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This paper considers the flow of a conducting viscous incompressible fluid between two non-
conducting parallel discs, when the magnetic field was applied perpendicularly to the discs. The upper 
disc is in steady rotation, while the lower one is a stationary porous disc. The whole flow is divided into 
two regions: the free fluid region (between two parallel discs) and the porous region (this flow is of 
porous material). The approximate solutions are obtained by solving the Navier-Stokes equations in the 
free fluid region, and the Darcy’s equations in the porous region with suitable boundary conditions at 
the interface. The effects of rotation, Hartmann number and forced parameter have been considered on 
the flow characteristics and are illustrated by graphs. The flow is essentially dominated by rotational 
effect as well as by the forced parameter. 
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INTRODUCTION 
 
Flow of a viscous fluid through and past a porous 
medium has been the subject of intensive studies in 
recent years because of its many engineering and 
scientific applications. The study of viscous flow near 
stationary or rotating discs has significant relevance to 
many applications for industrial devices. Many important 
applications have motivated studies involving complex 
geometries, often with through flow and heat transfer, 
cooling of gas turbines, turbo machinery, boundary layer 
control, cooling of turbine blades, cooling the skins of 
high speed aircraft designs, in extraction process of fluid 
from the porous ground and in lubrication of porous 
bearings. Probably for the first time, the flow due to an 
infinite plane disk, rotating with constant angular velocity 
was discussed by Karman (1921). Cochran (1934) 
integrated numerically the equations obtained by Karman 
and compared his results with that of  Karman.  Batchelor  
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(1951) and Stewartson (1953) applied these equations to 
the problem of steady flow between two infinite parallel 
plane discs, rotating at a finite distance apart. The flow 
due to a rotating disk of infinite radius with uniform 
suction at the disc has been discussed by Stuart (1954) 
and he obtained numerical solutions for small values of 
suction and asymptotic solutions for large values of 
suction. Rizvi (1962) examined the magneto hydro-
dynamic flow over a single disk in the presence of weak 
magnetic field. The effects of an axial magnetic field on 
the flow about a rotating disk were studied by Kakutani 
(1962). Pande (1972) analysed a series solution for the 
effects of an axial magnetic field and suction (or injection) 
on the flow about an insulated rotating disk, when there is 
strong suction and a weak magnetic field. And Nath (1984) 
developed unsteady rotating flow over an infinite rotating 
disk with an applied magnetic field. Purohit and Bansal 

(1995) considered the flow of a viscous income-pressible 
electrically conducting fluid between a rotating and a 
stationary naturally permeable disk. Ariel (2002) 
discussed the numerical  behavior  of  MHD  flow  near  a 



 
 
 
 
 
rotating disk. Attia (2003) considered time varying 
rotating disk flow and heat transfer of a conducting fluid 
with suction or injection. Darcy (1937) initiated the theory 
of the flow through a porous medium. Joseph and Tao 
(1966) has analysed the coupled flow induced by the 
steady rotation of a naturally permeable disk saturated 
with fluid. The flow field is divided into two regions, 
namely (I) free fluid region, and (II) porous region, where 
the fluid flows through a porous medium. To link flows in 
the two regions, certain matching conditions are required 
at the interface of the two regions. This type of couple 
flows, with different geometries and with several kinds of 
matching conditions, has been examined by several 
authors. Khoo et al. (1998) discussed the flow between a 
rotating and a stationary disc. Steady flow between a 
rotating and a stationary naturally permeable disc had 
been studied by Verma and Bhatt (1975). Srivastava and 
Sharma (1992) studied the MHD flow and heat transfer of a 
porous medium of finite thickness. Steady viscous flow 
between two rotating naturally permeable discs had been 
discussed by Chauhan and Gupta (1999). Srivastava 
(1999) studied the flow in a porous medium induced by 
torsional oscillation of a disk near its surface. The flow of 
viscous incompressible fluid confined between a rotating 
disk and a porous medium was analyzed by Chaudhary 
et al. (2004). Sharma et.al (2007) studied forced flow of a 
conducting viscous fluid through a porous medium 
induced by a rotating disk with applied magnetic field. 
Recently, Dufour and Soret effects on unsteady MHD 
convective heat and mass transfer flow due to a rotating 
disk, has been investigated by Maleque (2010). 

A few investigations have been reported in literature on 
the MHD flow of a viscous incompressible electrically 
conducting fluid between a rotating and a stationary 
naturally permeable disc. Hence, in the present analysis, 
it is proposed to study the flow of a conducting viscous 
incompressible fluid between two non-conducting parallel 
discs, when the magnetic field applied perpendicularly to 
the discs, is considered. The upper disc is in steady 
rotation while the lower one is a stationary porous disc. 
 
