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In this study, we employed an eigenfunction decomposition algorithm associated with a Moran’s 
coefficient to investigate district-level non-linearity in an empirical dataset of spatiotemporal-sampled 
MDR-TB parameter estimators sampled in San Juan de Lurigancho (SJL) Lima, Peru. The non-
parametric technique attempted to remove the inherent autocorrelation in the model by introducing 
appropriate synthetic surrogate variants. We also constructed a robust Bayesian Poisson model to 
generate unbiased estimators for qualitatively assessing resistance to four commonly used drugs in TB 
treatment: isoniazid, rifampin, ethambutol, and streptomycin. Initially, data of residential addresses of 
individual patients with smear-positive MDR-TB were geocoded in ArcGIS. Next, the sampled data were 
matched automatically and interactively within the geodatabase. The MDR-TB data feature attributes 
were then calculated and digitally overlaid onto sub-meter resolution satellite data within a 1 km buffer 
of 31 georeferenced health centers using a 10 m

2
 grid-based algorithm. Global autocorrelation statistics 

were then generated by decomposing the sampled data into positive and negative spatial filter 
eigenvectors using the eigenfunction decomposition algorithm. Bayesian Poisson projections were 
then rendered employing normal priors for each of the sampled estimators. A Residual Moran’s 
coefficient (MC) minimization criterion was then applied to the clinical coefficients generated from the 
decomposition algorithm to detect any unaccounted latent autocorrelation error in the estimators. The 
model accounted for approximately 14% pseudo-replicated information and exhibited positive residual 
autocorrelation. Spatial statistics can elucidate the mechanics of MDR-TB transmission by prioritizing 
clinical covariates for identifying spatial distribution of high- risk populations and random 
heterogeneity in resistant strains. 
 
Key words: Multi-drug resistant tuberculosis, Bayesian Poisson, residual Moran’s coefficient (MC), 
minimization criterion, San Juan de Lurigancho (SJL) Lima, Peru. 

 
 
INTRODUCTION  
 
Multiple linear regression analysis techniques coupled 
with normal probability models have become standard 
epidemiological tools to quantitatively analyze spatiotemporal- 

sampled clinical and environmental covariates associated 
with multi-drug resistant tuberculosis (MDR-TB) for identi-
fying  high-risk  populations (Smith, 1994; Johnson, 2003; 



 
 
 
 
Clarke et al., 2002; Akashi et al., 1996; Barr et al., 2000). 
MDR-TB is defined as TB that is resistant to isoniazid 
(INH) and rifampicin, which most commonly develops in 
the course of TB treatment (Iseman, 1993). Generalized 
linear models (GLMs) represent a class of fixed effects re-
gression models for several types of dependent variables 
(e.g., continuous, dichotomous, counts). For example, El 
Sahly et al., (2006) analyzed molecular epidemiological 
techniques of MDR-TB employing a case–control  study  
of  2,170  patients  with  drug- susceptible TB in Houston 
and Harris County, Texas, from 1995 to  2001  using  a  
multivariate logistic regression  where drug resistance 
was the categorical dependent variable. Cases with 
various forms of resistant TB were also compared to a 
control group which consisted of patients with culture 
positive, drug susceptible TB, with respect to 
sociodemographic, clinical and strain-stratified genotype-
dependent explanatory predictor variables using bivariate 
chi-square and univariate statistics. As part of the study, 
patients were identified as drug-resistant cases if they 
had a positive culture for an MDR-TB strain that was 
resistant to any of the following: isoniazid, rifampin, 
ethambutol or streptomycin. In the analyses, the variables 
that showed a colinearity coefficient of 0.3 or more were 
eliminated. Thereafter, the multivariate logistic model 
constructed employing the explanatory predictor variables 
associated with drug resistance revealed a P value of 
≤0.1. In the final model, P values of ≤0.05 were 
considered significant. The regressed residual MDR-TB 
covariates revealed that the observational predictors 
related to human immunodeficiency virus (HIV) 
seropositivity, Hispanic ethnicity, Asian ethnicity and a 
history of past TB were associated with some parameter 
estimators, whereas, being foreign born having a history 
of past TB, and younger age were definitive estimators 
(i.e., P< 0.050). The model revealed that the ethnic 
groups may have been more affected by TB because of 
the propensity of HIV among these sampled populations. 
Moreover, the authors identified that patients with AIDS 
and other disseminated immunodeficiency disorders were 
at an increased risk of acquiring drug resistance 
particularly rifampin while on therapy. 

Although linear mixed models are widely used in MDR-
TB which can handle non-normal data by using link 
functions and exponential family (e.g. normal, Poisson or 
binomial distributions), the assumptions underpinning 
multiple regression necessarily impose several important 
constraints that may not always be satisfied or, that might 
at least require careful consideration when modeling 
time-series dependent MDR-TB clinical and /or 
environmental covariates. For example, commonly, the 
relationships between the outcome and the explanatory 
predictor variables  in  a  robust  spatiotemporal  MDR-TB 
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model constructed from multiple regression-based 
residuals are assumed to be linear and the residual error 
variance estimates are assumed to be the same, 
regardless of the value of the sampled clinical and /or 
environmental covariate coefficients. Also, commonly in a 
linear, time-series dependent MDR-TB predictive 
regression equation, the error residuals in the model are 
assumed to be normally distributed and the sampled esti-
mators are assumed to be independent. However, this 
may not always be the case in spatiotemporal MDR-TB 
regression-based modeling since many sampled clinical 
and/or environmental covariate coefficients may exhibit 
non-linear feature attributes. As such, although the 
estimated regression coefficients may be unbiased in the 
MDR-TB model they will not express the minimum va-
riance among all estimates.  Further, the mean squared 
error would also tend to underestimate the variance in the 
model. This would lead directly to overestimation of the 
sampled parameter estimator significance levels which, in 
turn, would result in underestimation of confidence 
intervals thus, leading to underestimation of the test 
statistics for the F test. The F-test is sensitive as it is 
commonly quantitated b y  considering a decomposition 
of the variability in a collection of data in terms of 
estimable functions and their associated sum of squares  
(Dorman 2007).  

Estimable functions are functions of model parameters 
(e.g. difference between two parameters, difference 
between a parameter and the difference of two others, 
etc.) that are invariant regardless of the generalized 
inverse employed. The GLM, VARCOMP, and other SAS/ 
STAT procedures label the Sums of Squares associated 
with the various effects in the model as Type I, Type II, 
Type III, and Type IV (www.sas.edu). For example, in the 
Type I form of sum of squares (i.e., the hierarchical 
decomposition of the sum-of-squares method), each 
sampled MDR-TB term would be adjusted for only the 
term that precedes it in the model. Type I sums of 
squares could then be used for constructing a balanced 
ANOVA  time series-dependent MDR-TB model in which 
the main effects in the sampled data  would be specified 
before any first-order interaction effects are quantitated. 
Thereafter, any first-order interaction effects in the model 
would be specified before any second-order interaction 
effects, and the second-order interaction effects would be 
specified in the model before the third-order interaction 
effects, and so on. A polynomial time-series dependent 
MDR-TB regression model for any lower-order terms 
could also be specified before any higher-order terms are 
quantitated. Further, a purely nested MDR-TB model in 
which the first-specified effect is nested within the 
second-specified effect may also be determined. For 
defining a Type II sums of squares in a spatiotemporal 
MDR-TB model a method can be employed which 
calculates an effect that can be adjusted for by all other 
"appropriate" effects in the model. An appropriate effect is 
one that corresponds to all effects that do not contain  the 
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effect being examined (Cressie 1993). The Type II sum-
of-squares method could then be used for deriving robust 
unbiased estimators in a balanced ANOVA time series 
dependent MDR-TB model and/or any MDR-TB model 
with purely nested design. 

Type III estimable functions for sum of squares (i.e., the 
default method) can also be utilized for regressing time 
series dependent MDR-TB for modeling clinical and 
environmental exploratory covariates. This method can 
calculate the sums of squares in a time series dependent 
MDR-TB model using an effect in the design matrix of the 
model. The Type III sums of squares have one major 
advantage for spatiotemporal MDR-TB modeling in that 
they are invariant with respect to the cell frequencies as 
long as the general form of estimability remains constant. 
Hence, this type of sums of squares would be considered 
useful for an unbalanced spatiotemporal MDR-TB model 
with no missing cells. In a factorial design with no missing 
cells, this method would be equivalent to the Yates' 
weighted-squares-of-means technique. Today, by default, 
most major statistical programs perform unbalanced 
ANOVA based on Type III sums of squares (that is, 
Yates’s weighted squares of means) (McPherson and 
Jetz 2007, Cressie 1993). The Type III sum-of-squares 
method could be used for any MDR-TB models listed in 
the aforementioned Type I and Type II specifications. 

Finally, a Type IV estimable function can be designed 
for a situation in which there is a spatiotemporal MDR-TB 
model with missing cells. For example, for any effect F in 
an MDR-TB model design, if F is not contained in any 
other effect, then Type IV = Type III = Type II. When F is 
contained in other sampled MDR-TB effects, Type IV will 
distribute the contrasts being made among the sampled 
clinical and environmental parameter estimators in F to 
all higher-level effects equitably. The Type IV sum-of-
squares method is commonly used for any models listed 
for Type I and Type II estimable functions. Fortunately, 
PROC GLM in SAS and the SAS regfunction in R both 
can calculate various F tests. 

