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In this paper, we presented two recursive techniques for history matching of large-scale reservoir 
models. At first, singular value decomposition (SVD) is used to reduce the number of state vectors in 
order to truncate them to a few numbers of state variables corresponding to the largest singular values. 
The energy of the system is preserved by eliminating the state variables corresponding to the zero 
singular values or close to zero ones. The Ensemble Kalman filter (EnKF) and SVD are combined to 
decrease the estimation computational time of the unknown properties in large reservoirs. This 
approach is computationally efficient and scales well for Kalman filtering as it greatly reduces the size 
of the sample covariance matrices used to derive state estimates, where the values of the eliminated 
state variables can be obtained from the rest of state variables. On the other hand, using EnKF in 
history matching problem needs a huge number of reservoir simulations. In this paper, a new proxy 
based on fluid flow equations in subsurface, is introduced. This proxy is used instead of simulator 
during history matching process. Thus, the computational time is greatly reduced. It is shown that the 
equations in new coordinate axes are quite linear in comparison with highly nonlinear equations in 
Cartesian or Radial coordinate axes. Therefore, two-dimensional Kalman filter can be used instead of 
EnKF and so that computational time is reduced, significantly. Finally, the proposed method has been 
compared with previous methods that have used EnKF and results show the superior advantages in 
both accuracy and computational time. 
 
Key words: History matching, two-dimensional Kalman filter, Ensemble Kalman filter, singular value 
decomposition. 

 
 
INTRODUCTION 
 
Accurate reservoir model plays an important role in 
reservoir management decisions. On the other hand, 
simulation model must have consistency with the 
reservoir production history, to be used for future 
prediction production. Tuning of model parameters with 
the aim of matching observation data and output 
simulation is typically done through history matching 
process. Therefore, in recent years, there has been an 
emerging interest to solve the problem through 
systematic approaches. 

The use of Ensemble Kalman filter (EnKF) in history 
matching process has received significant attention in 
recent years (Nævdal et al., 2003; Jafarpour and 
McLaughlin, 2008; Nævdal et al., 2005; Wen and Chen, 
2006;  Liu  and  Dean,  2005;  Liu,  2005;  Gu  and Oliver, 

2005). It was first proposed by Nævdal et al. (2003). They 
applied EnKF technique for continuous model updating 
on two-dimensional reservoir models. In order to extend 
classical Kalman filter to nonlinear and large-scale 
problems, EnKF was proposed. This filter was originally 
developed to update the states, but history matching is 
often posed as a parameter estimation problem, rather 
than a state estimation problem (Jafarpour and 
McLaughlin, 2008). If the parameters of interest are 
simply added to the state vector, the problem can convert 
to the state estimation problem. The use of the EnKF for 
history matching is addressed in this paper. 

Numerical reservoir simulators rely on discredited 
equations since the partial differential equations of fluid 
flow in porous medium can be solved analytically  only  in  
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very simple cases. In order to employ reservoir 
simulators, the space is subdivided into grid blocks with 
homogenous properties. Usually, the numbers of grid 
blocks are very large and can be up to 1 million blocks, 
especially in real cases. If the number of grid blocks in 2-

phase model is 
c

N  then number of states (that is, 

pressure and saturation of each grid block) is 2
c

N and it 

will conclude to a huge state vector. Therefore, EnKF will 
pose a high computational load. However, a strong 
correlation exists between property values of 
neighbouring grid blocks, because geological media are 
connected layers of rock with similar physical properties 
(Jafarpour and McLaughlin, 2008). In this paper, we 
integrate singular value decomposition (SVD) with EnKF 
to obtain an efficient and accurate history matching 
algorithm. SVD is performed on the state vector and 
reduces the number of state variables. The state vector 
of the reservoir model is truncated to few numbers of 
states corresponding to the largest singular values. The 
energy of the system is preserved by eliminating the state 
variables corresponding to the zero singular values or 
close to zero ones. This approach reduces the size of the 
sample covariance matrices that are used to derive state 
estimates, significantly. This issue makes the method 
completely appropriate for Kalman filtering. The values of 
the eliminated state variables can be obtained from the 
rest of state variables. For example, if the pressure value 
in a certain grid block is eliminated, it means that the 
pressure depends on other state variables and there is 
no need to be calculated independently. 

