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Model reduction techniques have been used widely in all engineering fields especially in electrical, 
mechanical as well as chemical engineering. The basic idea of reduction technique is to replace the 
original system with much smaller state space dimension. A reduced order model is more beneficial to 
process and industrial field in terms of control purposes by using proper orthogonal decomposition 
method (POD), which finds applications in computationally processing large amounts of high-
dimensional data with the aim of obtaining low-dimensional descriptions that capture a large amount of 
the phenomena of interest. The discrete version of the POD, which is the singular value decomposition 
(SVD) of matrices, is described in some detail. 
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INTRODUCTION 
 
The developments of mathematical models are based on: 
(i) theoretical models using the principles of chemistry 
and physics, (ii) empirical models, obtained from the 
statistical analysis of the operating data’s process and (iii) 
semi empirical hybrid models. The issue of development 
of the nonlinear process model is very important and is 
more challenging in an industrial setting. The 
fundamental models have several advantages over the 
other models, for example, it requires less process data, 
the model parameters can be estimated from laboratory 
experiments and routine operating data instead of time 
consuming plant test, and it can be extrapolated to 
operate on regions which are not represented in the data 
set used for model development (Henson, 1998). 

The major drawback of the fundamental dynamic model 
is the highly nonlinear state dimension of the system and 
its complexity too. Thus, the models are not well suited 
for incorporation into the control scheme. Moreover, the  
derivation of dynamic models for large scale process is 
difficult. 

Modeling is a common theme within the simulation, 
control and optimization of processes. However, model  
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reduction techniques have become more popular. The 
aim of almost any reduction technique is to provide a 
reduced order model that can be used for controller 
design.  

There are two approaches to reduce the model (Johan 
et al., 2005): 
 
1. Reducing the system with respect to the physics of the 
system. 
2. Project the system onto smaller subspace. 
 
The concept of the first approach will be better if we have 
good knowledge regarding the system. However, the 
drawback is that this approach can not be used to black 
box the model because they have different techniques for 
each system. The second approach has a disadvantage 
which is, the reduced system is not as good as expected 
for a physical meaning anymore. The limits of 
applicability of these techniques are represented by a big 
difference between the real and theoretical systems. 
Also, reducing the effects of inputs parameters inside the 
system   does   not   lead   to   a  clearer  view  about  the  
real system. 

In this paper, we will focus on a proper orthogonal 
decomposition (POD) method that reduced the 
nonlinearity of the system.  
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Lall et al. (1999) have developed a method of model 
reduction for the nonlinear system. The method requires 
only standard matrix computations for the used balanced 
truncation in the linear system. For the nonlinear system, 
the method is used for the POD.  

Hahn and Edger (2002) have improved the technique 
by Lall et al. (1999) which reduced the nonlinear system 
especially for the ordinary differential equation system. 
The proposed technique is a balancing technique used 
for POD and Galerkin projection. 

Hedengren and Edger (2005) have developed the 
adaptive order reduction of large scale nonlinear 
differential algebraic. This method includes three steps: 
adaptive with POD, algebraic state and in situ adaptive 
tabulation which is used to transform the implicit sets into 
linear explicate approximation.   

Sun and Hahn (2005) have implemented a reduction 
technique on stable nonlinear differential algebraic 
equation systems. This method (POD) reduces the other 
differential equations for a model of distillation column as 
a case study. 

The POD has been used to obtain approximately, low-
dimensional descriptions of turbulent fluid flows (Holmes 
et al., 1996), structural vibrations (Cusumano et al., 1994) 
and insect gait, and has been used for damage detection 
to name a few applications in dynamic systems. Also, it 
has been extensively used in image processing, signal 
analysis and data compression. 
 
 
METHODOLOGY 
 
Suppose we wish to approximate a function of z(x, t) over 
some domain of interest as a finite sum in the variables 
separated form: 
 

 
   

                  (1) 
 

 
It is reasonably expected that the approximation 
becomes exact in the limit as M approaches infinity, 
except possibly on a set of measure zero (readers 
unfamiliar with the measure theory may ignore it if they 
deal with finite-dimensional calculations; and consult, for 
example, Rudin 9 otherwise). 