The F-test is designed to test if two population 
variances are equal (Homer and Lemeshew, 2000). The 
test does this by comparing the ratio of two variances. 
So, if the variances are equal in a spatiotemporal MDR-
TB model, the ratio of the variances will be 1.  Com-
monly, the F-test in one-way analysis of variance is used 
to assess whether the expected values of a sampled 
quantitative variable within several pre-defined groups 
differ from each other. For example, suppose that a 
medical trial compares four MDR-TB related treatments. 
The ANOVA F-test can be used to assess whether any of 
the treatments is on average superior, or inferior, to the 
others versus the null hypothesis that all four treatments 
yield the same mean response. This is an example of an 
"omnibus" test, meaning that a single test is performed to 
detect any of several possible differences.  

Hypotheses regarding MDR-TB regression- based 
equality vs. inequality tests and between  k  expectancies 

 
 
 
 
µ1=µ2=…=µk vs. µ1≠µ2≠...≠ µk in ANOVA; or regarding 
equality between k standard deviations σ1= σ2=….= σ k   
vs.   σ1≠ σ2≠...≠ σk   for testing equality of variances in 
ANOVA; or regarding the clinical and/or environmental 
covariate coefficients β1= β2=….= βk   vs.  β1≠ β2≠...≠ βk   
in multiple linear regression can be tested using omnibus" 
test (Fotheringham, 2002). Alternatively, pairwise tests 
could be carried out among the treatments (e.g., the 
MDR-TB trial example with four treatments is carried out 
using six tests pairs of treatments). The advantage of the 
ANOVA F-test for spatiotemporal MDR-TB modeling is 
that there is no requirement to pre-specify which 
treatments are to be compared, and there is no need to 
adjust for making multiple comparisons. The 
disadvantage of the ANOVA-MDR-TB related F-test is 
that if the null hypothesis is rejected in the time series 
data, the residuals would not be able to determine which 
treatments are significantly different from the others.  If 
the F-test is performed at level α we cannot state that the 
treatment pair with the greatest mean difference is 
significantly different at level α  (Hosmer and Lemeshew 
2000). Thus, although the F-test can be used to compare 
nested models, in an asymptotic or approximate fashion 
to test the hypothesis that the simpler of the time series 
dependent MDR-TB models is sufficient to explain the 
data, for example,   the residuals may have correlated 
error. A variance decomposition may even be performed 
for generating inferences for the variances in the model 
but, sources of variation in multilevel regression MDR-TB 
can still occur. 

Although the F statistics may not be exact, MDR-TB 
researchers to date have found that the F-ratios are 
acceptable unless the design is highly unbalanced. The 
F-ratio is used to determine whether the variances in two 
independent samples are equal (Cressie 1993). Ideally, 
this ratio should be approximately 1 in a spatiotemporal 
MDR-TB model if the corresponding effects are zero; 
otherwise the expected F-ratio will exceed 1. We would 
expect the F-ratio to be less than 1 only in unusual 
models with negative within-group correlations (e.g., if the 
spatiotemporal-sampled MDR-TB data have been 
renormalized in some way, and this had not been 
accounted for in the data analysis). When the null 
hypothesis of no group differences is true, then the 
expected value of the numerator and denominator of the 
F ratio will be equal (Hosmer and Lemeshew 2000). As a 
consequence, the expected value of the F ratio in a 
spatiotemporal MDR-TB model when the null hypothesis 
is true is also close to one. When the null hypothesis is 
false in the model and there are group differences 
between the means, the expected value of the numerator 
will be larger than the denominator. As such, the 
expected value of the F ratio will be larger and the MDR-
TB model estimates will also more likely be larger than 
one under the null hypothesis. However, the point is that 
both the numerator and denominator in the MDR-TB 
model would be random variables and so would be the  F 
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ratio. If we assume the null hypothesis is true in the time 
series dependent MDR-TB model one distribution will be 
determined, and if we assume that it is false with various 
assumptions about effect size, sample size, and so forth 
another distribution would be rendered. The F ratio is 
drawn from a distribution (Cressie 1993). Thereafter, an F 
value for the MDR-TB model can be determined. 
Fortunately, when the null hypothesis is false in the 
model it would be still be possible to get an F ratio less 
than one.  

However, an F‐ratio based on a mean square error 
(MSE) in a spatiotemporal MDR-TB model will not be 
able to disentangle the contribution of the experimental 
effect (i.e. the linear component) and the degree to which 
the treatment effect varies across participants/covariates 
(i.e. the non‐linear participant by experimental‐effect 
interaction). In an analogy to standard deviation, taking 
the square root of MSE in a spatiotemporal MDR-TB 
model will yield the root mean square error or root mean 
square deviation (RMSE), which has the same units as 
the quantity being regressed for an unbiased estimator. 
The RMSE is the square root of the variance, known as 
the standard deviation. Thus, a statistically significant 
effect in a spatiotemporal predictive regression-based 
MDR-TB model could be due to one of three things: (a) a 
significant experimental effect, (b) significant variation in 
the treatment effect across participants, or (c) both of 
these things. Unfortunately, the F ratio would not be able 
to differentiate the optimal residual forecasts from such 
distributions. 

Further, if any of these tests are performed to deter-
mine the underlying assumption of homoscedasticity (i.e., 
homogeneity of variance), in the spatiotemporal MDR-TB 
model as a preliminary step to testing for mean effects, 
the residuals would reveal an increase in experiment-
wise Type I error rate. Therefore, significance testing for 
quantitating resulting confidence regions and tests of the 
hypotheses employing combinations of sampled MDR-TB 
explanatory clinical and /or environmental covariate 
coefficients would be critically jeopardized. Violations of 
linearity are extremely serious in time series dependent 
infectious disease models as fitting linear data attributes 
to non-linear algorithms would render forecasts that are 
erroneous especially when extrapolation occurs beyond 
the range of the sampled data. For example, spatio-
temporal MDR-TB statistics will not follow the F- 
distribution, under the null hypothesis in a time series 
dependent model unless   the sums of squares   are   
independent, and each follow a scaled chi-squared distri-
bution. The latter condition, however, is only guaranteed 
if the sampled clinical data values are independent and 
normally distributed with a common variance. 

Another common problem in the use of linear co-
efficients when modeling spatiotemporal-sampled MDR-
TB data is the occurrence of covariates that are not 
independent (i.e., non-zero correlations amongst 

covariates) giving rise to multicollinearity. Multicollinearity 
increases the standard errors of the coefficients  (Hosmer 
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and Lemeshew 2000). Increased standard errors in turn 
means that the spatiotemporal-sampled clinical and en-
vironmental covariate coefficients for some independent 
variables may be found not to be significantly different 
from 0. Without multicollinearity and with lower standard 
errors, however these same coefficients and their null 
findings might have been found to be significant. In other 
words, multicollinearity in a spatiotemporal MDR-TB model 

would misleadingly inflate the standard errors.  
Unfortunately, since the factors associated with the 

emergence of MDR-TB and their effects on the 
epidemiology of TB are complex and multi-faceted (e.g., 
poor medical management, lack of direct observed 
treatment, limited or interrupted drug supplies, poor drug 
quality, widespread availability of anti- TB drugs without 
prescription, dissociation between public and private 
sector, and poorly managed national control programmes 
(Espinal, 2001; Farmer et al., 2001), multiple parameter 
estimators are commonly employed in the regression 
uncertainty matrix often rendering  serial correlation in the 
residual outcome explanatory predictor covariate dataset. 
When more than two covariates in a model are highly 
correlated, multicollinearity can occur (Miles and Shelving, 
2001; Pedhazur, 1997; Slinker and Glantz, 
1985).Collinearity and multicollinearity can seriously 
distort the interpretation of a spatiotemporal linear-depen-
dent regression model (Cohen et al., 2003; Maddala, 
2001; Chatterjee and Hadi, 1988). Traditionally, the role 
of each sampled covariate in a spatiotemporal time- 
series dependent MDR-TB regression model would be to 
increase precision, as expressed through a reduction in 
residual predictive error variance covariance matrix 
estimates, as well as, reduced bias in the sampled 
coefficients. Multicollinear MDR-TB clinical and 
environmental-related covariate coefficients however, 
would be difficult to analyze as their effects on a response 
variable could be due to either true synergistic relation-
ships among the sampled covariates or, confounding 
effects creating spurious correlations. 

In some sense, the collinear MDR-TB variables would 
contain the same information about the dependent va-
riable in the spatiotemporal model. If nominally "different" 
measures actually quantify the same phenomenon then 
they are redundant (Glantz and Slinker, 2001; 
Fotheringham et al., 2002). Alternatively, if the time 
series-dependent MDR-TB explanatory predictor variables 
are accorded different names and perhaps employ 
different numeric measurement scales but, continue to 
maintain a high correlation with each other, the residuals 
would still suffer from redundancy. A principal danger of 
spatiotemporal data redundancy is overfitting in 
regression model frameworks. In statistics, overfitting 
occurs when a statistical model describes random error or 
noise instead of the underlying relationship (Dormann 
2007; Homer and Lemeshew 2000; Cressie 1993; Manton 
and Stallard 1981). Additionally, when a spatiotemporal 
MDR-TB distribution model is excessively complex, such 
as a model with extensive parameter estimators relative to  
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the number of observations, biased predicted residual 
space-time autoregressive error estimates may be ren-
dered by the model. Unfortunately this occurs commonly 
by exaggerating minor fluctuations inconspicuously in the 
sampled clinical and environment sampled data.  