On the other hand, using EnKF in history matching 
problem needs a huge number of reservoir simulations. 
In this paper, a new proxy based on fluid flow equations 
in subsurface, is introduced. This proxy is used instead of 
simulator during history matching process. Therefore, the 
computational time is greatly reduced. It is shown that the 
equations in new coordinate axes are quite linear in 
comparison with highly nonlinear equations in Cartesian 
or Radial coordinate axes. Thus, two-dimensional 
Kalman filter can be used instead of EnKF and 
computational time is reduced significantly. Finally, the 
proposed method has been compared with previous 
methods that have used EnKF and results show the 
superior advantages of the proposed method in both 
accuracy and computational time.  

The highly nonlinear and complex fluid flow equations 
are transformed into linear state space model. This model 
has variable size state vectors. It seems the proxy can 
also be used in other part of reservoir engineering such 
as well control. 

The outline of this paper is as follows: We first 
summarize the steps of the EnKF estimation and two-
dimensional Kalman filter. Next, the implementation of 
EnKF in history matching problem is described, and the 
proposed approach using SVD. Proxy construction is 
described, and the implementation of two-dimensional 
Kalman filter in  history  matching  problem  is  explained.  

 
 
 
 
Simulation example is also described. 
 
 
ENSEMBLE KALMAN FILTER 
 
The EnKF belongs to particle filters, a broader category 
of filters. These filters choose a set of sample points. 
These samples capture the initial probability distribution 
of the state, and then propagated through the system. 
The ensemble of the estimate approximates the 
probability density function of the actual state (Gillijns et 
al., 2006). Consider a discrete-time nonlinear system as 
follows: 
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are stationary zero-mean white noise of process with 

covariance matrices kQ and kR respectively.  

All kind of Kalman filters have two main steps, the 
analysis and the forecast one. These steps in EnKF are 
summarized as follows: 
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Forecast step 
 

.)(
1

1
ˆ

,)(
1

1
ˆ

],1[

],
111

1
1

[

,
1 1

/1
1

,),(
1

Tf

k
yE

f

k
yE

q

f

k
yyP

Tf

k
yE

f
k

E
q

f

k
xyP

f
k

y
qf

k
y

f
k

y
f

k
y

a

k
yE

f
k

x
qf

k
x

f
k

x
f

k
x

f
k

E

q

i

if

k
xqif

k
x

i
k

w
k

uia

k
xfif

k
x

−
=

−
=

−−=

+−++−+=

∑
= +=+

+=+

K

L

                              (3) 



 

 
 
 
 

In fact, the forecast ensemble mean, f
x
k

, is interpreted as 

the best forecast estimate of the state, and the spread of 
the ensemble members around the mean between the 
best estimate and actual state (Gillijns et al., 2006).  

In Kalman filtering process, the main source of the 
computational burden is determining covariance. EnKF 
approximates it, so the computational burden in EnKF is 
less than other Kalman filter, especially extended Kalman 
filter. 
 
 

TWO-DIMENSIONAL KALMAN FILTER 
 
Here, algorithm of two-dimensional Kalman filter for 
modified Fornasini and Marchesini (MFM) model is 
described. The model is transformed to wave advanced 
model (WAM). Two-dimensional Kalman filter is 
implemented to WAM model. Consider two-dimensional 
MFM model as follows: 
 

( 1, 1) ( , ) ( 1, )

( , ) ( , 1) ( , ) ( , 1)

( , ) ( 1, ) ( , )

( , ) ( , ) ( , ) ( , )

x m n J m n x m n

K m n x m n E m n w m n

F m n w m n u m n

z m n C m n x m n v m n

+ + = +

+ + + +

+ + +

= +                          (4)  
   

Where, , ,u v w are non- random input, measurement noise 
and input noise respectively. By defining vectors as 
follows: 
 

( ) [ (0, ), (1, 1), ..., ( , 0)]

( ) [ (0, ), (1, 1), ..., ( , 0)]

( ) [ (0, ), (1, 1), ..., ( , 0)]

( ) [ (0, ), (1, 1), ..., ( , 0)]

( ) [ (0, ), (1, 1), ..., ( , 0)]

X n col x n x n x n

W n col w n w n w n

V n col v n v n v n

Y n col z n z n z n

f n col u n u n u n

= −

= −

= −

= −

= −                           (5) 
 

The MFM model is transformed to WAM model as 
follows: 
 

              (6)       
 

By defining covariance of  as , 

respectively, the optimal state estimation of MFM model 
is obtained as follows: 
 

                (7) 
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The result (Equation 7) can be used for implementing 
filtering algorithm of two-dimensional systems such as 
model that is later described. 
 