While in Equation (1) there is no fundamental 
difference between t and x, we usually think of x as a 
spatial coordinate (possibly vector-valued) and t as a 
temporal coordinate. Thus, the representation of 
Equation (1) is not unique. For example, if the domain of 
x is a bounded interval of x on the real line, then the 
functions of f k(x) can be chosen as either a Fourier 
series,  Legendre  polynomials,  Chebyshev  polynomials, 
 and so on. For each, such choice of a sequence of f  k(x) 

 
 
 
 
that forms a basis for some suitable class of functions 
z(x, t) and the sequence of time-functions ak(t) is 
different. That is, for sines and cosines we get one 
sequence of functions for ak(t), while for Legendre 
polynomials we get another, and so on. The POD is 
concerned with one possible choice of the functions of f 
k(x).  However, if we have chosen the orthonormal basis 
functions, we will have: 
 

                           (2) 
 

 
 
For the orthonormal basis functions, the determination of 
the coefficient function of ak(t) depends only on f k(x) and 
not on the other f ’s. What criteria should we use for 
selecting the functions of f k?  

Orthonormality would be useful; moreover, while an 
approximation to any desired accuracy in Equation (1) 
can always be obtained if M can be chosen adequately, 
we may likely choose the f k(x) in such a way that the 
approximation for each M is as good as possible in a 
least squares sense. That is, we would try to find, 
permanently, a sequence of orthonormal functions f k(x) 
such that the first two of these functions give the best 
possible two-term approximation, the first seven give the 
best possible seven term approximation, and so on. 
These special, ordered, orthonormal functions are called 
the proper orthogonal nodes for the function of z(x, t). 
Nonetheless, orthonormality would be the expression that 
is called the POD of z(x, t) in Equation (1). 
 
 
Mathematical expression 
 
Consider a system where measurements of m state 
variables are taken (these could be from m strain gauges 
on a structure, or m velocity probes in a fluid, or a mixture 
of two kinds of probes in a system with flow-induced 
vibrations, etc.), and assume that at N instants of time, 
measurements of N sets of m are taken simultaneously at 
these m locations. We arrange the data in an N × m 
matrix A, such that element Aij is the measurement from 
the jth probe taken at the ith time instant. The m state 
variables are not assumed to be measured by 
transducers that are arranged in some straight line in the 
physical space. We merely assume that the transducers 
have been numbered for identification, and that their 
outputs have been placed side by side in matrix A. In the 
actual    physical   system,  these   measurements   might  
represent    one     spatial     dimension     (for    example, 



 
  
 
 
 
accelerometers on a beam), or more than one spatial 
dimension (for example, pressure probes in a three 
dimensional fluid flow experiment). Each physical 
transducer may itself measure more than one scalar 
quantity (for example, triaxial accelerometers). In such 
cases, the different scalar time series from the same 
physical transducer are arranged in different columns of 
A. Here, the final result of the data collection is assumed 
to be the N × m matrix A. 

It is common to subtract, from each column of A, the 
mean value of that column. Whether or not this is done 
does not affect the basic calculation, though it affects the 
interpretation of the results. 

Notwithstanding the previous warnings, through a 
combination of engineering judgement and luck, the POD 
continues to be fruitfully applied in a variety of 
engineering and scientific fields. Judging from the study, 
it is a useful tool at least for people who regularly deal 
with moderate to high dimensional data. 
 
 
The singular value decomposition 
 
We now compute the singular value decomposition 
(SVD) of matrix A, which is of the form (Joan et al., 
2006): 
 
A = U�VT                              (3)  
 
where U is an N × N orthogonal matrix, V is an m × m 
orthogonal matrix, the superscript T indicates matrix 
transpose, and � is an N × m matrix with all its elements 
equal to zero, except along the diagonal. The diagonal 
elements of Sii consist of r = min (N, m) and nonnegative 
numbers of si, which are arranged in decreasing order, 
that is, r � 0. The s’s are called the singular values of A 
(and also of AT) and are unique. The rank of A equals the 
number of nonzero singular values. In the presence of 
noise, the number of singular values which is larger than 
some suitably small fraction of the largest singular value 
might be taken as the ‘numerical rank’. Since the singular 
values are arranged in a specific order, the index k of the 
kth singular value will be called the singular value number 
as shown in Figure 1. 