As such, separable approximations of non-separable 
space-time MDR-TB error covariance matrix estimates 
cannot be quantitated. Further, the nearest Kronecker 
product approximation in the time series cannot be 
determined especially in a MDR-TB dataset employing a 
Frobenius norm of a space-time error covariance matrix. 
The Kronker product is a generalization from vectors to 
matrices which renders the matrix of the tensor product 
(Fotheringham 2002). The Frobenius norm is the square 
root   of the sum of the absolute squares of its elements 
(Cressie 1993). The tensor product, denoted by ⊗, may 
be applied in different contexts to vectors, matrices, ten-
sors, vector spaces, algebras, topological vector spaces, 
and modules, among many other structures or objects 
(Griffith and Layne 1999, Cressie 1993 ). As such, in a 
hypothetical generalized MDR-TB bilinear operations 
model a function combining elements of two vector 
spaces (e.g., matrix multiplication) will not yield an 
element of a third vector space that is linear in each of its 
arguments. Thus, solutions preserving properties of 
residual space-time MDR-TB uncertainty covariance 
matrices, such as symmetry, positive definiteness, and 
other structures cannot be quantitated.  
  In linear algebra, a symmetric n × n real matrix M is said 
to be positive definite if z

T
Mz is positive, for any non-zero 

column vector z of n real numbers; where z
T
 denotes the 

transpose of z. More generally, an n × n complex spatio-
temporal MDR-TB matrix M would be positive definite if 
z*Mz is real and positive for all non-zero complex vectors 
z; where z* denotes the conjugate transpose of z. This 
property implies that M is an Hermitian matrix. The 
conjugate transpose, or adjoint matrix of an m-by-n 
matrix with complex entries is the n-by-m matrix A

*
 

obtained from A by taking the transpose and then taking 
the complex conjugate of each entry (i.e., negating their 
imaginary parts but not their real parts) (Cressie 1993). 
The conjugate transpose would then be formally defined 
by where the subscripts in the MDR-TB model denotes 
the i,j-th entry, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, and where the 
overbar denotes a scalar complex conjugate. The 

complex conjugate of , where a and b are reals, 

is . (Cressie, 1993). This definition can also be 

written as  in a spatiotemporalMDR-

TB modelwhere denotes the transpose and 

denotes the matrix with complex conjugated entries. 
Thus , a Hermitian MDR-TB matrix (i.e., self-adjoint 
matrix) is a square matrix with complex clinical and 
environmental covariate entries that is equal to its own 
conjugate transpose – that is, the element in the i-th row 
and j-th column is equal to the complex conjugate of the 
element in the j-th row and i-th column, for  all  indices  i  and 

 
 
 
 

and j: If the conjugate transpose of a matrix 

is denoted by , then the Hermitian property can be 

written in a MDR-TB model concisely as  for 
efficient predictive  residual  uncertanity quantification. 
Unquantitated hidden latent correlation error coefficients 
in spatiotemporal datasets of time series dependent 
covariate coefficients cangenerate misspecified estimates 
(Griffith, 2008).  

Additionally, since one of the features of 
multicollinearity is that the standard errors of the affected 
regression residual coefficients tend to be large (Glantz 
and Slinker, 2001; Glantz and Amrhein, 1997), the test of 
the hypothesis that the sampled explanatory covariate 
coefficients would be equal to zero in a spatiotemporal 
clinical/environmental–oriented MDR-TB regression-
based equation would then subsequently lead to a failure 
to reject the null hypothesis. In such circumstances, if the 
linear-dependent observational explanatory predictors 
are estimated, a covariate would still be found to be 
significant; specifically, a TB analyst will reject the 
hypothesis that the coefficient is zero. In statistics, simple 
linear regression is the least squares estimator of a linear 
regression model with a single predictor variable 
(Dutilleul 1993; Hosmer and Lemeshew, 2000). A simple 
linear regression fits a straight line only through the set of 
n points in such a way that makes the sum of squared 
residuals of a model robust that is, vertical distances 
between the points of the spatiotemporal-sampled 
dataset and the fitted line are as small as possible 
(Fotheringham, 2002). As such, in the presence of multi-
collinearity, a TB analyst might falsely conclude that there 
is no linear relationship between an independent and a 
dependent variable in a spatiotemporal MDR-TB 
regression-based predictive risk-based model. 

So long as the underlying specification is correct, 
however, multicollinearity will not actually bias spatio-
temporal MDR-TB regression model residuals; it will just 
produce large standard errors in the related inde-pendent 
variables. If, however, there are other problems such as 
omitted variables which introduce bias in the model, 
multicollinearity can multiply the effects of that bias in the 
residuals by orders of magnitude within spatially 
autoregressive uncertainty dependent frameworks. 
Importantly, the common use of regression in spatio-
temporal MDR-TB modeling exercises is to take sampled 
explanatory covariate coefficients rendered from the 
model residuals and then apply them to other non-linear 
higher order autoregressive matrices (e.g., block kriging). 
Kriging is a group of geostatistical techniques commonly 
employed  to interpolate the value of a random field (e.g., 
the elevation, z, of the landscape as a function of a 
geographic sampled MDR-TB-related point) at an 
unobserved location from observations of its value at 
nearby locations (Fotheringham 2002). Thus, if the new 
MDR-TB data generated from a stochastic interpolation 
based algorithm, for example, differs in any way from  the  
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linear dependent data that was initially fitted, large 
residual error coefficients will be introduced in the 
forecasts as the pattern of multicollinearity between the 
independent variables would be very different in the 

simulated MDR-TB data. Consequently, linear coefficients, 

based on collinear and multicollinear variables, can bias 

time series dependent MDR-TB explanatory clinical and/or 
environmental covariate coefficients yielding unstable, 
non-normal parameter estimators and unreliable 
autoregressive significance tests. 

Further, the data regularization framework in such an 
interpolator may not recover well-behaved functional 
representations of  the time series-dependent input MDR-
TB  data. Although the procedure would split the 
interpolation operator into a discrete deconvolution 
followed by a discrete convolution, misspecifications will 
still arise in the stochastic matrix within the   probabilistic 
weighting scheme. As such, connections to radial basis 
functions will also be erroneous. Since the radial basis 
function is a real-valued function whose value depends 
only on the distance from the origin, so that 

; or alternatively on the distance 
from some other sampled point c, so that 

 (Cressie 1993), any 

function that satisfies the property 

in a spatiotemporal regression-
based MDR-TB model is a radial function. Therefore, it 
would be difficult to posit a general framework for linking 
spatiotemporal MDR-TB statistical data analysis with 
approximation methods that are built on non-negative 
operators.  

In mathematics, on a finite-dimensional inner product 
space, a self-adjoint operator is an operator that is its 
own adjoint, or, equivalently, one whose matrix is 
Hermitian(Cressie 1993). By the finite-dimensional 
spectral theorem, such operators can be only associated 
in a spatiotemporal MDR-TB model when employing an 
orthonormal basis of the underlying space in which the 
operator is represented as a diagonal matrix constructed 
from the covariate entries. In linear algebra and functional 
analysis, the spectral theorem is any of a number of 
results about linear operators or about matrices 
(Hazewinkle 2001). In broad terms the spectral theorem 
provides conditions under which an, operator or, a time 
series dependent MDR-TB matrix can be diagonalized. 
This concept of diagonalization would be relatively 
straightforward for operators on finite-dimensional 
spaces, however this would require some modification for 
operators on infinite-dimensional spaces. In general, the 
spectral theorem will identify a class of MDR-TB linear 
operators that can be modeled by multiplication 
operators. In more abstract language, the spectral 
theorem is a statement about commutative C*-algebra.  

In linear algebra, an orthonormal basis for an inner 
product space V with finite dimension is a basis for V 
whose vectors are orthonormal (Griffith 2003). For example, 
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the standard basis for a Euclidean space R

n
 is 

orthonormal in a robust spatiotemporal MDR-TB which 
would then represent a model where the relevant inner 
product would be the dot product of vectors. In mathe-
matics, the dot product, or scalar product or sometimes 
inner product in the context of Euclidean space, is an 
algebraic operation that takes two equal-length 
sequences of numbers, usually coordinate vectors and 
returns a single number which then can be defined either 
algebraically or geometrically. The coordinate represen-
tation or coordinate vector of a vector is the unique tuple 
of numbers that describes the vector in terms of a 
particular ordered basis (Cressie 1993). Thus, the 
spatiotemporal-sampled clinical and environmental ex-
planatory covariate coefficient coordinates would always 
be specified relative to an ordered basis. Bases and their 
associated coordinate representations  would then enable 
realization of  vector spaces and linear transformations 
concretely as column vectors, row vectors, and matrices, 
in the MDR-TB model . In three dimensional space the 
dot product would contrast with the cross product of two 
vectors, which then would produce a pseudovector as 
result in the model. A vector-like object which is invariant 
under inversion is called a pseudovector, or an axial 
vector (Hosmer and Lemeshew 2000). The cross product 
A × B is a pseudovector, whereas the vector triple 
product   A× (B×C) is a polar vector. The term "polar 
vector" is used to refer to a representation of a vector 
magnitude (that is, length) and angle, which is equivalent 
to specifying endpoints (i.e., polar coordinates).  In 
contrast, pseudovectors (i.e., axial vectors) do not 
reverse sign when the coordinate axes are reversed. 
Examples of polar vectors include the velocity vector, 
momentum, and force. The cross product of two polar 
vectors is a pseudo-vector (Cressie 1993). Polar vectors 
and pseudovectors are interrelated in the following ways 
under application of the cross product: 
 

  
 
The dot product is directly related to the cosine of the 
angle between two vectors in Euclidean space of any 
number of dimensions (Cressie 1993). 

