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The sonic profile is used, mainly in exploration wells, which receive greater investment in data 
acquisition because these wells serve as a reference for analyzing the petroleum potential of the area. 
The sonic profile was introduced in the 50s, with the goal of providing support for seismic exploration, 
and subsequently became extensively used for studies on total porosity of the rocks traversed by the 
well. This paper aims to apply the use of Box-Jenkins methodology to analyze the sonic profile in the 
process of profiling an oil well. The data were provided by PETROBRAS/UO-SEAL, the analyzes were 
performed using the variable DT (delay time). The statistical software was used to meet the best ARIMA 
model fit, and was observed as the stationarity before and after modeling through the autocorrelation 
function and the partial autocorrelation function. The criterion for validation of the model was the MAPE 
(Mean Absolute Percentage Error). Several models were tested and found for the best model - the 
ARIMA (3, 1, 2) with MAPE of 4.68%. 
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INTRODUCTION 
 
Oil is used in various segments of the industry, as raw 
material, fuel and with the rising price of oil exploration 
companies were forced to make the most of the deposits 
already known for the lowest possible cost. Thus, the 
optimization of reservoir development has become critical 
to the success of the oil industry, and seismic, which until 
then was not used in a systematic way in the 
development of oil fields, now seen as a potential tool for 
this purpose (Lima, 2005; Gardner, 1974). 

The sonic profile was introduced in the 50s, with the 
goal of providing support for seismic exploration; 
subsequently   became  extensively  used  for  studies  of 

total porosity (t) of the rocks traversed by the well. The 
sonic tool consists basically in record time that elapsed 
between the moment a compression sound pulse is 
emitted by a transmitter,  mounted  on  a  mandrel  inside 
the pit, until his arrival in two distinct receptors on the 
same mandrel. The difference between the two arrival 
times (transmitter - receiver near T-RP and transmitter - 
receiver away T-RL) is called transit time or delay time 
(DT) (Lima, 2005). 

With this, the paper aims to use the Box and Jenkins 
methodology to find models of autoregressive integrated 
moving average, ARIMA (p, d, q)  that  best  fits  the  data

 

*Corresponding author. E-mail: suzana.ufs@hotmail.com. 



 

52         J. Petroleum Gas Eng. 
 
 
 
set variable of the sonic log (DT) wells analyzed. 
 
 

THEORY PROFILING 
 

After the drilling phase of the well, various tools are 
generally lowered in order to measure some properties of 
rocks, fundamental for characterization and economic 
evaluation. This process is known as profiling. 

The profiling provides important information about the 
formations traversed by the well, such as lithology (rock 
type), thickness, porosity, pore likely exist in fluids and 
their saturations. The major limitation of the profiling is 
the small extent of its radius of investigation side, so that 
only the vicinity of the well is analyzed by profiling 
(Thomas, 2001). 

According to Cunha (2012), the profiling can reveal the 
existence of oil and gas sufficient to justify the expense of 
the well logging. This operation is usually done by 
subcontractors. On land rigs contracted, the company 
sends a logging unit mounted on a truck, while at sea the 
unit is fixed in the probe, installed in a small shelter. The 
profiling unit is equipped with computers, winches and 
controls that perform the operation. 

The logging tool is lowered into the well on a conductor 
cable to the desired depth. The unit pulls the tool that 
goes well by detecting certain aspects of the formation 
through which it passes. The information is sent to the 
surface by the cable conductor and recorded by 
computers. The log is printed for later analysis (Cunha, 
2012). 
 
 

Types of profile 
 

There are several types of profiles used for many 
different applications, all with the aim to better assess the 
geological formations for the occurrence of a commercial 
hydrocarbon deposit. The most common profiles are: 
Spontaneous Potential, Gamma Ray, Neutron, Induction, 
Sonic, Density and Caliper (Doventon, 2004). 
 
 

FORMULATION AND ARIMA EQUATIONS 
 

The steps of the methodology Box and Jenkins are the 
identification, estimation and verification of diagnosis by 
analyzing the number of waste from the adjustment, if the 
model is accepted as good, going to the prediction 
phase, otherwise the analysis waste must indicate the 
tentative new model. 