 
MATHEMATICAL FORMULATION 

 
We consider the motion of a viscous incompressible electrically 
conducting fluid confined between two parallel discs of infinite 
radius. They are placed at a distance h apart. The upper disc is 

rotating with uniform angular velocity , while the lower disc is 
stationary and made up of a porous material upto a depth z = - h 

with an impermeable surface at the bottom. The whole region (- h  

z  h) is divided into two regions namely free fluid region (0  z  h) 

and the region made up of porous material (- h  z  0). The 

cylindrical polar coordinates (r, , z) are being used with the origin 
at the centre of the lower disc and z-axis normal to the disc. A 
magnetic field of constant intensity 

0
B


 is applied perpendicular to 

the discs. The velocity components (u, v, w) in the free fluid region 
and  (Up,  Vp , Wp),  in  the  porous  region,  are  taken  to  be  in  the  
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directions of (r,  ,z) respectively. The slip conditions suggested by 
Beavers and Joseph (1965) have been applied to the radial and 
transverse velocity components at the interface (z = 0). 

The governing equations by Navier-Stokes equations for the 

steady magneto hydrodynamic flow in the free fluid region 0  z  h 
are: 
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and the equation of continuity is: 
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The flow in porous region – h  z  0 is governed by the Darcy’s 
equations which are” 
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and the equation of continuity is: 
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where P1, P2 are the pressures in the free fluid and porous regions, 

respectively :  is the density;  is the coefficient of viscosity;  is 
the kinematic viscosity and K

*
 is the permeability of the porous 

medium. The corresponding boundary conditions are: 
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where 
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 is a constant depending upon the structure of porous material and 
a is a forced parameter. Following Batchelor (1951), we seek the 
solution of the equations (1) to (8) under the boundary conditions 
(9), in the following form: 
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On substituting equations (10) and (11) into the equations (1) to (8) 
of continuity and motion, we obtain the following set of equations, in 
non-dimensional form. In the free fluid region: 
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and in the porous region: 
 

K RF                      (16) 

 

'

20

1/2 PRH      (17) 

 

0HFR 2 '1/2      (18( 

 

where 
 

h

z
  ; 






2h
    R the rotational Reynold number; 

2

*

h

K
 

dimensionless permeability; 





R

a
    m

 dimensionless forced 

parameter;   





22

02
hB

M   the   Hartmann   number;   and  

 
 
 
 
primes denotes differentiation with respect to ‘’. The corresponding 
boundary conditions become: 
 





















0  H1

)F (F h F

0  G  ,K  K  PP,H    H0

0    H  1,  G    , R m    F1

'

2010  

                                                                                (19) 
 
 
SOLUTION 
 
The Reynolds number R which is defined in terms of the angular 
velocity of the disc, is assumed to be small. Since the solution for a 
given ratio of angular velocities of the two discs is not unique for 
sufficiently high Reynolds number, therefore, the unknown functions 

can be expanded in ascending powers of R, in the following form: 
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Substituting equation (20) into equations to (12) to (18) and 
collecting the coefficients of the like powers of R, we obtain the 
following set of equations, in the free fluid region : R

0
 zeroth order 
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Fig. 1. Radial velocity component  F1(  versus   for m = 0
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Figure 1. Radial velocity component F1() vs.  for m=0. 
 

 
 

and the equations in the porous region are 
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The corresponding boundary conditions are reduced to: 
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The solutions of the ordinary differential equations (21) to (27) are 
worked out subjected to the boundary conditions (28). We are not 
including solutions here for the sake of brevity of the paper. The 
important flow characteristics of the problem are further discussed. 

 
 
RESULTS AND DISCUSSION 

 
In the present paper, the forced flow of a viscous income-
pressible electrically conducting fluid  between  a  rotating  

and a stationary naturally permeable disc, under the 
application of a magnetic field acting perpendicular to the 
discs has been investigated. The whole flow field is 
divided into two regions; (i) free fluid region, and (ii) 
porous region. The flow in the free fluid region is 
governed by Navier-Stokes equations in the presence of 
magnetic field, while the flow in porous region is 
governed by Darcy’s equations. The Reynolds number 
defined in terms of the angular velocities of the discs is 
assumed to be small. The effects of rotation, forced 
parameter and Hartmann number has been considered 
on the flow characteristics and illustrated by graphs. 

The flow field behavior in the free fluid region and in the 
porous region under the presence of an applied magnetic 
field has been considered. The radial velocity component 

F1 (zero
th
 order term) versus distance  is shown in 

Figures 1 and 2 for m = 0, 0.1 and other parameters 
respectively. An examination of Figure 1 shows that the 
radial velocity component F1 decreases in magnitude with 

the increase in  or Hartmann number M, whereas it 

increases by increasing . The magnitude of the radial 
velocity component F1 increases with increase in distance 
from lower disc, until it attains its maximum value, after 
which it decreases and it becomes zero at the upper disc. 
The radial velocity component F1 takes its maximum 
value near the upper disc. Figure 2 shows that the 
magnitude of the radial velocity component F1 decreases 

with the increasing  or M, where as it increases by 

increasing . It increases when we move from lower disc 
to upper disc and it takes its maximum value at the upper 
disc. Transverse velocity is shown in Figure 3. The 
transverse velocity increases with increase in Hartmann 
number M, where as it decreases if we move towards the  
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Fig.2 . Radial velocity component  F1()  versus  

 for  m = 0.1
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Figure 2. Radial velocity component F1() vs.  for m=0.1. 
 