 
Thus, the image of the standard basis under a rotation or 
reflection or any orthogonal transformation in the MDR-
TB model then would also be orthonormal, and every 
orthonormal basis for R

n 
would thus arise in a similar 

fashion. The natural basis for a polar coordinate system 
is orthogonal (Cressie 1993). Since For a general inner 
product space V, an orthonormal basis can be used to 
define normalized orthogonal coordinates on V, the inner 
product in the MDR-TB model would then become a dot 
product of vectors. Thus, the presence of an orthonormality 
in the model would reduce the study of a finite-dimensional 

inner product space to the study of R
n
 under dot product. 

Further, since every finite-dimensional inner product space 
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space has an orthonormal basis (Griffith 2003), the MDR-
TB distribution may be obtained from an arbitrary basis 
using the Gram–Schmidt process.  

In mathematics, particularly linear algebra and nume-
rical analysis, the Gram–Schmidt process is a method for 
orthonormalizing a set of vectors in an inner product 
space, most commonly the Euclidean space R

n
. The 

Gram–Schmidt process takes a finite, linearly 
independent set S = {v1, …, vk} for k ≤ n and generates 
an orthogonal set S′ = {u1, …, uk} that spans the same k-
dimensional subspace of R

n
 as S (Cressie 1993). 

Unfortunately, certainty principles for orthonormal bases 
has not been spatially quantitated within a time series. As 
such, subspace sampling frame employing any form of 
relative-error matrix approximations for quantitating 
spatially dependent uncertainty has never been per-
formed for an empirical dataset of MDR-TB explanatory 
clinical and environment covariate coefficients. 

Additionally, violations of normality in a hierarchical 
linear spatiotemporal-sampled district-level MDR-TB 
model can also compromise the predictive estimation of 
clinical and/or environmental covariate coefficients and 
the calculation of confidence intervals. Generally, the 
error distribution in a time series-dependent MDR-TB in-
fectious disease model is skewed by the presence of a 
few large outliers (Chatterjee and Hadi,1988). Scenes 
can calculate how symmetric the data is, in other words, 
if there a tendency for the data to be positive or negative 
(Fotheringham, 2002). Therefore, quantitating spatio-
temporal MDR-TB regression-based covariates would 
simply require measuring the difference between the 
average and median of the sampled data (Smith, 1994; 
Johnston, 2003; Clarke et al., 2002; Akashi et al., 1996; 
Barr et al., 2000). The median measures the midpoint of 
the data, the value for which half the points are greater 
and half are smaller (Homser and Lemeshew, 2000).  

Therefore, for a robust symmetrical MDR-TB 
distribution, like the normal, the median then would be 
the spatiotemporally tabulated averages and, as such, 
the quantitated skewness would be zero. Further, if the 
skewness is negative in the model then there would be 
more negative values indicating the presence of outliers. 
An outlying observation, or outlier, is one that appears to 
deviate markedly from other members of the sample in 
which it occurs and are often indicative either of 
measurement error, or that the population has a heavy-
tailed distribution (Hosmer and Lemeshew, 2000; Manton 
and Stallard 1988). In probability theory, heavy-tailed 
distributions are  distributions whose tails are not 
exponentially bounded: that is, they have heavier tails 
than the exponential distribution (Asmussen, 2003). If the 
skewness is positive in a spatiotemporal MDR-TB regres-
sion model then there are more positive values indicating 
the long tail generated by the explanatory covariate 
coefficients is on the positive side of the peak (i.e., 
"skewed to the right"). Spatiotemporal parameter 
estimation is based on the minimization of squared  error;  

 
 
 
 
however, a few extreme observations can exert a 
disproportionate influence on sampled estimators 
(Griffith, 2003). For example, if the error distribution is 
significantly non-normal, in a time series-dependent 
MDR-TB regression-based model, the confidence 
intervals may be too wide or too narrow. Kurtosis is a 
measure of whether the data are peaked or flat relative to 
a normal distribution (Hosmer and Lemeshew 2000). 
Further, since kurtosis is a measure of the extreme 
observations in a spatiotemporal model (Hosmer and 
Lemeshew, 2000), the sign of skewness would also 
indicate if the sampled explanatory covariate coefficients 
was kurtotic.  
Kurtosis is a descriptive statistics based on a relative 

concentration of scores in the center, the upper and lower 
ends (that is, tails), and the shoulders of a distribution 
(Fotheringham et al., 2002). As such, higher kurtosis in a 
spatiotemporal-sampled MDR-TB regression-based 
model constructed from an empirical dataset of clinical 
explanatory covariates coefficients  for example,  would 
indicate more of the variance in the residuals generated 
from the model was due to infrequent extreme deviations, 
as opposed to frequent modestly-sized deviations in the 
sampled covariate coefficients. Environmental-related 
data that has more kurtosis than the normal is sometimes 
called fat-tailed as its extremes extend beyond that of the 
normal (Piorecky and Prescott 2006, Wintle and Bardos 
2006, Miller 2007, He et al. 2003,Hoeting et al. 2000). 
Ideally, a TB predictive risk modeler would prefer a 
distribution with low kurtosis (i.e.,     predictive    residuals    
not    far    away    from    the mean). However, for spatio-
temporal MDR-TB distribution to be normalized, the 
sampled explanatory covariate coefficients would have to 
exhibit an excess kurtosis equal to 0.  Alternatively, a 
MDR-TB regression-based distribution with positive 
kurtosis in a spatiotemporal model would have to exhibit 
a peak in the middle and fat tails versus a normal 
distribution. Fat-tailed distributions have values of 
kurtosis that are greater than 3.0 (Fotheringham, 2002). 
Thus, the extreme values would be positive in a spatio-
temporal MDR-TB regression–based model. However, 
this is only possible when the skewness in the model is 
positive. Further, the skewness is negative in the MDR-
TB model  combined with the impact of a high excess 
kurtosis would adversely affect causing extreme 
mispecified negative explanatory predictor covariate 
coefficient values in the residual error variance. 

Frequently, adjusted version of Pearson’s kurtosis has 
been used to quantitate the excess kurtosis and to 
provide a comparison of the shape of a given MDR-TB 
model distribution, to that of the normal distribution. 
Pearson (1905) introduced kurtosis as a measure of how 
flat the top of a symmetric distribution was when compared 
to a normal distribution of the same variance.  He referred 

to more flat-topped distributions (2 < 0) as “platykurtic,” 

less flat-topped distributions (2 > 0) as “leptokurtic,” and 

equally flat-topped  distributions  as  “mesokurtic”  (2  0).   
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Kurtosis is actually more influenced by scores in the tails 
of the distribution than scores in the center of a 
distribution (Hosmer and Lemeshew, 2000). Accordingly, 
it is often appropriate to describe a MDR-TB leptokurtic 
distribution as “fat in the tails” and a MDR-TB platykurtic 
distribution as “thin in the tails”. Distributions with negative 
or positive excess kurtosis are called leptokurtic 
distributions, respectively (Hosmer and Lemeshew, 2000). 
Leptokurtic distributions are identified by peaks that are 
thin and tall (Fotheringham 2002, 2000). Platykurtic 
curves, on the other hand, have shorter ‘tails’ than the 
normal curve of error and leptokurtic longer ‘tails’. Skewed 
distributions are always leptokurtic (Hopkins and Weeks, 
1990). Pearson’s measure of kurtosis, however, has been 
often criticized as it does not focus adequately on the 
central part of a distribution. Although never proposed, an 
alternative measure of kurtosis for spatiotemporal MDR-
TB regression-based modeling is one which adjusts the 
measurement of kurtosis by removing the effect of 
skewness using autocorrelation statistics. 

Spatial autocorrelation is the correlation among values 
of a single variable strictly attributable to their relatively 
close locational positions on a two-dimensional surface, 
introducing a deviation from the independent obser-
vations assumption of classical statistics (Griffith, 2003). 
Since spatially structured infectious disease data always 
violate the assumption of independence (Legendre 1993), 
residual serial autocorrelation oriented statistics would 
enhance predictive autoregressive MDR-TB risk mapping 
based on sampled georeferenced explanatory covariate 
coefficients. Identification of the presence of positive 
autocorrelation (i.e., aggregation of similar values in 
geographic space) in residual predictive error variance-
covariance matrices always leads to underestimation of 
standard errors and inflated Type I errors, when 
employing standard methods based on ordinary least 
squares (OLSs) (e.g. ANOVA, correlation, and 
regression) to test statistical hypotheses (Cliff and Ord, 
1981; Legendre, 1993). Lennon (2000) argued that 
autocorrelation renders inflated Type I errors, and had a 
systematic bias towards particular predictive estimators 
with greater autocorrelation. These autocorrelation-
related components may be illustrated by a density graph 
which can reveal the leptokurtic nature of a time series-
dependent MDR-TB distribution rendered from a robust 
spatial autocorrelation matrix while simultaneously 
revealing the associated thicker tails compared to a 
normal density using an autocovariate term.  

Traditionally, an autocovariate analysis is indexed with 
a Moran Coefficient (MC; a product moment correlation 
coefficient type of spatial autocorrelation index) (Griffith, 
2002). The simplest and most straightforward null 
hypothesis, on which to test the significance of the MC, 
would assume spatial autocorrelation in an empirical 
spatiotemporal-sampled dataset of the MDR-TB-related 
explanatory covariate coefficients, for example, from 
which a sample is drawn  to  be  zero.  Two  assumptions  
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about the sample can then be made: the covariate 
coefficient values are drawn from a normally distributed 
population; or, the sample values represent one random 
arrangement of the attribute values from all the possible 
arrangements that could occur. MC indices may be 
tested using analytical expectations and variances from a 
non-linear estimation model based largely on the 
neighborhood structure assumed in a spatially weighted 
uncertainty-oriented matrix. The sampling distributions of 
MC rendered from a spatiotemporal MDR-TB regression- 
based model may then be quantitated as a dataset of 
asymptotically normally distributed standard errors of the 
estimators which may then be valid for  summarizing 
virtually any type of non-normal factor analysis or,  for  
certain structural equation model construction. 