To validate the choice of the best model, we use the 
MAPE (Mean Absolute Percentage Error). The MAPE is 
calculated from a step ahead forecasts generated by 
each model estimated (Russo, 2002; Box and Cox 1964). 
 
 

Autoregressive models AR (p) 
 

The model AR (p) assumes that the observation of this 
variable can be explained by a weighted sum of the  

 
 
 
 
previous variables of the same variable and a current 
error  (Russo et al., 2006). 
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If we define the operator stationary autoregressive of 
order p; 
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Then we can write; . 

 
 

Models moving average MA (q) 
 

Models MA (q) resulting from the linear combination of 
random shocks occurring in the current period and past 
periods (Box and Cox, 1964; Russo et al., 2006). A 
model Mobile Averages (MA (q)) is defined according to 
the equation: 
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And being: , we: 

 

            (5) 

 

were,  is the average mobile operator of order q 

(Moretin and Toloi, 2006). 
 
 

Autoregressive models and moving average ARMA 
(p, q)  
 
By combining the templates AR (p) and MA (q), it is 
expected that the ARMA (p, q) be extremely 
parsimonious model using few coefficients to explain the 
same sequence (Box and Cox, 1964; Russo et al., 2006). 

Here, then the ARMA (p, q) of the form: 
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Models autoregressive integrated moving average 
ARIMA (p, d, q) 
 

The class of ARIMA (p, q, d) to an integrator d is defined 
by the equation. 
 

If:                 (7) 

 

If:   is stationary, can represent  by an ARMA 

model (p, q), in other words: 



 

 
 
 
 

 (Moretim, 2006)                (8) 

 
After varying the series d times to make it stationary, the 
ARIMA model (p, d, q) can be adjusted via the ARMA 
model (p, q) cited in d above. The number of differences 
needed to make the series is called stationary order of 
integration (Box and Cox, 1964). 
 
 
METHODOLOGY 
 
The analyzed data set is about information on the variables of 
profiles of wells that measure properties of the rocks crossed for the 
well, that it is located in a field of oil of the Basin Sedimentary 
Sergipe Alagoas. Some of these wells make use of a complete set 
of profiles, also the sonic one. The possible stratifications of the 
samples will be identified as: lithologics depth, types 
(compositions), stratigraphics levels, etc. 

According to Russo (2011), to guarantee the quality of the results 
specific tests were carried through parallel to the analysis statistics 
of the results, such as: test for the parameters, test of significance 
of the relation between the variable, the verification of the 
determination coefficient, the significance of the correlation and 
regression, as well as the occurrence of aberrant points and 
crossed validation.  
 
 
Characterization of the variable of profile 
 
Sonic – DT (delay time) 
 
A sonorous wave measures the time necessary to cover a rock foot 
- this time is called transit time. This time is inversely proportional to 
the sonic speed of the rock. It is used for estimation of the porosity, 
correlation of wells, estimations of the degree of compaction of the 
rocks, estimations of the elastic constants of the rock, detention of 
breakings and support to the seismic one (synthetic seismogram). It 
is measured in microseconds for foot (Russo et al., 2011). 
 
 
Characterization of the geologic variable 
 
Stratigraphics Levels - L_st 
 
This variable indicates the different geologic levels crossed by the 
wells. They can differentiate one from the other in function of 
different attributes as geologic ages of the rocks, origins in different 
sedimentary environments that in last analysis go to express 
themselves as rocks with different mineralogy’s compositions 
causing variations of the physical and chemical aspects of these 
rocks. Most importantly, these stratigraphic levels can be tracked 
laterally, well to well on the basis of its signatures of the profile. 
 
 

RESULTS AND DISCUSSION 
 

Analysis of well 
 

Data are from the Sergipe Alagoas sedimentary basin. 
The variable analyzed is DT (sonic profile). The set of 
variable data sonic profile is represented by Table 1 
which describes the characteristics of the cases in 
numerical terms. The number of observations of the 
variable DT for well B was 10.809, with mean transit  time 
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Table 1. Descriptive analysis of DT. 
 