 

IMPLEMENTATION OF ENKF IN HISTORY MATCHING 
 

Using EnKF for solving history matching problem has 
been considered in many articles, but the details of fully 
automated algorithm has not been described. In this 
paper, the algorithm is shown by a flow chart and the 
schemes which are used to run EnKF in MATLAB and 
link the data to Eclipse are explained. 

At first the model with real data must be run by Eclipse. 
The desired outputs, later specified are written in RSM 
files after each time step of simulation. The state 
variables, pressure and saturation of grids are written in 
RST files. Then real outputs and initial values of state 
variables are read by MATLAB. 

As mentioned before, parameters are added to state 
vector and dynamic variables and model parameters will 
be estimated simultaneously. Furthermore, the state 
vector is extended by the measurement variables or 
outputs. By this way, the relationship between state 
vector and outputs will be linear. If we have p outputs and 
the size of state vector is N, then: 
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And the Kalman gain can be computed as: 
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Where, R is covariance matrix of measurement noise. 
According to Equations 4 and 5, it can be seen the last 

prows of matrix 
f

xyk
P̂ are needed for computation of 

Kalman gain, thus, the computational time is greatly 
reduced, so the state vector is defined as follows: 
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Where, d is output vector and sd xx , are dynamic 

variables and static variables, respectively: 
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Pi,Si and Ki(i=1,…,Nc) are pressure, saturation and model 
parameter (for example, permeability) of i

th
 grid block 

respectively. Nc is number of grid blocks. Initial 
ensembles are described by Equation 12: 
 

im
e

f
xifx 000 +=

                                    (12)
 

 

Where,
f

x
0

is mean of the initial ensemble and im
e

0

(i=1,...,q,q is the number of ensembles) are drawn from a 
mixture distribution with zero-mean. We assume the 

interest parameter in grid block ),,( 111 kji is correlated 

with that parameter in grid block ),,( 222 kji with 

correlation coefficient: 
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L is correlation length. Equation 9 means the parameter 
is spatially correlated with Gaussian correlation model. A 
correlation matrix C is computed by using the correlation 
coefficients as mentioned above. The covariance of the 

model noise is computed as C
2

σ where σ is the standard 

deviation. 

All of ensemble variables are defined except, if

k
y : 
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Where, ke is white noise with zero-mean and covariance 

Rk. 
After the determination of initial values, EnKFapplies to 

them. In Analysis step, the approximation of covariance 
matrix is computed. This step is the main source of 
computational burden. SVD is further used to reduce the 
size of state vector, consequently reduces the size of the 
covariance matrix. 

In the Forecast step, the simulator must be run q times, 
where q is the number of ensembles. In this step, the 
following steps must be done: 
 

1) Obtained values in Analysis step (pressure, saturation 
and interest model parameter) are saved in separate 
vectors. 
2) These values written include files instead of initial 
values of the model by MATLAB. 
3) Eclipse must be run for a time step. 
4) Outputs and values of pressure and saturation are 
read from RSM and RST files, respectively. In Forecast 
step, the values of interest parameter are fixed. 
 
After the aforementioned steps, get back to Analysis 
step. 

 
 
 
 
SVD ASSISTED ENKF FOR HISTORY MATCHING 
 

Here, SVD concept and the way to use it in history 
matching problem are described. 

At first, the data matrix contains vectors of pressures 
and saturations of all grid blocks in all time steps, as 
defined as follows: 
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Where ti (i=1,…,n) is i
th
 time step. Matrix X can be 

transformed into the form of Equation 12 by SVD: 
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with singular values of X on the diagonal. Singular values 
of X are positive square roots of eigen values of XX

T
. The 

columns of V are orthonormalized eigen vectors of X
T
X 

and the columns of U are orthonormalized eigen vectors 
of XX

T
. The rank of X equals the number of non-zero 

singular values. If the rank of X is r, the first r columns of 
S are orthonormal basis of the range space of X. Singular 
values of stable system indicate the respective state 
energy of the system. Therefore, reduced order can be 
directly determined by examining the system singular 
values. If s1,…,sn are singular values of X in decreasing 
order, singular values with small amount can be 
removed. The remaining energy to total energy is 
calculated as follows: 
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Transfer matrix φ will contain only first l columns of U. 
Now the reduced state vector, designated zd, can be 
calculated as: 
 

.d

T

d xz ϕ=
                                                              (18)

 

 
As previously discussed, U is orthonormal, thus: 
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The values of the eliminated state variables can be 
obtained from the rest state variables  by  using  Equation  



