
 

Vol. 10(4), pp. 55-64, July-December 2019 

DOI: 10.5897/JPGE2019.0306 

Article Number: C2693A861743 

ISSN: 2I41-2677 

Copyright ©2019 

Author(s) retain the copyright of this article 

http://www.academicjournals.org/JPGE 

 

 
Journal of Petroleum and Gas  

Engineering 

 
 
 
 
 

Full Length Research Paper 
 

A dry gas material balance with an infinite aquifer 
influence: A comparative study between the unsteady 

state model of van Everdingen-Hurst and  
analytical model 

 

Isac Inácio Tsamba1*, Luís Helder Lucas1 and Pål Skalle2 
 

1
Post Graduation Department, Faculty of Engineering, Universidade Eduardo Mondlane, Mozambique. 

2
Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Norway. 

 
Received 13 February, 2019; Accepted 12 July, 2019 

 

Aquifer water influx is an important natural mechanism for primary recovery. It affects the performance 
of all types of reservoirs, also natural gas reservoirs. Water influx provides pressure support during 
reservoir depletion, resulting in slower pressure decline. Consequently, gas reservoirs associated with 
large aquifers show a flattening, cubic behavior of the p/z vs. Gp curve, which allowed the development 
of the present analytical model. For modelling of water influx into a reservoir, classical models have 
been developed by many authors. Among the classical models, the unsteady state method of van 
Everdingen-Hurst was selected to be used in this work, as this is the best suited in terms of solving the 
diffusivity equation. In order to use the analytical model for comparative purposes, there was a need of 
calibrating the two unknown parameters, α and β, appearing in the water influx equation. In this work, 
two workflows were presented for computing water influx in a comparative manner between the 
unsteady state model of van Everdingen-Hurst and the analytical model. The results showed that the 
correlation between both models depends on the two unknown parameters, α and β. 
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INTRODUCTION 
 

Most hydrocarbon reservoirs are surrounded by aquifers. 
Aquifers may in some cases be significantly greater than 
the gas reservoir, ranging from infinite in size to less than 
insignificant, with corresponding large to negligible effect 
on the reservoir performance (Ahmed, 2005).  

In reservoirs adjoined by water aquifers, water drive 
may be the primary production mechanism. In these 
reservoirs,  the   production   of  hydrocarbons  causes   a 

pressure drop in the hydrocarbon/water interface. Due to 
this pressure drop, a pressure differential develops from 
the surrounding aquifer into the reservoir. Thus, the 
aquifer reacts by encroaching across the original 
hydrocarbon-water contact, filling the reservoir pore 
spaces (Feng et al., 2015). 

The invasion of reservoir rock by aquifer water may 
have a significant impact on reservoir performance.  
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Therefore, water influx into hydrocarbon reservoir must 
be accurately predicted (Shimada, 2009). 

In order to calculate the amount of encroaching water 
influx, mathematical models (Ahmed, 2005) have been 
developed by different authors, where the following four 
models stand out: Schilthuis steady state, van 
Everdingen and Hurst unsteady state, Carter-Tracy 
unsteady state and Fetkovich pseudosteady state.  

Over the years, water influx models have been 
improved, Agarwal (1967) presented an analytical 
simplified model for the material balance of gas reservoir 
experiencing water influx, further improved and presented 
by Zonoozi and Blansigame (Blansigame and Zonoozi, 
2005). 

To use Agarwal’s model for computing water influx is a 
challenging task. There is a need of calibrating the 
unknown parameters α and β for a specific data set. The 
Agarwal water influx model was further developed in this 
work, to match the reservoir’s historical production and 
pressure data when incorporated in the material balance 
for dry gas reservoirs.  

The correct identification of reservoir drive mechanism 
is crucial in arriving at an accurate estimate of in-place 
volumes (Alattar, 2009). Ignoring the possibility of water 
influx can lead to a significant over-estimation of gas 
initially in place (Istiak et al., 2016). For that reason, 
correct estimation of gas initialy in place (GIIP) is very 
crucial for reservoir management and decision-making for 
field development (Istiak et al., 2016).  

The general objective of this work is to analyse the 
correlation between the van Everdingen and Hurst model 
and cubic cumulative production model hereafter 
considered as analytical model.  
 