Further, recent quantitative geographical analysis         
methods have supplemented spatial statistics with an 
approach to quantify latent autocorrelation error co-
efficients, by decomposing the MC into synthetic variates 
whose linear combinations constitute a spatial filter model 
specification. This eigenvector filtering approach is a non-
parametric technique that removes the inherent 
autocorrelation from generalized linear regression models 
by treating them as a missing variables (i.e., first order) 
effect. The aim of this non-parametric approach is to 
control spatial autocorrelation by introducing appropriate 
synthetic variables that serve as surrogates for serially 
correlated missing origins and destination variables 
(Griffith, 2003). This shift in focus leads to spatial filter 
variants of the classical spatial interaction model. Further, 
by so doing, the non-parametric spatial filtering may 
control for autocorrelation and heteroskedastic error 
components in a time-series dependent MDR-TB model 
with a set of spatial proxy predictor variables, rather than 
identify a global error autocorrelation parameter for a 
spatial process in the model. In time-series infectious 
disease models, heteroscedasticity (that is, uncommon 
variance) often arises due to the effects of inflation 
perhaps magnified by a multiplicative seasonal pattern 
(Griffith, 2005).The basis for this procedure is the 
decomposition the MC into orthogonal and uncorrelated 
map pattern components. As such, a  MDR-TB-oriented 
spatial filter analyses can be used to account for an empi-
rical dataset of regressed pseudo-replicated explanatory 
covariate coefficients by generating eigenvectors which 
may exhibit a distinct spatial topographic pattern while 
simultaneously rendering a given residual autocorrelation 
level. 

 The goal of this study was to identify geographic areas 
with on-going MDR-TB transmission in San Juan de 
Lurigancho (SJL), a district in Lima, Peru  by performing 
a residual spatial autocorrelation analysis within an SAS 
database to derive simulation models. Our assumption 
was that the residuals from these models would  reveal 
how departures from normality affect the performance of 
exact confidence intervals for a population mean and 
variance   within   a   time    series- dependent    empirical  
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dataset of spatiotemporally-sampled clinical end 
environmental MDR-TB explanatory covariates. SAS 
PROC REG can calculate univariate statistics, and 
perform robust parsimonious linear and non-linear 
regression analyses using spatiotemporal-sampled data 
(www.sas.edu). In this research estimates generated 
from a global autocorrelation analyses were spatially 
decomposed into empirical orthogonal bases using a 
negative binomial regression with a non-homogeneous, 
gamma distributed mean. Thereafter, we proposed a test 
of goodness of fit for the time-series dependent models 
based on the sum of the squared residual partial 
autocorrelations. The test statistic was asymptotically X

2
. 

The residual times-series autocorrelation estimation 
performance was thereafter studied through a Monte 
Carlo experiment. Monte Carlo experiments are a broad 
class of computational algorithms used in optimization 
and numerical intergration  for generation of samples 
from a probability distribution (Cressie 1993). Another of 
our assumption in this research,  was that the decompo-
sition of Moran's coefficient into uncorrelated, MDR-TB 
orthogonal mapping components could reveal global 
spatial heterogeneities necessary to capture latent  auto-
correlation in a spatiotemporal regression-based model 
for implementing control strategies in the SJL study site. 

Geographically based screening and treatment could 
be an effective method for MDR-TB control programs to 
identify high-risk populations (WHO, 2009).  

In this research, we also complemented the 
autocovariate logistic parameter estimation model using a 
Bayesian Poisson matrix in SAS for formally hypothesis-
testing the spatiotemporal-sampled MDR-TB drug 
resistant parameter estimators at the SJL study site. 
SAS/STAT software now provides Bayesian analysis 
including Bayesian zero-inflated Poisson models for zero-
inflated count data employing a Markov Chain Monte 
Carlo (MCMC) algorithm in downloadable, experimental 
versions of three procedures for SAS 9.1.3 on Windows: 
GENMOD, LIFEREG, and PHREG (www.sas.edu). 
Markov Chain is a mathematical system that undergoes 
transitions from one state to another, between a finite or 
countable number of possible states which can be 
characterized as random "memoryless" process (Cressie 
1993). In recent years MCMC has revolutionized the 
practicability of Bayesian inference methods allowing a 
wide range of posterior distributions to be simulated and 
their parameters to be quantitated numerically in time 
series-dependent infectious disease modeling. In 
Bayesian statistics, the posterior probability of a random 
event or an uncertain proposition in a time series 
dependent MDR-TB model would be the conditional 
probability that is assigned after the relevant evidence is 
taken into account (Cressie 1993). Similarly, the posterior 
probability distribution would be the MDR-TB distribution 
of an unknown quantity, treated as a random variable, 
conditional on the evidence obtained from an experiment 
or survey. 

 
 
 
 
In this research specifically we used a Bayesian 

Poisson model to estimate the risks of resistance to four 
commonly used drugs at the SJL study site in TB 
treatment: isoniazid, rifampin, ethambutol, and 
streptomycin. A Bayesian Poisson vector autoregression 
model can characterize endogenous infectious disease 
dynamic count data with no restrictions on the 
contemporaneous correlations (Griffith, 2005). Bayesian 
linear regression techniques can also be used when the 
variance is assumed to be a function of the mean 
(Cressie, 1993). Therefore, it would be possible in some 
cases to amend the problem of propagated residual 
uncertainty in a time series dependent  MDR-TB model 
by applying a transformation to the response variable 
(e.g.,  fitting  the  logarithm  of  the response variable 
using a linear regression model) which would then  imply 
that the response variable has a log-normal distribution  
rather  than  a  normal  distribution. In probability theory, a 
log-normal distribution is a continuous probability 
distribution of a random variable whose logarithm is 
normally distributed (Hosmer and Lemeshew 2000). 

Thus, if X is a random variable in a spatiotemporal 
Bayesian generalized  hierarchical MDR-TB 
spatiotemporal model   with a normal distribution, then 
Y = exp(X) will have a log-normal distribution; likewise, if 
Y is log-normally distributed in the model then X = log(Y) 
has a normal distribution. The log-normal distribution 
would then be the spatiotemporal MDR-TB model 
distribution of the sampled random variables with only 
positive real values.   

Further, in this research, the decomposition of the 
residual forecast errors were illustrated in the Bayesian 
Poisson model residuals for quantitating the effects of 
exogenous covariate shocks. We then spatially 
decomposed uncertainty values to quantify the effects of 
exogenous-sampled explanatory covariate coefficients 
related to special resistant strains. Since drug resistance 
is very common in tuberculosis treatment (Orenstein et 
al., 2009), we assumed that robust Bayesian Poisson 
model outputs could quantitate interactions between the 
clinical and environmental sampled parameter estimators 
(i.e., resistant strain data) and time series-dependent 
MDR-TB district-level indices at the SJL study site. It is 
well known that drug resistance of TB is unevenly 
distributed and, therefore, MDR resistance can be 
perceived as problems of local rather than global 
importance (Dye et al., 2002).  Although there have been 
a few studies on the mechanism of drug resistance in 
tuberculosis (Al-Orainey, 1989; Crofton et al., 1997), the 
reasons why tuberculosis is resistant to a certain 
treatment is largely unknown. Therefore, correctly 
estimating the drug resistance at a local level may have 
important implications for control and treatment of MDR-
TB. As such, in this paper, we used a flexible Bayesian 
Poisson regression model to estimate the risk of drug 
resistance at the SJL study site. Further, since 
independent marginal distributions are necessary for non- 
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normal probability analyses in a predictive autoregressive  
risk model framework (Griffith 2003), we assumed that  
synthetic spatiotemporal MDR-TB map patterns based 
on specific disease transmission data (e.g., distribution of 
resistant strains) would produce robust pseudo-likelihood 
estimates with high predictive power.  
     In this paper we also considered both low and high-
dimensional predictive residual uncertainty covariance 
matrix estimation problems and present asymptotic 
properties of sample MDR-TB -related covariances and 
covariance matrix estimates. In particular, we provide 
spatially quantitated asymptotic uncertainties for high 
dimensional covariance matrices in the time series, and a 
consistency result for the MDR-TB-related error 
covariance matrix estimation for regressing the 
spatiotemporal dataset of clinical and environmental 
explanatory covariate coefficients. The problem of high -
dimensional covariance matrix latent error estimation 
often arises when estimate unknown parameters that are 
associated with a time series (Cressie 1993). 