 

  
 
 
 
20. For example, if the pressure value in a certain grid 
block is eliminated, it means that the pressure depends 
on other state variables and there is no need to be 
calculated independently. After reducing dynamic state 
vector, the reduced state vector can be defined as: 
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The static vector and the output vector are kept 
completely in z. If the total transfer matrix is defined as 
Equation 18, the state vector and its reduced have 
relationship as follows: 
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.zx φ=                                                                         (23) 
 

.xz Tφ=                                                           (24)

 
 

Note that after transformations, all the elements in static 
vector will remain, constantly and therefore no error will 
emerge while transferring the state vector to the reduced 
state vector and vice versa. In addition, the output vector 
is remained in z to preserve linear relationship between 
output and state variables.The predicted measurements 
are related nonlinearly to the model state and their 
inclusion in the state vector simplifies comparison with 
measure data in the Forecast step of EnKF.

 

After calculating the reduced state vector, Analysis step 
of EnKF can be done on z. The computational time is 
greatly reduced by this method. Then, the main state 
vector is obtained by Equation 24 and initialized the 
simulator to run for one step time and obtaining the state 
vector in Forecast step. This loop is repeated until the 
end of time steps. Flow chart of the method is shown in 
Figure 1.  
 
 

PROXY CONSTRUCTION 
 

The general partial differential equation (PDE) fluid flow 
equations can be approximated for the grid block ijk as: 
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Where: 
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By breaking Tijk into 
1

ijk
T and 

2

ijk
T , the state space 

equation for grid block ijk can be written as follows: 
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Equation 31 can be written as follows: 
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Figure 1. Flow chart of the proposed method. 

 
 
 

It can be deduced that the dynamic values of state 
variables in each grid can be obtained from its’ 
neighbours. In this paper, we claim the relationships 
between neighbours are linear and it is shown by 
simulation results. In MFM model Equation 4, the state 
variables are pressure and saturation of each grid. 
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Thus, ( , ), ( , )J m n K m n and ( , )C m n are unknown for all grid 

blocks. In history matching problem, we have access to 
data over time. Therefore, least square method (Lsq) can 
be implemented to the problem for each grid block. The 
dimension of matrix are small, thus, this idea has not any 
computational burden. 
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By Lsq method, we have: 
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Streamline simulation 
 

The breakthrough work for tracing streamlines efficiently 
in three-dimensional was that of Pollock (1988). Pollock’s 
method is simple, analytical, and is formulated in terms of 
a time-of-flight (TOF) coordinate (Figure 2). To apply 
Pollock’s tracing method to any cell, the total flux in and 
out of each boundary is calculated using Darcy’s Law. 
With the flux known, the algorithm centres on determining 
the exit point of a streamline and the time to exit given 
any entry point assuming a piece-wise linear 
approximation of the velocity field in each coordinate 
direction. The equations are simple: if v is the interstitial 
velocity (v=u/φ), then a linear velocity description in the x-
direction gives: 
 

     (39)
 

 

Where vx0 is the x-velocity at x=x0, and gx is the velocity 
gradient in the x-direction. Since vx = dx/dt , we can 
integrate the expression of the x-velocity (and in 
analogous fashion in the y- and z-direction) to get the exit 
times out of each face given an arbitrary entry point 
(xi,yi,zi) and exit coordinates xe, ye, and ze. 
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Figure 2. Pollock’s three-dimensional tracing method through a 

Cartesian cell. Given an arbitrary entry point, the time to exit and 
the exit point can be determined analytically. 
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Since the streamline must exit from the face having the 
smallest travel time, ∆tm = MIN (∆tx, ∆ty, ∆tz), the exit 
locations are calculated by re-solving for xe, ye, and ze 
using the minimum time: 
 

             (43) 

 

               (44) 
 

             (45) 
 
Pollock’s equations are derived assuming orthogonal grid  
blocks, but  very few  real reservoirs  models use  such a 
strict Cartesian framework anymore. Using an 
isoparametric transformation, it  is  possible  to  transform 
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corner-point geometry grids (CPG) into unit cubes, apply 
Pollock’s method, and then transform the exit coordinate 
back to physical space. 