 
LITERATURE REVIEW  
 
All classical aquifer models are the solutions for diffusivity 
equation. Accurate estimations of cumulative water influx 
into gas reservoirs are very crucial for material balance 
computations in water drive gas reservoirs. In literature, 
there are several classical aquifer models. Based on that 
the unsteady state method of van Everdingen-Hurst was 
selected, among the classical models, to be used in this 
work, as this is the best suited in terms of solving the 
diffusivity equation

 [11],[12]
.  

The analytical model, developed by Agarwal (1967) 
allows a direct computation of the cumulative water influx. 
 
 

van Everdingen and Hurst unsteady-state model  
 
The model presented by van Everdingen and Hurst 
(1949) deals with two types of aquifers: radial and linear. 
Applying the Laplace transformation, van Everdingen and 
Hurst solved the diffusivity equation of the reservoir-
aquifer system considering as boundary condition a 
constant   terminal   pressure   (CTP)   in    the   boundary 

 
 
 
 
(Alattar,  2009). The final form of the CTP solution is 
written as: 
 

 DDe tPWUW 
                                                        

(1) 

 
where U is the influx constant of water into the aquifer, in 
bbl/psia, represented by Equation 2: 
 

2119.1 gt rhcfU 
                                                        

(2) 

 
We is the cumulative water influx due to a pressure drop 
∆P (psia) imposed at the reservoir radius rg, at time t = 0, 
in bbls, WD(tD) is a dimensionless water influx function, f 
is the relative encroachment angle (

o
/360

o
), ϕ is the 

aquifer porosity fraction, ct is the total aquifer 
compressibility in psia

-1
, and tD is the dimensionless time 

(Marques and Trevisan, 2007). 
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The dimensionless water influx WD(tD) is presented in 
tabular form or as a set of polynomial expressions giving 
WD as a function of tD for a range of ratios of the aquifer 
to reservoir radius. In this work, the polynomial approach 
proposed by Edwardson et al. (1962) is used and found 
much easier to deal with than the look up tables or charts 
that may sometimes require interpolations. The proposed 
polynomial equations proposed by Edwardson essentially 
approximate the WD data in three dimensionless time 
regions (Ahmed, 2005). 
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(b) For 0.01 < tD < 200: 
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(c) For tD > 200 
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New p/Z-Gp

3
 cubic cumulative production model for 

the water influx  
 
The cubic cumulative model proposed by Agarwal (1967) 
is a simplified model for the material balance of gas 
reservoirs experiencing water influx.  



 
 
 
 

 
 

Figure 1. p/z vs Gp Cubic behavior, Agarwal (1967) 

 
 
 
This analytical model is based on cubic behavior of the 
relationship between p/z vs Gp curve as indicated in 
Figure 1.  

Eliminating the abnormal pressure, water production/ 
injection, and gas injection terms in the general material 
balance of a dry gas reservoir system and after some 
mathematical adjustments, it gave the following definition 
(Blansigame and Zonoozi, 2005): 
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To validate the cubic behavior of p/Z vs. Gp performance, 
we consider the behavior of the “water influx” term: 
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Thus, the “water influx” term can be written in the form: 
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Substituting the water influx term from Equation 9 into the 
gas material balance in Equation 8, we obtain: 
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One possible benefit of the cubic material balance 
formulation is the algebraic manipulation of the p/Z – Gp

3
 

model to yield a direct calculation of the water influx 
function (We) (Blansigame and Zonoozi, 2005): 
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Applying this calculation requires that the p/Z-Gp

3
 

expression be calibrated to get α and β to a specific data 
set. The calibration will be done using a subroutine for 
solver function and also using a tool for data analysis 
called type curve solution.  
 
 
Havlena and Odeh interpretation  
 
Neglecting water expansion and pore compaction, the 
material balance equation for gas reservoirs subjected to 
water influx can be expressed as Alattar (2009):  
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(12) 

 
where the terms F and Eg is defined by: 
 
(1) Underground Fluid withdrawal F: 
 

wpgp BWBGF 
                                                        

(13) 

 
(2) Gas expansion Eg: 
 

gigg BBE 
                                                               

(14) 

 
Using the production, pressure and PVT data, the left 
side of expression (Equation 12) should be plotted as a 
function of cumulative gas production, Gp. This is simply 
for display purposes to inspect its variation during 
depletion. If the reservoir is affected by natural water 
influx, the plot of F/Eg will usually produce concave 
downward shaped arc whose exact from is dependent 
upon the aquifer size and strength (Alattar, 2009).  