Summary  DT 

Number of cases 10809 

Average 83.075 

Median 77.017 

Minimum 50.415 

Maximum 190.385 

Variance 382.767 

Standard deviation 19.564 

Standard error 0.188 

CV% 23.550 

 
 
 

of 83.075 and 382.767 variance. The coefficient of 
variation is 23.55% indicating a homogeneous distribution. 
 
 

Identification of the model structure 
 
Initially, a plot was made to understand the behavior of 
the variable. As the depth increases DT (delay time) 
tends to be low, although there are some peaks. These 
can be explained according to Lima (2005), which states 
that high times DT may represent fractures, landslides or 
even the presence of gas. It is observed in Figure 1, that 
the series is not stationary on average and variance, as it 
used the difference (d=1). 

The autocorrelation function and partial autocorrelation 
function are shown outside the confidence limits. 

The Figure 2 shows a typical correlogram a series of 
non-stationarity: the autocorrelation coefficient starts with 
a high value very slowly and tends to zero as the delay 
increases, and the partial autocorrelation coefficients 
function also appear outside the confidence limits. 

 
 
Estimation of model parameters 

 
After many attempts the model that best fit the series was 
ARIMA (3, 1, 2). Figure 2 shows the behavior of the 
series after shaping. Mean 83.075 DT thus revealed that 
after shaping the series is stationary on average and 
variance. More importantly, to employ the Box-Jenkins 
methodology, you need to have at hand a stationary 
series or it may become stationary. This estimated model 
is used to make predictions; we must assume that the 
characteristics of this model are constant over time and 
especially in future periods (Box and Cox, 1964). Several 
models were tested with Table 2 showing a comparison 
between some models. 

For the ARIMA (3, 1, 2) a MAPE of 4.68% was 
recorded; for ARIMA (1, 0, 3) the MAPE was 8.61%, thus 
calculating the MAPE with the analysis of 
autocorrelations possible to establish the ARIMA (3, 1, 2) 
as the best model found. 
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Line Plot (Spreadsheet1 2v*10809c)
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Figure 1. Series DT. 

 
 
 

Autocorrelation Function

DT

(Standard errors are white-noise estimates)

 Conf. Limit

-1,0 -0,5 0,0 0,5 1,0
0

 15 +,662 ,0096

 14 +,670 ,0096

 13 +,678 ,0096

 12 +,686 ,0096

 11 +,696 ,0096

 10 +,706 ,0096

  9 +,719 ,0096

  8 +,736 ,0096

  7 +,756 ,0096

  6 +,778 ,0096

  5 +,800 ,0096

  4 +,824 ,0096

  3 +,858 ,0096

  2 +,908 ,0096

  1 +,967 ,0096

Lag Corr. S.E.

0

957E2 0,000

910E2 0,000

861E2 0,000

811E2 0,000

761E2 0,000

708E2 0,000

654E2 0,000

598E2 0,000

540E2 0,000

478E2 0,000

412E2 0,000

343E2 0,000

270E2 0,000

190E2 0,000

101E2 0,000

  Q p

Partial Autocorrelation Function

DT

(Standard errors assume AR order of k-1)

 Conf. Limit
-1,0 -0,5 0,0 0,5 1,0
0

 15 +,026 ,0096

 14 +,011 ,0096

 13 +,038 ,0096

 12 +,025 ,0096

 11 +,025 ,0096

 10 +,053 ,0096

  9 +,025 ,0096

  8 +,037 ,0096

  7 +,040 ,0096

  6 +,021 ,0096

  5 +,025 ,0096

  4 +,030 ,0096

  3 +,331 ,0096

  2 -,422 ,0096

  1 +,967 ,0096

Lag Corr. S.E.

  
 
Figure 2. Autocorrelation Coefficients Function and Partial Autocorrelation Coefficients Function for real data. 
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Table 2. Model parameters. 
 