Additionally, we generated a residual Moran’s 
coefficient (MC) minimization criterion for permitting a 
more detailed interpretation of latent autocorrelation in 
the MDR-TB data sampled at the SJL study site by 
allowing explicit visualization of inconspicuous negative 
spatial autocorrelation (NSA) patterns in the georef-
erenced clinical and environmental parameter datasets. 
Negative spatial autocorrelation naturally materializes 
with competitive locational processes, negative spatial 
externalities, the spectrum (e.g., eigenvalues) of a 
geographic weights matrix, the calculation of linear 
regression residuals, and the computation of local 
indicator of spatial autocorrelation (LISA) statistics 
(Griffith, 2008; Anselin, 1995). To date spatial analyses of  
infectious disease data commonly have employed only a 
first conditional autoregressive model or, a second-order, 
that is,  a  simultaneous autoregressive with  spatial lag 
covariance matrix for determining hidden NSA attributable 
to model misspecifications. Although these models have 
performed extremely well across a myriad of 
georeferenced attributes, higher order spatial covariance 
matrix specifications may be needed to capture NSA in 
an autoregressive spatiotemporal predictive risk MDR-TB 
model. Failure to posit the correct order of a spatial 
covariance matrix can constitute a prominent form of 
model error (Griffith, 2003). Thus, we assumed that 
qualitatively assessing residual time series dependent 
autocorrelation error coefficients may improve present 
MDR-TB control strategies at the SJL study site by 
revealing how hidden NSA furnishes a diagnostic in a 
predictive autoregressive risk model misspecification. 

Since the prediction error is the expected quadratic loss 
incurred by the difference of observed event status and 
by the model predicted event probabilities (Cressie 
1993), it may be shown that the prediction error is 
minimal in a MDR-TB if, and only if, the true probabilities 
are accurately spatially quantitated. 
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In this paper we considered both low and high-
dimensional predictive residual uncertainty covariance 
matrix estimation problems and present asymptotic 
properties of sample MDR-TB-related covariances and 
covariance matrix estimates in GIS using QuickBird data. 
Raster representations of thematic and numerical spatial 
attributes of MDR-TB can be spatially quantitated in a 
GIS environment for computational simulation and 
analysis of spatial processes (Jacob et al. 2010). This 
paper addresses the problem of MDR-TB-related 
predictions and their uncertainty assessment for creating 
GIS raster representations created from a set of sample 
points of spatial attributes. Spatial mapping in GIS using 
sub-meter resolution remote sensing data [e.g., 
QuickBird visible and near infra-red (NIR) 0.61 m pixels] 
may be an alternative tool in MDR-TB control, in the SJL 
study site for aiding in the assessment of transmission 
dynamics for optimizing existing management programs. 
Accounting for the autocorrelation between neighboring 
districts, thereafter, and studying whether other 

spatiotemporal-sampled georeferenced district-level clinical 

and environmental covariate coefficients are related to 
drug resistance also may also develop and implement 
robust MDR-TB control strategies in the SJL study site. 
Therefore, our research objectives were: (1) to perform 
Poisson regression analyses to determine explanatory 
covariates affecting MDR-TB incidence rates; (2) to 
construct a flexible Bayesian regression model to esti-
mate the risks of district-level resistance to four common 
drugs: rifampin, isoniazid, ethambutol and streptomycin; 
(3) to generate global autocorrelation statistics for 
evaluating spatial dependence  and kurtosis among the 
data feature attributes while quantifying all residual error 
autocorrelation components in the model output; (4) to  
generate a Bayesian Poisson model for evaluating distri-
bution of  district-level  resistant strains for identifying 
epicenters for MDR-TB and, (5) to use a Residual MC 
minimization criterion for  detecting and quantitating  non-
conspicuous NSA in a dataset of clinical explanatory 
predictor variables spatiotemporally-sampled   in SJL, 
Lima, Peru.  
 
 
MATERIALS AND METHODS 
 
Study Site 
 
San Juan de Lurigancho (SJL) is the largest district in Lima, located 
in the Northeast area of the province of Lima. With a current 

population exceeding one million people, it is the country's most 
populous district, with a total surface area of 131.3 km

2
 constituting 

4.91% of the total area of the province of Lima. On the north, SJL is 
bordered by the districts of Carabayllo and San Antonio, which is in 
the Huarochirí Province. San Juan de Lurigancho is bordered by 
Comas, Independencia and Rímac on the west; and Lurigancho on 
the east. The Rímac River marks the district's border with 
downtown Lima and El Augustino on the south. The most important 
urban areas in the district are Mangomarca, Zárate, Las Flores, and 
Canto Grande and Bayovar. One of the first urban areas in SJL is 
Caja de Agua; which is located at the entrance of  the  district.  Caja  

http://en.wikipedia.org/wiki/Carabayllo
http://en.wikipedia.org/wiki/San_Antonio_District,_Huarochir%C3%AD
http://en.wikipedia.org/wiki/Huarochir%C3%AD_Province
http://en.wikipedia.org/wiki/Comas
http://en.wikipedia.org/wiki/Independencia_District,_Lima
http://en.wikipedia.org/wiki/R%C3%ADmac_District
http://en.wikipedia.org/wiki/Lurigancho
http://en.wikipedia.org/wiki/R%C3%ADmac_River
http://en.wikipedia.org/wiki/Lima_District
http://en.wikipedia.org/wiki/El_Agustino
http://en.wikipedia.org/w/index.php?title=Mangomarca&action=edit&redlink=1
http://en.wikipedia.org/wiki/Las_Flores
http://en.wikipedia.org/w/index.php?title=Canto_Grande&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Bayovar&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Caja_de_Agua&action=edit&redlink=1
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de Agua is surrounded by San Cristobal and Santa Rosa hills from 
south to west. The altitude of SJL ranges from 2,240 meters above 
sea level (m.a.s.l.) at the peaks of Cerro Colorado Norte, to 200 
m.a.s.l., at the level of the Rimac river. Urban areas have been 
developed in a longitudinal direction from the river border up to 350 
m.a.s.l. The mean temperature ranges between 17 and 19ºC 
throughout the year. 
 
 
Subjects and setting 
 

This research used the data acquired from a retrospective study of 
a cohort of 1,571 patients diagnosed with pulmonary TB and MDR-

TB enrolled over an 18 month period in the district of SJL in Lima, 
Peru.  

 
 
Patient selection and enrollment  
 
In this research all participating patients underwent a complete 
evaluation, including drug susceptibility for first line drugs. This was 
a prospective multi-center observational study comparing the use of 
several investigational techniques with standard methods to assess  
the in vitro antimicrobial susceptibility of M. tuberculosis, either 
directly from patient specimens or from culture isolates. One 
thousand two hundred and fifty adults with pulmonary tuberculosis  
cultures were confirmed with >10 colonies of M. tuberculosis. After 
collection of baseline samples and completion of initial 
measurements, including susceptibility testing by conventional and 
research methods, all subjects started anti-TB chemotherapy as 

dictated by the standard of care at the site of enrollment. Subjects 
were recruited, among patients presenting with smear positive 
pulmonary tuberculosis, to diagnostic and treatment sites in the 
following Health Centers: San Fernando,  La Huayrona, Canto 
Grande, Jose Carlos Mariátegui, Huáscar XV, Huáscar II, 
Ganímedes, Cruz de Motupe, Piedra Liza, Bayóvar, Jaime Zubieta, 
San Juan, San Benito, Mangomarca, San Hilarion, Campoy, 15 de 
Enero, La Libertad, Juan Pablo II, Ascarruz Alto, 10 de Octubre, 
Sta Fe de Totoritas, Proyectos Especiales, Santa Rosa, Ayacucho, 

Zarate, Medalla Milagrosa, Campoy Alto, Montenegro, Santa Maria, 
Tupac Amaru II and Caja de Agua. 

After confirmation of sputum smear microscopy results, subjects 
were screened for the presence of productive cough for eligibility in 
the study. Patients with positive sputum smears are those with

 
the 

capacity to spread infection (Godoy et al., 2004). Eligible subjects 
received an explanation of the study and were asked to provide 
written informed consent to participate. Initial data collected during 
screening included: a past medical history, collection of basic socio-
demographic descriptors (age, sex, occupation, address, etc.) and 
a detailed symptom-oriented history with physical examination. 

Drug susceptibility testing (isoniazid, rifampin, ethambutol and 
streptomycin) were performed by Gold Standard method on the 
initial sputum culture isolates of all enrolled subjects. Those 
subjects with initial drug resistant M. tuberculosis clinical isolates 
were determined using a treatment regimen with a duration deemed 
appropriate by a Committee of the National Tuberculosis Control 

Program (NTCP) and Committee for Evaluation of Retreatment 
(CER). All information collected was recorded on standardized data 
collection forms labeled with the date and the subject's name and 
study number, edited as needed and entered into data files for 
further analysis. Case report forms were then developed to record 
baseline clinical and socio-demographic data, HIV testing results, 
mycobacterial smear and culture results.   
 
 

Geographic mapping 
 

Field sampling was conducted from July 2005 to July  2007.  Thirty- 

 
 
 
 
one Health Centers, in the study site, were mapped and classified 
using a CSI-Wireless differentially corrected global positioning 
systems (DGPS) Max receiver. This remote technology relies on 
the OmniStar L-Band satellite signal yielding a positional error 
of.179 m (± 0.392 m) (Jacob et al., 2007). 

Data from the characterization of each epidemiological village 
was then recorded on a Mobile Vector Control Management 
System (VCMS™) electronic data recording device. The field 
sampling was extended to a 5 km distance from the external 
boundary of a sampled MDR-TB-related s it e . Specific   environ-
mental explanatory variables of the georeferenced data were 
recorded. Individual georeferenced Health Centers and their 
associated land cover attributes identified from the satellite 

imagery were then entered into a VCMS relational database 
software product. The VCMS database supported a mobile field 
data acquisition component module (Mobile VCMS) utilizing an 
industry standard Microsoft Windows Mobile™ device and an add-
on DGPS connection. In this research, Mobile VCMS™ and its 
FieldBridge Server middleware component were used to support 
wireless synchronization of the clinical and environmental MDR-TB 
data collected at the SJL study site directly into a centralized 
database repository. Additional geocoding and spatial display of the 

clinical and environmental sampled data was handled in the 
embedded VCMS GIS Interface Kit™. This was developed using 
ESRI’s MapObjects™ 2 technology. The VCMS database with the 
DGPS information, supported exporting all data in a spatial format; 
whereby, any individual Heath Center data and supporting MDR-TB 
covariates were described in an ESRI shapefile format for use in 
GIS. The database displayed this information on a user-defined  
field base map. 
 