Equation 12 can be interpreted as a linear function. 
Once a straight line has been achieved, based on 
matching observed production and pressure data, it 
shows that a suitable mathematical model to describe the 
performance of the reservoir has been found (Dake, 
2001) and the interception in ordinate axis gives us the 
value of GIIP.   
 
 
MATERIALS AND METHODS  

 
In  this  work,  we will consider  an  edge infinite acting  aquifer  with 
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Table 1. Superposition matrix for water influx calculation (time vs. pressure steps). 
 

Time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

∆p1 WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10 WD11 WD12 WD13 WD14 WD15 WD16 WD.. 

∆p2 
 

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10 WD11 WD12 WD13 WD14 WD15 WD.. 

∆p3 
  

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10 WD11 WD12 WD13 WD14 WD.. 

∆p4 
   

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10 WD11 WD12 WD13 WD.. 

∆p5 
    

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10 WD11 WD12 WD.. 

∆p6 
     

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10 WD11 WD.. 

∆p7 
      

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10 WD.. 

∆p8 
       

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD.. 

∆p9 
        

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD.. 

∆p10 
         

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD.. 

∆p11 
          

WD1 WD2 WD3 WD4 WD5 WD6 WD.. 

∆p12 
           

WD1 WD2 WD3 WD4 WD5 WD.. 

∆p13 
            

WD1 WD2 WD3 WD4 WD.. 

∆p14 
             

WD1 WD2 WD3 WD.. 

∆p15 
              

WD1 WD2 WD.. 

∆p16 
               

WD1 WD.. 

∆p.. 
                

WD.. 

 
 
 
radial flow. The data used is from an unknown field, and adopted 
from Dake (2001) to be used for the two comparative models.  
 
 

van Everdingen-Hurst model  
 

The unsteady state model of van Everdingen-Hurst is the most 
accurate method for predicting water influx. It gives results near to 
what can be obtained by having real field data (Ahmed, 2005).  

Computing water influx using van Everdingen and Hurst, is 
obtained through the following steps (Agarwal, 1967; Ahmed, 2005; 
Alattar, 2009): 
 
Step 1: Determine the water influx constant U or B [bbl/psi], using 
Equation 2. 
Step 2: Calculate the corresponding dimensionless time, for each 
time period, using Equation 3. 
Step 3: Determine the dimensionless water influx WeD or WD, using 
Edwardson expression, Equations 4, 5 and 6. 
Step 4: Calculate the cumulative water influx [bbl], using Equation 
1. 
 

In calculating the cumulative water influx into a reservoir at 
successive intervals, it is necessary to calculate the total water 
influx from the beginning. 

The pressure drop ∆p, for each time step is calculated using 
Timmerman and McMahon approximation (Dake, 2001). 

The van Everdingen and Hurst model uses the superposition 
principle for computing water influx.  
Therefore, to calculate the cumulative water influx We at some 
arbitrary time t, which corresponds to the end of the n

th
 time step, 

requires superposition of the solutions of, Equation 1, to give: 
 

  ( )   [     (  )       (      )         (      )

          (        )] 
 

This means that the complex expression for Equation 1, can simply 
be evaluated as the scaler or dot product, presented in Table 1. 

Finally, the cumulative water influx for each time step using matrix 
form is calculated by: 

De WpBW 
                                                                  

(15) 

 
 
New p/Z-Gp

3
 cubic cumulative production model for the water 

influx  
 
Computing water influx using the cubic cumulative model of 
Agarwal, is obtained through the following steps (Agarwal, 1967; 
Ahmed, 2005; Alattar, 2009; Blansigame and Zonoozi, 2005): 
 
Step 1: Verification of quadratic behavior of p/Z vs. Gp, presented in 
Equation 9. 
Step 2: Calibrate the two unknown parameters, α and β, using type 
curve or solver solution. 

 
 
Type curve solution  
 
The type curve 

[5]
 solution will be used to help in calibration to get α 

and β. 
 
(a) Observed data is plotted using an appropriate format: Using the 
observed data, we plot a graph PD vs Gp/G using the Equations 17 
and 18. The calibration is done using the type curve solution and 
also by a subroutine developed for solver function.  
(b) A “match” is found between observed data and a dimensionless 
solution by sliding the data plot over the type curve plot. In this step, 
different combination for α and β is done. The best values is 
considered as the good match between observed data a 
dimensionless solution acquired using Equation 19.  
(c) The “match” is used to determine model parameters for the 
observed data.  
 

For that, the p/Z-Gp
3
 in Equation 10 can be rearranged to yield: 
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Table 2. Superposition matrix, for water influx calculation. 
 