Well B Estimate Standard Error T test p-value MAPE% 

(1,0,3) 

0.998 0.001 1639.428 0.000 

8.61 
-0.429 0.010 -42.826 0.000 

0.102 0.013 8.001 0.000 

0.181 0.010 17.777 0.000 

      

(3,1,2) 

1.414 0,030 47.518 0.000 

4.68 

-0.788 0.041 -19.304 0.000 

0.269 0.017 15.646 0.000 

0.891 0.031 29.054 0.000 

0.085 0.030 2.878 0.004 

 
 
 

Autocorrelation Function

DT      : ARIMA (3,1,2) residuals ;

(Standard errors are white-noise es timates)

 Conf. Limit
-1,0 -0,5 0,0 0,5 1,0
0

 15 +,017 ,0096

 14 -,023 ,0096

 13 +,020 ,0096

 12 -,020 ,0096

 11 +,019 ,0096

 10 -,018 ,0096

  9 -,011 ,0096

  8 +,009 ,0096

  7 -,020 ,0096

  6 +,010 ,0096

  5 +,012 ,0096

  4 -,005 ,0096

  3 +,003 ,0096

  2 +,001 ,0096

  1 -,000 ,0096

Lag Corr. S.E.

0

34,16 ,0032

31,20 ,0052

25,58 ,0194

21,20 ,0475

16,80 ,1139

13,09 ,2187

 9,58 ,3854

 8,20 ,4144

 7,31 ,3976

 2,98 ,8114

 1,81 ,8754

  ,34 ,9871

  ,12 ,9893

  ,01 ,9936

  ,00 ,9958

  Q p

Partial Autocorrelation Function

DT      : ARIMA (3,1,2) res iduals;

(Standard errors  assume AR order of k-1)

 Conf. Limit
-1,0 -0,5 0,0 0,5 1,0
0

 15 +,018 ,0096

 14 -,023 ,0096

 13 +,020 ,0096

 12 -,020 ,0096

 11 +,018 ,0096

 10 -,018 ,0096

  9 -,011 ,0096

  8 +,009 ,0096

  7 -,020 ,0096

  6 +,010 ,0096

  5 +,012 ,0096

  4 -,005 ,0096

  3 +,003 ,0096

  2 +,001 ,0096

  1 -,000 ,0096

Lag Corr. S.E.

 
 
Figure 3. Autocorrelation Coefficients Function and Partial Autocorrelation Coefficients Function for transform data. 

 
 
 

Table 3. Predicted values for DT. 

 

Predicted (P) Observed (O) 
O

OP −  

59.21403 58.41020 0.013762 

61.98322 62.99610 0.016078 

63.45142 66.70570 0.048786 

63.85260 68.16580 0.063275 

64.00903 70.49220 0.09197 

After finding the ARIMA model, correlation coefficients 
for the series patterned were obtained (Figure 3). It is 
observed that the values are within the confidence limits 
and close to zero, demonstrating the absence of 
correlation. 
 
 

Forecast 
 

In Table 3, the last five predictions for the variable with 
the   DT   model   ARIMA   (3, 1, 2)   compared  with  their
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Forecasts; Model:(3,1,2) Seasonal lag: 12

Input: DT

Start of origin: 1        End of origin: 10809
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Figure 4. Forecast. 

 
 
 
observed values, and the Figure  4  shows  the  Graph  of 
the Forecast of the model. 
 
 
Conclusion 
 
This study examined the construction of models 
generated from synthetic sonic log in petroleum wells 
drilled in geological units belonging to Sergipe Alagoas 
sedimentary basin. These models allow geologists and 
geophysicists to obtain information that will improve the 
quality and reliability of synthetic sonic profiles generated, 
providing subsidies from the point of view of their 
suitability to be used as geological data, geophysical 
processing and interpretation in the areas whose wells 
have no sonic profile registered. 

ARIMA models were applied to find a prediction 
equation, and several tests were performed and the 
model that best fit the sonic profile (variable DT, delay 
time) was the ARIMA (3, 1, 2). This achieved a MAPE of 
4.68% and correlation coefficients within the confidence 
limits, thus being the most suitable to represent the data 
set. The predictions can be improved, still found with 
other analyzes which reduce even more the influence of 
outliers in the series. 
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