 

Remote sensing data 

 
QuickBird (www.digitalglobe.com) images were acquired in March 
11th 2008 for the SJL study site. QuickBird multispectral products 
provided four discrete non-overlapping spectral bands covering a 
range from 0.45 to 0.72 µm, with an 11-bit collected information 
depth with a spatial resolution of 0.61 m (Figure 1) 

 The QuickBird imagery was then classified using the Iterative 
Self-Organizing Data Analysis Technique (ISODATA) unsupervised 
routine in ERDAS Imagine v.8.7™. The images were co-registered 
manually, using gathered ground control point (GCPs) and 
georectified images from the QuickBird data. The satellite images 
were co-registered by applying a first order polynomial algorithm 
with a nearest neighbor resampling method and the GCPs.. The 
Universal Transverse Mercator (UTM) Zone 37S datum WGS-84 
projection was used for all of the spatial datasets. 
 
 

Environmental parameters 

 
Variables recorded included, MDR-TB prevalence rates, distance 
between individual Health Centers, population data, and aspects of 
catchment-related ecohydrological land-surface covariates in the 
SJL study site such as elevation and slope per sampled site. 
Distance measures were recorded in ArcGIS 9.2

®
 with QuickBird 

data and by field sampling. The distance between Health centers 
was categorized into numerous classes (e.g., 1: 0 to 5 km; 2: 5 to 
10 km, and so on). The number of individuals cases of MDR-TB at 
each individual Health Center was then calculated and recorded 
(Table 1). 

 
 
Regression analyses 
 

All sampled parameters were entered in Excel files and analyzed 
using SAS 9.1.3

®
 (SAS Inc. Cary, North Carolina). The first stage of  
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Figure 1. QuickBird visible and near infra-red data of the San Juan de Lurigancho study site. 

 
 
 

Table 1. Clinical and environmental MDR-TB data sampled in the San Juan de Lurigancho study site. 
 

Variable in database Description of variable 

ESTAB Health care center 

FENAC Birth date 

EdadA Age  

SEXO Sex 

TIPOVIV Home 

NUMHAB Number of bedrooms 

MATVIV Building material 

NUMPER Number of persons living in the house 

ELECTRIC Electricity supply at home 

AGUAPOT Home access to potable water 

DESAGUE Wastepipe connected to the public network 

ECIVIL Marital status 

OCUPA Ocupation 

TRAESTS Do you work in any health care center? 

TIEMTRA Time of employment 

INGMEN Salary/Income per month 

LJINH Sensitivity test to isoniazid in LJ medium 

LJIRIF Sensitivity test to rifampin in LJ medium 

LJIETB Sensitivity test to ethambutol in LJ medium 

LJISTM Sensitivity test to streptomycin in LJ medium 

MDR Multidrug resistant 
 
 

 

this analysis utilized Poisson regression to determine the 

relationship between the MDR-TB sampled clinical and environ-
mental covariates. Poisson regression is one special case of the 
Generalized Linear Model (GLM) which allows one to fit models to a 

dependent variable that is a member of the exponential distribution 

family for linear quantitation of covariate variabilities. (Pielou, 1969). 
Our MDR-TB GLM was characterized with three components: the 
distribution of the dependent variable, a linear function  of  a  set  of  
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independent variables, and a link function between the dependent 
variable and its expectation as expressed by the linear function of 
independent variables. When the logarithm was applied as a link 
function, the Poisson regression had a log-linear form. Poisson 
regression is estimated based on the likelihood function that is 
constructed under the independence assumption (Haight 1967). 
Poisson distribution predicts non-negative integers in data 
analyses, where the mean and variance are equal (Kaiser and 
Cressie, 1997). 

Next, non-linearity in the relationship between MDR-TB resistant 
infection rates and their explanatory predictor variables, were 
explored by adding polynomial terms and then grouping the values 
of continuous variables into categorical ones. Variable selection for 

the multiple regression models was carried out by a combination of 
automatic (stepwise) procedures and goodness-of-fit criteria and by 
selecting the covariates that explained the prevalence of MDR-TB 
cases and distribution in the SJL study site. A Poisson regression 
with statistical significance, determined by a 95% confidence level 
was then constructed to ascertain whether the proportions of 

sampled explanatory predictor variables differed by individual  

MDR-TB Health Centers. 
The Poisson regression assumed that each independent count 

value (that is. ni), recorded at a Health Center location i=1,2,…n, 
from a sampled covariate was from a Poisson distribution. These 
data were described by a set of predictor variables denoted by 
matrix Xi, a 1×p vector of covariate values for a Health Center 

location i. The expected value of these data was given by 
μi(Xi)=ni(Xi) exp(Xiβ), where β was the vector of non-redundant 

parameters, and the Poisson rates parameter was given by 
λi(Xi)=μi(Xi)/ni(Xi); the rates parameter λi(Xi) was both the mean and 

the variance of the Poisson distribution as in McCullagh and Nelder, 
(1989) for sampled Health Center location i. The regression 
analyses were performed in SAS PROCREG. The sampled data 
was log-transformed before analyses to normalize the distribution 
and minimize standard error.  

Thereafter, we used a Bayesian Poisson model to estimate the 
risks of resistance to each of the four common drugs in TB 
treatment.  We then fit a Bayesian Poisson regression model for the 
frequency of the strains  with density using MDR-TBi 

=  (2.1) for the  plates, 

where  represented the regression parameters and  was the 
vector of covariates The likelihood function for each of the 

corresponding MDR-TB  sampled explanatory covariates was 

p(SMDR/ =  where denoted a conditional 
probability mass function. The Poisson density was then evaluated 

with a corresponding mean parameter . The three parameters, 

, , and , corresponded to an intercept, the positive and the 
negative effect of the strain respectively. The following prior 
distributions were then placed on the spatiotemporal-sampled 

MDR-TB parameter estimators, where  indicated a prior 

distribution: = . The 
diffuse  prior expressed lack of knowledge about the 
regression parameters.  

Using Bayes’ theorem, the likelihood function and prior 

distributions determined the posterior distribution of , and . 

The goodness-of-fit Pearson chi-square statistic  was then  
derived as  in McCullagh and Nelder (1989).By so doing we were 
able  to assess model fit     which in this research was achieved 

employing MDR-TBi-E(MDRi)]
2
:/ V (MDR-TBi). We let               

represent   an  expectation   for a Poisson likelihood E(MDR-TBi= 

V( MDR-TBi) where   was  defined  in  Equation  2.1   If  there  
is  no  overdispersion,   the Pearson statistic approximately equals 
the number of observations in  the  data  set  minus  the  number  of  

 

 
 
 
parameters in the model.(Fotheringjam 2002)  

The parameter 


was interpreted as rates (e.g., the average 
number of new TB cases per 1,000 population). If Y is the number 
of occurrences, its probability distribution can be written as:  
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where 


 was  the mean number of occurrences (Kaiser and 

Cressie, 1997). We then used iy
 to denote the number of MDR-TB 

patients who were resistant to a specific drug in a georeferenced 

health center i . We let Ni denote the population size of health 
center i . We assumed a Poisson model for the spatial count data 
as follows: 

~ a bi 

i i y Poisson N e ,i 1, 2,...,M.

where 
i b 

was the spatial random effect for the ith georeferenced health 
center, controlling whether the risk is above or below the average.   

We further modeled the spatial random effect ib
 using a 

conditionally autoregressive (CAR) prior (see Hodges et al., 2003). 
In this research under the CAR prior, 
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 where i  was the index set of 

neighboring districts of the i
th
 district, 

jm
was the number of 

neighboring districts to the district i, and 
2 was the unknown 

variance parameter.  We used noninformative priors for other 
assessing additional parameter estimators which were represented 

as a flat prior for N and a conjugate inverse gamma prior for 
2 . In 

Bayesian probability theory, the posterior distributions p(θ|x) are in 
the same family as the prior probability distribution p(θ). Thereafter, 
the prior and posterior were the conjugate distributions, and the 
prior was a c o n j u g a t e    prior   for   the l i k e l i h o o d  in the 
MDR-TB model.  

     The Gaussian family is conjugate to itself (that is, self-conjugate) 
with respect to a Gaussian likelihood function in a spatiotemporal 
model if the likelihood function is Gaussian, (Fotheringham 2002).  
In t h is  r es earc h,  choosing a Gaussian prior over the mean 
ensured that the posterior distribution was also Gaussian. Further, 
the Gaussian distribution was a conjugate prior for the likelihood 
which was also Gaussian in the model. Conjugate priors are 
analogous to eigenfunctions in operator theory, in that they are 
distributions on which the "conditioning operator" acts in a well-
understood way, thinking of the process of changing from the prior 
to the posterior as an operator.  