The understanding that using a TOF-variable along 
streamlines rather than a volume-variable along is in 
terms of streamtubes came through the reformulation of 
the three-dimensional mass conservation equation in 
terms of TOF. For incompressible and immiscible flow 
without gravity, the conservation equation for a phase j 
can be written as: 
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Where
j

S is the saturation of phase, j, 
t j

v v=∑
r r

is the total 

velocity and 
j

f is the fractional flow of phase j. By 

defining a coordinate ξ that is parallel to v (i.e. 

streamline) it is possible to write that 
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Now consider the definition of the TOF, which leads to 
the following expression: 
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Allowing the three-dimensional conservation equation to 
be re-written as: 

 

0
j jS f

t τ

∂ ∂
+ =

∂ ∂                         (51)
 

 
There are a number of assumptions buried in this 
derivation. For example, that the flow rate along each 
streamline is constant, that the streamlines do not 
change over time and that the one-dimensional solutions 
must have the same boundary and initial conditions as 
the three-dimensional problem. But the derivation shows 
(Figure 3) that a three-dimensional transport problem can 
be re-written in terms multiple, one-dimensional problems 
along streamlines. While this was known intuitively from 
the work on streamtubes, the TOF formulation offers a 
compelling mathematical framework. For the simple case 
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Figure 3. The exit point of one cell becomes the entry point for the 

next cell. By connecting exit and entry points a streamline is traced 
from injector to producer. 

 
 
 
of an incompressible water flood, it is thus, possible to 
write: 
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The most important detail about this equation is that the 
total velocity in the three-dimensional problem has 
disappeared into the TOF of each individual streamline. It 
is this decoupling of a three-dimensional heterogeneous 
system into a series of one-dimensional homogenous 
systems in terms of TOF that makes the SL method so 
attractive. 

 
 
THE PROPOSED LINEAR PROXY ASSISTED TWO-
DIMENSIONAL KALMAN FILTER IN HISTORY 
MATCHING  

 
Two-dimensional Kalman filter was originally developed 
to update the states, but history matching is often posed 
as a parameter estimation problem, rather than a state 
estimation problem. If the parameters of interest are 
simply added to the state vector, the problem can convert 
to the state estimation problem.  

At the beginning, the parameters are far from reality, 
thus, after a few steps of filtering to update the states and 
parameters, it is necessary to update the linear model to 
reduce the possible error. 

Although the parameters are static, but estimated ones 
will change during time steps. Therefore, in order to 
achieve the best answer of all estimations over time, we 
use weighted average of interested parameters. The 
weights are inverse of errors in each iteration: 

 
 
 
 
 

 
 
Figure 4. Permeability in x-direction of top layer. 
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In history matching process, consistency of model with 
two sets of data is necessary: 
 
1) Geological data: the model should be based on sound 
geological and geostatistical principles; 
2) Matching between real data and simulated data. 
 

In proposed algorithm, two cases are guaranteed which 
are further shown by simulations. 
 
 

Example 
 
In this example, we consider a three-dimensional 

reservoir, which is discredited by 8 × 8 × 2 grids of 75
m
 

length along each horizon and 30
m
 depth (Cardoso et al., 

2009; Cardoso and Durlofsky, 2010; Chi-tsong, 1999; 
Maciejowski, 1989). The permeability distribution of the 
top layer is shown in Figure 4. The model contains one 
production well and a single water injector. Two constant 
values of 0.19 and 100 are used for the porosity in all grid 
cells of layer #1 (z=1) and layer #2 (z=2), respectively. 
True permeability varies linearly as a function of x-
coordinate in the interval [1,4]

mD
 and [100,400]

mD
 in layer 

#1 and layer #2, respectively. These distributions of 
permeability are chosen according to the example in 
Nævdal et al. (2005). 

The production well is controlled by liquid rate target  of 



 

Shabaninia          89 
 
 
 

 
 
Figure 5. WCT of the producer well. 

 
 
 

3 /210Sm day  and the injection well is controlled by surface 

flow rate target of
3 /200Sm day . The reservoir is initially 

saturated with oil with constant initial pressure of 
3981.2

psi
. The measurements are generated by running 

the simulator with “true” permeability and adding noise to 
the resulting water cut of the producer well. Measurement 
is assimilated once every 100 days for 50 times. The 
initial estimated permeability is equal to 3

mD
 for all grids at 

top layer. 
Running the EnKF all quantities are kept constant 

except for the permeability and the state variables, 
pressures and saturations. The ensemble consists of 10 
members. The initial ensemble is generated using a 
mean correlation length of 3 grid blocks with a standard 
deviation of 1. 

