  is  for  the  
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Figure 1. ANN structure generated for the fi layer for the vertical well. 

 
 
 

 
 

Figure 2. Surface map of Sw for reservoir #233 at the end of the 6th year. 

 
 

 
                          (a) Numerical simulation                                  (b) Artificial neural network 
    

                                     
                                                             (c) Absolute error 
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Figure 3. Surface map of Sw for reservoir #230 at the end of the 5th year. 

 
 
 
surface map for reservoir #230 for the water saturation 
using the data from the numerical simulation. Figure 3b is 
the surface map for the same reservoir using data 
predicted with the ANN. Figure 3c shows the absolute 
error. Prediction for this reservoir has the highest error 
among the 12 reservoirs used for testing, but the shape 
of the cone has developed, which is clearly visible from 
the ANN model. 

 
 
Horizontal well 
 
Twelve ANNs were generated. Each network predicts the 
water saturation for each column. The structure of all the 
networks consists of one input layer, one output layer and 
2 or 3 or 4 hidden layers. The output layer has the water 
saturation values for the blocks at the end  of  each  year, 

for 10 years. 
Figure 4 shows the structure of the generated ANN for 

the first column. The network has 7 input neurons, 31 
neurons in the first hidden layer, 37 neurons in the 
second hidden layer, and 150 neurons in the output layer. 
The average absolute error encountered in the 15 
reservoirs was found to be very low (between 0.34 and 
2.72%). 

Fifteen reservoirs were tested using the neural 
networks developed in this study and two reservoirs were 
selected to illustrate the results of the ANN predictions. 
The two selected reservoirs are reservoirs #8 and #10. 
Figure 5a shows the surface map of reservoir #8 of water 
saturation from numerical simulation. The horizontal well 
is at a depth of 12.5 m and the horizontal section is 1,036 
m long extending from 244 to 1,280 m. Figure 5b  shows 
the   surface   map  of  the  same reservoir   with  water 

 

 
(a) Numerical simulation (b) Artificial neural network 

 

                                 
                                                           (c) Absolute error 
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Figure 4. ANN structure generated for the fi column for the horizontal 
well. 

 
 
 

 
 

Figure 5. Surface map of Sw for reservoir #8 at the end of the 10th year. 

 

 
(a) Numerical simulation (b) Artificial neural network 

 

                                   
                                                                   (c) Absolute error 
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Figure 6. Surface map of Sw for reservoir #10 at the end of the 10th year. 

 
 
 
saturation data predicted from ANN. Figure 5c shows 
the absolute error of the ANN predicted water 
saturation for reservoir #8. 

The ANN was able to predict the shape of water 
crest very effectively. There are areas which show 
an absolute error larger than 10%, but they are all 
at the bottom of the water cone which is not critical 
in performance calculations (Figure 5c). The more 
important areas are those which show where the 
water front has reached. The high error zones 
occur at the transition zones, similar to results of the 
vertical wells, and the high error occurs because 
saturation gradients are high over a small area, 
which creates a greater challenge to the ANN to 
predict the water saturation values accurately. 

The second example to illustrate the ability  of  the 

ANN to predict the water coning phenomena is for 
reservoir #10. Figure 6a shows the surface map of 
water saturation for the reservoir with the numerical 
simulation data, and Figure 6b shows the surface 
map for the same reservoir with the ANN predicted 
data. The ANN was able to predict the cone shape, 
and also to predict the sharp decrease of water 
saturation at the bottom sides of the cone. Figure 6b 
shows two identical peaks. This is an overestimate of 
the water saturation values and this is because the 
horizontal section of the well, which is off the center, 
is having more flow than the center section. The ANN 
was successful in predicting this behavior, but the 
values of water saturation were overestimated. 
Figure 6c shows the absolute error of the ANN 
predicted water saturation for  reservoir  #10,  and  it  

 
 
 

 
        (a) Water saturation from numerical simulation        (b) Water saturation from artificial neural network 
 

                                         
                                                                              (c) Absolute error 
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shows very low error (less than 10%) in most areas. 
 
 
Conclusions 
 
This study is concerned with predicting the rate of 
increase of water saturation in the immediate vicinity 
of the production wells using ANN based models. 
The developed ANNs are for vertical wells located 
in a radial flo w geometry, and horizontal wells located 
in a rectangular reservoir system with active bottom 
water drives. A total of six input parameters are 
needed for the ANN to predict the water saturation 
distribution for a period of 10 years. The predicted 
water saturation values for the vertical well represent 
the water saturation distribution around the wellbore 
at the end of each year while the well is under 
production. In the case of horizontal wells, the 
water saturation predictions are made in the vertical 
plane of symmetry that cuts through the centerline 
of the horizontal well. 

The examples o f  t h e  applications described in 
this paper show that accurate saturation predictions 
matching the numerical simulation results effectively 
have been attained. With the help of the expert 
systems developed in this paper it will be possible 
to generate results showing the development of 
water saturation profiles as a function of time without 
resorting to reservoir simulators which require large 
amount of data and large computational times. 

The developed ANNs can be used to optimize 
production strategies, by running the ANN under 
different production scenarios to find the production 
rate that will effectively delay water production. 
Furthermore, ANN based reservoir models developed 
in this study can be used in selecting the optimum 
perforation interval that will increase production of 
water-free oil by delaying water production or reducing 
it. 
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