Pressure drop/Time step 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 … 

∆p1 61.99 160.89 252.90 332.83 406.30 475.53 541.67 605.42 667.25 727.47 786.33 844.01 900.65 956.38 1011.27 1065.42 1118.89 1171.73 1224.00 … 

∆p2 120.59 
 

312.99 491.98 647.49 790.42 925.09 1053.76 1177.78 1298.05 1415.21 1529.72 1641.93 1752.12 1860.53 1967.32 2072.66 2176.68 2279.48 … 

∆p3 110.65 
  

287.19 451.43 594.11 725.26 848.83 966.89 1080.69 1191.04 1298.54 1403.61 1506.57 1607.68 1707.15 1805.14 1901.80 1997.24 … 

∆p4 111.57 
   

289.56 455.15 599.02 731.25 855.84 974.87 1089.61 1200.88 1309.27 1415.20 1519.01 1620.96 1721.25 1820.05 1917.50 … 

∆p5 116.10 
    

301.32 473.65 623.36 760.96 890.62 1014.49 1133.89 1249.68 1362.47 1472.71 1580.74 1686.83 1791.20 1894.01 … 

∆p6 108.38 
     

281.29 442.15 581.91 710.36 831.39 947.03 1058.49 1166.58 1271.87 1374.78 1475.62 1574.66 1672.08 … 

∆p7 103.72 
      

269.18 423.12 556.86 679.79 795.61 906.27 1012.94 1116.38 1217.14 1315.62 1412.12 1506.89 … 

∆p8 103.67 
       

269.05 422.92 556.60 679.47 795.24 905.84 1012.46 1115.85 1216.56 1314.99 1411.45 … 

∆p9 98.63 
        

255.98 402.38 529.56 646.46 756.61 861.84 963.28 1061.65 1157.46 1251.12 … 

∆p10 90.20 
         

234.11 368.00 484.32 591.23 691.96 788.21 880.97 970.94 1058.57 … 

∆p11 85.03 
          

220.68 346.89 456.53 557.31 652.26 742.99 830.43 915.23 … 

∆p12 83.21 
           

215.95 339.45 446.75 545.36 638.28 727.06 812.63 … 

∆p13 81.35 
            

211.13 331.87 436.76 533.18 624.02 710.81 … 

∆p14 77.71 
             

201.68 317.01 417.21 509.31 596.09 … 

∆p15 74.68 
              

193.82 304.66 400.96 489.47 … 

∆p16 72.48 
               

188.10 295.68 389.13 … 

∆p17 70.56 
                

183.13 287.86 … 

∆p18 74.72 
                 

193.92 … 

… … 
                  

… 

 
 
 
Defining: Dimensionless pressure and dimensionless 
cumulative gas produced as: 
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Which yields the final dimensionless form: 

 

    pDpDpDD GGGp 331                            (19) 

 
Step 3: Calculate the cumulative water influx [bbl], using 
Equation 11. 

RESULTS AND DISCUSSION   
 

Water influx using the van Everdingen and 
Hurst model  
 

The pressure drop ∆p, for each time step is 
calculated using van Everdingen, Timmerman and 
McMahon (Ahmed, 2005) approximation.  

For dimensionless water influx WD, we used the 
Edwardson et al. (1962) polynomial expressions, 
presented in Equations 4, 5 and 6.  
Thus, we get the dimensionless time tD, pressure 
drop ∆p and dimensionless water influx WD. Then, 
we elaborate the superposition matrix presented 
in Table 2. 

The water influx for each time step is given by 
Equation 1. The results of computation of water 
influx are presented in Table 3. 

Water influx using the cubic cumulative model 
 

First, we prove the quadratic behavior presented 
in Equation 9. This is as shown in Figure 2. This 
gives us Equation 9 in the following form: 
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This relation proves the quadratic behavior of 
Equation 9. The values of α and β needs to be 
calibrated in order to compute the water influx by 
using Equation 11. 

In order to use Equation 11 to computer water 
influx, there is a need of calibrating the cubic 
cumulative model (p/z –Gp

3
).  
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Table 3. Water influx for each time step. 
 