 
 

Fig. 3 : Transverse velocity component  Go  

versus  
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Figure 3. Transverse velocity component Go vs. .  
 
 
 

lower disc from upper disc and it becomes zero at the 
lower porous disc. The axial velocity component H1 are 

drawn for different values of the parameters , , m and 
M in Figure 4. It is found that the axial velocity component 

H1 decreases in magnitude with the increase in  or M 

where as   it   increases   by   increasing      or   m.   The  

magnitude of the velocity component H1 increases with 
increase in distance in porous medium, until it attains its 
maximum value, after which it decreases and it becomes 

zero at upper disc. It is symmetrical about the axis  = 0 
(interface). As Reynolds number and forced parameter 
increase  and  Hartmann  number  decreases,  more  and 
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Fig.4 . Axial velocity component  H1()  versus    
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Figure 4. Axial velocity component H1() vs. . 

 
 
 

more fluid is thrown out in the neighborhood of the upper 
disc and radial and axial velocity increases with the 
increasing of Reynolds number and forced parameter 
and decreasing of Hartmann number. Thus, magnetic 
field has a sobering effect on velocity distribution. 
 
 
Stream functions of the flow 
 

The stream functions 1 and 2 for the free fluid region 
and porous region respectively are given by: 
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The streamlines are drawn in Figure 5, for R = 0.2,  = 

0.2 and  = 1.45. We find that the fluid is thrown radially 
outwards due to the centrifugal forces, hence to fill the 
gap, the fluid rushes from infinity towards the axis in the 
stationary lower porous disc and comes out of the porous 
region    to   keep    the    continuity,    consequently,    as  

compensation, the fluid is pumped out from the lower disc 
to maintain the flow. By introducing the forced flow, it is 
observed that the flux thrown radially outwards is more. 

As might be expected there is symmetry about the axis  
= 0.  
 
 
Skin-friction and torque on both disks 
 
The coefficients of skin-friction are given by: 
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Fig.5. Streamline pattern for  R = 0.2 ,

  = 1.45 and  = 0.2 
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Figure 5. Streamline pattern for R=0.2, α=1.45 and =0.2. 
 
 
 

Fig.6. Coefficients of skin friction        

F ' ( 0) and  F ' (1) versus R , for   =1.45
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Figure 6. Coefficients of skin friction F’ (0) and F’(1) vs. R, for =1.45. 

 
 
 

stress on the lower disc and r0 is a certain distance in the 
radial direction from the centre of the disc.  

Figure 6 shows the variations of coefficients of skin-
friction. It is noted that the coefficient of skin-friction at the 
upper disc increases in magnitude with increase in R and 
decreases with increasing m or M. It increases with 

increasing  at the upper disc but it decreases with 

increasing  or R or M at the lower disc. 

Conclusion 
 
In this paper, the forced flow of a viscous incompressible 
electrically conducting fluid between a rotating and a 
stationary naturally permeable disc, under the application 
of a magnetic field acting perpendicular to the discs is 
studied. The following conclusions can be drawn as a 
result of the computations: 



 
 
 
 
 
i. The flow is essentially dominated by rotational effect 
and as well as by the forced parameter. 
ii. The radial velocity component F1 decreases with the 

increasing  or M. 
iii. The transverse velocity increases with increase in 
Hartmann number M. 
iv. Axial velocity increases with the increasing of 
Reynolds number and forced parameter. 
 
 
Nomenclatures: B0, Uniform magnetic field; K*, 
permeability parameter; M, magnetic field parameter 
(Hartmann number); R, rotational Reynold number; m, 

dimensionless forced parameter; , kinematic viscosity; , 

viscosity; , skin-friction (shearing stress); , scalar 

electrical conductivity; 1, 2, stream unctions; Cf, 

coefficient of skin-friction; , density of the fluid; P1, P2, 
pressures in the free fluid and porous regions 

respectively;  , a constant of structure porous material; 
h, distance; u, v, w, velocity components in the free fluid 

region in the r, , z directions; UP, VP, WP, velocity 

components in the porous region in the r, , z-directions; 

r, , z, cylindrical polar coordinates; , uniform angular 

velocity; , non-dimensional permeability parameter; , 
similar distance variable; a, forced parameter. 
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