In this case, the number of state variables of the state 

vector dx is 128. By using SVD, only 14 state variables 

remind. Ratio of the lost energy to the total energy is 
equal to 10

-7
 indicates that the error resulting from 

reducing state vector is very low and negligible and also 
shows all the energy is in the 14 remaining state 
variables. We realized these states are near the wells. It 
is obvious the computational time of implementing EnKF 
for 128 state variables is very greater than 14 state 
variables. 

The water cut of the producer well is closer to the real 
values over time-steps. In Figure 5, forecast based on the 
ensemble mean after 25 and 50 time-steps is shown. The 
dash lines are result of using EnKF and the solid lines is 
result of the proposed method. The result of the proposed 
method is better than the previous method (Nævdal et al., 
2003). The proposed method not only has less 
computational time but also has  a  better  matching  than 

the previous method. In Figure 6, the estimation of 
permeability field of two methods are shown. It is shown 
that the permeability field of proposed method is closer to 
the real one. It seems two estimated fields are far from 
real one. In Figure 7, the estimated permeability field 
using two-dimensional based method is shown. The 
permeability in near of the production well is more 
important than other grids. The proposed method has 
accurate field than others. In Figure 8, the comparison 
between real output and estimated output is shown. The 
estimated output is matched to real one completely.  

In order to compare quality of solution of three 
methods, normalized root mean square (NRMS) error is 
used as the criterion, which is defined as: 
 

2 2ˆ( ) /
j j j

Y Y Y−∑ ∑            (54)
 

 

Where, n is number of time-steps (in this case it equals to 

50) , jŶ  is forecast of output at j
th
 time-step and 

j
Y is the 

real output at j
th
 time-step. In Table 1, RMS of three 

methods is compared, quantitatively, which shows that, 
the proposed two-dimensional based method is more 
accurate. In addition, numbers of simulator running to 
obtain estimated field are compared. This number of two-
dimensional based method is much less than others. The 
computational burden of this method is greatly reduced. 
 
 

CONCLUSIONS 
 

The paper has considered an application of a recursive 
technique, the EnKF, to history matching problem. An 
algorithm is simplified in a way  of  reducing  the  order  of  
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Figure 6. Permeability field of top layer. The estimation of EnKF method (Left) and the estimation of the proposed method (Right). 

 
 
 

 
 
Figure 7. The estimation of permeability field by using proposed 

two-dimensional based methods. 
 
 
 
the state vector to a few numbers of states corresponding 
to the largest singular values by using SVD. The energy 
of the system was preserved by eliminating the state 
variables corresponding to the zero singular values or 
close to zero ones. In this way, the computational time is 
greatly reduced. Computational effort required for history 
matching of large reservoirs is a major problem. 
Computational time reduction even 1%, can have 
dramatic impact on solving history matching problem of 
real field. Practical problems of this paper were too much 
for example hundreds of Eclipse running times was 
needed   for  each  test.  The  algorithm  of  the  proposed 

method was described and tested by a synthetic model. 
The simulation results show decreasing the size of state 
vectors from 128 to 14. Therefore, significant reduction of 
the computational time of the estimation of unknown 
geological properties is evident in comparison with a 
much more expensive approach that estimates states in 
every grid blocks. Furthermore, the estimation results 
with the proposed method were better than the results 
obtained with the previous method. Transition matrix 
calculation can be done offline. Thus, the proposed 
method can be used as accurate and fast method for real 
time problems. Problems of using EnKF in history 
matching problem have been addressed in this paper. 
Two-dimensional based method was introduced to solve 
these problems. A new proxy based on fluid flow 
equations in subsurface, is introduced. This proxy is used 
instead of simulator during history matching process. 
Thus, the computational time is greatly reduced. It is 
shown that the equations in new coordinate axes are 
quite linear in comparison with highly nonlinear equations 
in Cartesian or Radial coordinate axes. Therefore, two-
dimensional Kalman filter can be used instead of EnKF 
and computational time is reduced, significantly. Finally, 
the proposed method has been compared with previous 
methods that have used EnKF and results show the 
superior advantages of the proposed method in both 
accuracy and computational time.  

The highly nonlinear and complex fluid flow equations 
are transformed into linear state space model. This model 
has variable size state vectors. It seems the proxy can 
also be used in other part of reservoir engineering such 
as well control.  
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Figure 8. Water cut of the producer well- initial is green, real one is blue and estimated one is red. 

 
 
 

Table 1. Comparison between three methods. 

 

Method Number of simulator running NRMSE 

Two-dimensional based method 2 1.4976 × 10
-3
 

EnKF 520 1.6583 × 10
-1
 

SVD assisted EnKF 520 1.0142 × 10
-1
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