Correspondence with Equations (1) and (2): In 
Equation (3), let US = Q. Then the matrix Q is N × m, and 
A = QVT. Letting qk be the kth column of Q and vk the kth 
column of V, we write out the matrix product as: 
 

 
 
 
 
 
                         (4) 
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Equation (4) is the discrete form of Equation (1). The 
function of z(x, t) is represented here by matrix A. The 
function of ak(t) is represented by the column matrix qk, 
while the function of f k(x) is represented by the row 
matrix vk

T. The approximation of Equation (1) is now 
exact because the dimension is finite. Due to the 
orthonormality of the columns of V, Equation (2) 
corresponds to the multiplication of Equation (4) by one 
of the V’s on the right.                                                         

Relationship between temperature, distance and time 
represents a  suitable  example  of  the  high  nonlinearity 
system as shown in Equation (5): 
 

                                                                        (5) 
 
Imagine that we ‘measure’ this function at 25 equally 
spaced x points, and 50 equally spaced instants of t. The 
temperature of z(x, t) is shown in Figure 1a. Arranging 
the data in matrix Z, we compute the SVD of Z, and then 
compute rank 1, rank 2 and rank 3 approximations to Z, 
as shown in Figure 1. MATLAB software is used for 
Equation (5) to reduce the order by calculating the SVD 
and POD as shown in Figure 1. The rank 3 approximation 
(Figure 1) looks indistinguishable from the actual 
temperature as shown in Figures 1 and 2. This is 
explained by Figure 1 which shows the singular values of 
Z. Note how the singular values decrease rapidly in 
magnitude, with the fourth one significantly smaller than 
the third (The numerical values are 47.5653, 2.0633, 
2.0256, 0.0413, 0.0106 . . .). 

Note that in this example without noise, the computed 
singular values beyond number 14 flatten out at the 
numerical roundoff floor around 10 to 15. The actual 
singular values beyond number 14 should be smaller, 
and an identical computation with more digests of 
precision should show the computed singular values 
flattening out at a smaller magnitude. Conversely, 
perturbing the data matrix by zero mean random 
numbers of typical magnitudes, 10 to 8 causes the graph 
of singular values to develop an obvious elbow at about 
that value. For experimental data with noise, the SVD of 
the data matrix can sometimes provide an empirical 
estimate of where the noise floor is. So far in this 
example, we have merely computed the lower rank 
approximations to the data, and the use of the SVD in the 
calculation may be considered incidental. Now, suppose 
we wish to interpret the results in terms of mode shapes, 
that is, in the context of the POD, the first 3 columns of V 
provide the 3 dominant x-direction mode shapes, and on 
projecting the data onto these mode shapes we can 
obtain the time histories of the corresponding modal 
‘coordinates’. The calculation of the modal coordinates is  
straightforward.   Using   Equation  (4),   t he   kth   modal 
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Figure 1. Approximation of temperature. 

 
 
 
coordinate of qk is simply uksk, where uk is the kth  
column of U (assuming U is available from the SVD). 
Alternatively, if only the proper orthogonal modes of V are 
available, then the projection calculation is simply qk = 
Avk , where vk is the kth column of V. The modal 
coordinates for the temperature given by Equation (5) are 
plotted in Figure 1. The first coordinate is obviously 
dominant (the first singular value is dominant), while the 
second and third have comparable magnitude (singular 
values 2 and 3 are approximately equal) as shown in 
Figure 2.   Rank 3   is   the best because the difference 
between the actual value  and  approximation  valuesfor 
Ranks 1,   2  and 3  gave  high  approximation  for  rank 3 

which reaches 97.34% as shown in Figure 2. 
Consider the differences between the SVD and 

eigenvalue decomposition. The SVD can be computed 
for non-square matrices, while the eigenvalue 
decomposition is only defined for square matrices. The 
SVD remains within the real arithmetic whenever A is 
real, while eigenvalues and eigenvectors of unsymmetric 
real matrices can be complex. Each of the left and right 
singular vectors (columns of U and V, respectively) is 
orthogonal, while eigenvectors  of  unsymmetric  matrices 
need not be orthogonal even when a full set exists. 
Finally, while an eigenvector (say) � and its image A � 
are in the same direction,  a  right-singular  vector  vk  (kth  
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Figure 2.  Difference between actual and rank approximation methods. 

 
 
 
column of V) and its image Avk need not be in the same 
direction or even in spaces of the same dimension. 
However, the SVD does have strong connections with the 
eigenvalue decomposition. On premultiplying Equation 
(3) with its transpose and noting that V-1 = VT, we see that 
V is the matrix of eigenvectors of the symmetric m × m AT 
A matrix AT A, while the squares of the singular values 
are the r = min (N, m) largest eigenvalues of AT A. 
 
 
CONCLUSIONS 
 
A few reduction techniques applied in the chemical 
process have been reviewed. It was found that the 
number of reduced techniques application in the chemical 
processes was still low. However, POD represented one 
of the important methods that can be used to reduce the 
nonlinearity of the system without having high effects on 
the behavior of the system. 
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