Time t (Years) 
Dimensionless 

Time, tD 
Reservoir Pressure 

Pr (Psia) 
Pressure Decrement 

∆p (psia) 
Dimensionless 
Water Influx WD 

Water Influx 
We (MMrb) 

 - 4,090.00   0.00 

0.25 2.05 3,966.02 61.99 2.595 1.95 

0.5 4.09 3,848.81 120.59 4.080 5.44 

0.75 6.14 3,744.71 110.65 5.369 9.18 

1 8.18 3,625.68 111.57 6.554 14.58 

1.25 10.23 3,512.51 116.10 7.671 22.24 

1.5 12.28 3,408.92 108.38 8.738 30.38 

1.75 14.32 3,305.08 103.72 9.766 39.35 

2 16.37 3,201.58 103.67 10.764 49.16 

2.25 18.42 3,107.82 98.63 11.735 61.10 

2.5 20.46 3,021.17 90.20 12.685 74.10 

2.75 22.51 2,937.76 85.03 13.615 84.90 

3 24.55 2,854.76 83.21 14.529 99.41 

3.25 26.60 2,775.06 81.35 15.428 116.15 

3.5 28.65 2,699.35 77.71 16.313 134.41 

3.75 30.69 2,625.71 74.68 17.187 149.84 

4 32.74 2,554.39 72.48 18.050 166.31 

4.25 34.79 2,484.58 70.56 18.902 182.71 

4.5 36.83 2,404.96 74.72 19.745 201.16 

4.75 38.88 2,323.46 80.56 20.580 219.17 

5 40.92 2,241.88 81.54 21.406 236.22 

5.25 42.97 2,165.70 78.88 22.225 256.40 

5.5 45.02 2,093.18 74.35 23.037 277.42 

5.75 47.06 2,026.30 69.70 23.843 295.71 

6 49.11 1,966.36 63.41 24.642 315.84 

6.25 51.16 1,904.20 61.05 25.435 337.84 

6.5 53.20 1,838.56 63.90 26.223 358.58 

6.75 55.25 1,772.97 65.62 27.006 375.14 

7 57.29 1,700.85 68.86 27.783 393.69 

7.25 59.34 1,644.98 64.00 28.556 412.61 

7.5 61.39 1,596.83 52.01 29.324 429.67 

7.75 63.43 1,548.80 48.09 30.088 443.54 

 
 
 
The calibration is done using type curve solution and also 
by a subroutine developed for solver function. 
 
 

Type curve solution  
 

The type curve solution, presented in Figure 3, gives a 
better match for combination of α and β, as illustrated in 
Table 4. 
 
 

Solver function   
 

A subroutine using VBA-Visual Basic for Applications-
2013 was developed for a solver function, in order to get 
the best approximation values for α and β as illustrated in 
Table 5.   

The 2 (two) presented workflows allows the computation 
of water influx using the van Everdingen-Hurst and the 
cubic cumulative production model of Agarwal. The 
comparison of results is illustrated in Figure 4. 

The results demonstrate clearly that the correlation 
between both methods depends on the calibration of the 
two unknown parameters α and β, appearing in the cubic 
cumulative model (Blansigame and Zonoozi, 2005).  

Under this assumption the cubic cumulative production 
model with an approximation values of α =0.020573 and 
β =0.173889, results in a perfect match between the van 
Everdingen-Hurst model. Using this approximation for the 
unknown parameters α and β, the Havlena-Odeh (Dake, 
2001) plot method in history matching, was perfomed and 
reservoir-aquifer performance is as shown in Figure 5. 

The full Havlena and Odeh, from Equation 12, illustrated  
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Figure 2. Quadratic behavior of "Water Influx" vs. Gp/G. 
Blansigame and Zonoozi (2005) 

 
 
 

 
 

Figure 3. Approximation proof (Quadratic Behavior). 

 
 
 

Table 4. Values of α and β using type curve solution. 
 

Approximation α β 

I 0.055447 0 

II 0.00069 0.201177 

III 0.10636 0.22986 

IV 0.25 0 

V 0.01008 0.166654 
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Table 5. Values of α and β using solver function. (by the Author: using 
VBA Code-2013 in Esxel spreadsheet). 
 

Approximation α β 

I 0.010086 0.166654 

II 0 0.203711 

III 0.015164 0.147997 

IV 0.00069 0.201177 

V 0.020573 0.173889 

 
 
 

 
 

Figure 4. Type curve match for different values of α and β. 

 
 
 
in Figure 6 shows that a correct water influx model was 
found, and the interception in ordinate axis gives us an 
approximate value of Gas Initially In Place (GIIP) of 1117 
Bscf, which is identical with the correct value 1116 Bscf. 
This finding is aligned with the results obtained by Dake 
(2001). The improved material balance method 
demonstrated the hazards of not taking into account the 
influence of water influx in P/Z plots, as it can leads in 
overestimation   of   GIIP   and   this   can   have   serious  

economic consequences for the project. 
 
 
Conclusions 
 
In this work, two workflows for computing water influx 
was presented.  

The first workflow was for the van Everdingen-Hurst 
method  which  requires  the   use   of   the  superposition 
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Figure 5. Comparison between van Everdingen-Hurst and cubic cumulative production model for different values 
of α and β. 

 
 
 

 
 

Figure 6. Application of the Havlena-Odeh plot in history matching reservoir-aquifer performance. 

 
 
 
principle in order to find the cumulative water influx for 
each time step. For that reason a superposition matrix 
was created and the values of dimensionless water influx 
WD was calculated using the Edwardson polynomials 
expressions.  

The   second  workflow  was  for  the  cubic  cumulative  

production model of Agarwal, in which there was a need 
of correct calibration of the unknown parameters α and β. 
In order to determine those parameters, two solutions 
were proposed. One is the type curve solution and the 
other one was the solver function. The most accurate 
solution  was  found  for  an  approximation  values   of  α 
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=0.020573 and β =0.173889. This solution was 
introduced in the derived equation for computation of 
water influx, presented by Blansigamen and Zonoozi 
(2005).  

The results of cumulative water influx using cumulative 
production model of Agarwal was included in the 
generalized material balance for gas reservoirs using the 
Havlena and Odeh technique and a well matched 
solution was obtained. 

The successful comparison between both methods 
demonstrated that it depends on the values of the 
unknown parameters α and β, appearing in Agarwal’s 
model.  

The results obtained in this work could be useful for 
industrial applications of the material balance for dry gas 
under influence of an infinite active aquifer. It will improve 
the computation of cumulative water influx using 
production data obtained in a reservoir, resulting in a 
more accurate estimation of GIIP. 
 
 
CONFLICT OF INTERESTS  
 
The authors have not declared any conflict of interests  
 
 
ACKNOWLEDGEMENT  
 
The authors are grateful to professors Luis Helder Lucas 
and Pal Skalle for their contribution in this topic.  
 
 
REFERENCES  
 
Agarwal R (1967). Unsteady-State Perfomance of Water-Drive Gas 

Reservoirs. PHD Dissetation. USA. Graduate College of the Texas 
A&M University: pp 8-39 

Ahmed T (2005). Advanced Reservoir Engineering. Oxford OX2 8DP, 
UK: Elsevier Inc: pp 159-185 

Alattar H (2009). Guidelines for Developing Gas Fields Associated With 
Edge-Water Drive. Nova Science Publishers, Inc.  pp 1-30. 

Blansigame T, Zonoozi N (2005). Simplified Model . Simplified Model for 
the Material Balance of Gas Reservoirs Experiencing Water Influx 
("Cubic Cumulative Production"). Texas, USA. pp 1-24. 

Dake L (2001). The Practice of Reservoir Engineering. Amsterdan : 
Elsevier Science B.V. pp 473-505. 

Edwardson MJ, Girner HM, Parkison HR, Williams CD, Matthews CS 
(1962). Calculation of formation temperature disturbances caused by 
mud circulation. Journal of Petroleum Technology 14(04):416-426.  

Feng X, Zhong B, Yang X, Deng H (2015). Effective water influx in gas 
reservoir development: problems and countermeasures. Elsevier pp. 
240-246. 

Istiak H, Mazumder SH,  Mahmud H (2016). Dynamic Material Balance 
Study of Gas Reservoir Using Production Data: A Case Study of New 
Gas Sand of Kailashtila Gas Field. International Journal of Oil, Gas 
and Coal Engineering 4(4):38-44.  

 
 

 
 
 
 
 

 
 
 
 
Marques JB, Trevisan OV (2007). Classic Models of Calculation of 

Influx: A Comparative Study. Society of Petroleum Engineers. Latin 
American & Caribbean Petroleum Engineering Conference, 15-18 
April, 2007. Buenos Aires, Argentina. doi:10.2118/107265-MS 

Shimada M (2009). Predicting Water Influx from Common Aquifers. 
EUROPEC/EAGE Conference and Exhibition, 1-20. 
doi:10.2118/120897-MS 

van Everdingen A, Hurst W (1949). The Application of the Laplace 
Transformation to Flow Problems in Reservoirs. Journal of Petroleum 
Technology 1(12):305-324. 