 
 
Spatial analyses of MDR-TB covariates using Moran’s I 

 
Spatial autocorrelation was evaluated among the sampled clinical 

and environmental covariates at the SJL study site using Moran’s I.  
In statistics, Moran's I is a measure of spatial autocorrelation 
(Griffith, 2003)  In this research Moran's I was defined as  

http://support.sas.com/rnd/app/examples/stat/BayesSalm93/new_example/index.html#mccu_p%3A89
http://support.sas.com/rnd/app/examples/stat/BayesSalm93/new_example/index.html#mccu_p%3A89
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Prior_probability_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Eigenfunctions
http://en.wikipedia.org/wiki/Operator_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Spatial_autocorrelation
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Figure 2. Geographical clusters of Health Centers in San Juan de Lurigancho study site.  

 
 
 

  
 

where  was  the number of georeferenced health centers 

indexed by  and ;  was the MDR-TB incidence rates;  was 

the mean of ; and  was an element of a matrix of spatial 
weights. The expected value of Moran's I under the null hypothesis 
of no spatial autocorrelation was then: 
 

 . Its variance thereafter was equal to: 
 

  
 
Where 

 
 

 

 
 
 

 

 

  

 
For statistical hypothesis testing, the Moran's I values were then 
transformed to Z-scores where values greater than 1.96 or smaller 

than −1.96 indicated spatial autocorrelation that was significant at 
the 5% level. 

 We also used the Geary’s coefficient (that is, Geary's C) which is 
inversely related to Moran's I,.  Moran's I is a measure of global 
spatial autocorrelation, while Geary's C is more sensitive to local 
spatial autocorrelation (Griffith, 2003). In this research Geary's C  
was defined as 
 

  

http://en.wikipedia.org/wiki/Moran%27s_I
http://en.wikipedia.org/wiki/Geary%27s_C
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where  was  the number of health centers indexed by  and ;  

 where  the MDR-TB incidence rates ;  was  the mean of ; 

 was a matrix of spatial weights; and was the sum of all 

. The value of Geary's C lies between 0 and 2. Geary's C is 
inversely related to Moran's I, but it is not identical (Cliff and Ord 
1971).   Moran's I is a measure of global spatial autocorrelation, 
while Geary's C is more sensitive to local spatial autocorrelation 
(Griffith, 2003). Neighboring georeferenced health centers were 
then identified based on MDR-TB resistant prevalence values 
(Figure 2)  

We analyzed the n-by-1 vector 
 Tnxxx 1

 containing the 
MDR-TB covariates for n spatial units and n-by-n symmetric spatial 
weighting matrix W using Moran’s Indices. The usual formulation for 
Moran’s index of spatial autocorrelation (Griffith, 2003) is   
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The values ijw  where the spatial weights based on the sampled 

clinical and environmental MDR-TB variables stored in the matrix W 

where   
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2
with ji   which had a null diagonal  

 0iiw . This symmetric matrix revealed W ij = Wji was then 

generalized to a non-symmetric matrix W by using W=(W*+W*T/2) . 
 

Moran’s I was then rewritten using matrix notation as:
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SAS/GIS

®
 (http://www.sas.com/products/gis/) was then used to 

perform the spatial filter analysis on the sampled MDR-TB data 
while SAS PROC GENMOD was used to build Poisson models with 
a gamma-distributed mean. In the study site, positive spatial 
autocorrelation (PSA) and NSA eigenvectors were selected by the 
stepwise negative binomial regression procedure. To expand the 
inferential basis with a random effect, a GLMM was used to account 
for latent non-spatial residual correlation t ime series dependent  

MDR-TB data. The GLMM estimation was computed using SAS 
PROC NLMIXED. 

 
  
Spatial eigenvector mapping 

 
Global indicators of spatial autocorrelation were then calculated 
from the ground-based and remotely-sensed ecological databases. 

Box-Cox type of power transformation was employed for normal 
approximation analysis purposes so that the frequency distributions 
of the georeferenced Health Centers in the SJL study site better 
approximated a bell-shaped curve. The spatial filter construction 
methodology transformation procedure was then used, as proposed 
by Griffith (2003), which depended on the eigenfunctions of a 
spatially weighted matrix.   

To identify spatial clusters that can be uncovered with spatial 

filtering, Thiessen polygon surface partitionings were generated to 
construct geographic neighbor matrices, each denoted by the 
spatially   weighted   matrix   which   also  was  used  in  the  spatial  

 
 
 
 
autocorrelation analysis. Entries in matrix were 1, if two health 
centers shared a common Thiessen polygon boundary and 0 
otherwise. Next, the linkage structure for each surface was edited 
to remove unlikely geographic neighbors to identify pairs of health 
centers sharing a common Thiessen polygon boundary (Liang and 
Zeger, 1986; Griffith and Peres-Neto, 2006; Pielou, 1969; 
McCullagh and Nelder, 1989; Fotheringham, 1993; Wintle and, 
Bardos 2006).  Eigenvectors of a modified version of the spatially 
weighted matrix was then used to furnish synthetic variates to 
determine distinct MDR-TB map patterns representing the full range 
of autocorrelation possibilities. Attention was restricted to those 
map patterns associated with at least a minimum level of spatial 
autocorrelation, which, for implementation purposes, was defined 

by |MCj/MCmax| > 0.25, where MCj denoted the jth value and MCmax, 

the maximum value of MC. This threshold value allowed two 
candidate sets of eigenvectors to be considered for substantial 
positive and substantial negative spatial autocorrelation 
respectively. 

Extending the findings of de Jong et al. (1984) and  Tiefelsdorf 
and Boots (1995) we established a set of MC values that was 
related to matrix (I _ 11Τ/n)C(I _ 11Τ/n), where C  was a 0/1 binary 
geographic connectivity weights matrix, I was an n-by-n identity 

matrix, 1 was an n-by-1 vector of ones, T was the matrix transpose, 
and, vector  Y  was the pre-multiplied  georeferenced data    
matrix (I  _  11Τ/n).  In practice, these MC values are related to the  
binary geographic connectivity matrix C itself, after the principal 

eigenvalue has been replaced with 0 (Griffith and Amrhein, 1997). 
The decomposition discussed by Tiefelsdorf and Boots furnished a  
basis for the eigenfunction decomposition approach outlined here. 
In this research the decomposition expressed a given MI value as a 
weighted sum of the eigenvalues of matrix (I _ 11Τ/n)C(I _ 11Τ/n). 

Additionally, our model revealed that the upper and lower bounds 
for the spatial matrix generated using MC was rendered by 

 11max Wn T  and  11min Wn T  where 
max  and min  

which were the extreme eigenvalues of HWH . Hence, in 

this research, the eigenvectors of   were vectors with unit norm 
maximizing MC. The eigenvalues of this matrix were equal to MC of 

spatial autocorrelation post-multiplied by a constant. Eigenvectors 
associated with high positive (or negative) eigenvalues have high 
positive (or negative) autocorrelation (Griffith, 2003).  

The diagonalization of the spatial weighted matrix generated from 
the clinical and environmental-sampled MDR-TB explanatory  
covariates  coefficients consisted of finding the normalized vectors , 

stored as columns in the matrix  nuuU 1 , which 

satisfied: 
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(Griffith, 2003). The double centering of   implied that the 

eigenvectors iu  generated from the sampled MDR-TB covariates 

were centered and that at least one eigenvalue was equal to zero. 
Introducing these eigenvectors in the original formulation of MC led 
to:

   

 
Hxx

xuux

W

n

Hxx

xUUx

W

n

Hxx

HWHxx

W

n
xI

T

n

i

T

ii

T

i

TT

TT

TT

T

T





 1

111111



    

(3) 

                                                

 

 
Considering the centered vector Hxz   and using the properties 

of idempotence of H , Equation (2.3) was equivalent to:
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As the eigenvectors 
iu  generated from the eigendecomposition of 

the spatially weighted matrix and the vector z were centered, 
Equation (2.4) was then rewritten as:
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In this research r  was the number of null eigenvalues of 

 1 r . These eigenvalues and corresponding eigenvectors 

were removed from   and U  respectively. Equation (2.5) was  

then equivalent to:
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Moreover it was demonstrated that  MC for a given eigenvector 
iu  

generated from the clinical and environmental sampled MDR-TB 

covariates was equal to     i

T

i WnuI 11  so the equation was 

rewritten:
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The term  zucor i ,
2

 represented the part of the variance of 

z  that was explained by iu  in the spatiotemporal MDR-TB model 

using iiiuz   . Estimation of covariance matrices is needed 

in the construction of confidence regions for unknown parameters, 
hypothesis testing, principal component analysis, prediction, 
discriminant analysis among others (Cressie 1993).This quantity 

was equal to  zni var2 . By definition the eigenvectors iu  

were orthogonal and therefore regression coefficients of the MDR-

TB model was verified employing iiiuz    were those of the 

multiple regression model were quantified by 

   rnrnii uuUz  . 

The distribution of the error residuals in the autocovariance matrix 
of the spatiotemporal MDR-TB was then quantified. The maximum 

value of I  was obtained by all of the variation of z  as explained 

by the eigenvector 1u   which corresponded to the highest 

eigenvalue 1  in the autocorrelation error matrix. In this research, 

  1,2 zucor i
 (and   0,2 zucor i

 for 1i ) and the maximum 

value of I , was deduced for Equation (2.7), which was  equal to 

 111max WnI T
.
 The minimum value of I  in the error matrix 

was   obtained  as  all  the  variation  of,  z   was  explained  by  the  
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eigenvector 
rnu 

 corresponding to the lowest eigenvalue 
rn  

rendered from the MDR-TB model. This minimum value was equal 

to  11min WnI T

rn  . If the clinical and environmental sampled 

predictor variable was not spatialized, the part of the variance 
explained by each eigenvector was equal, on average, to 

  11,2  nzucor i
. Because the clinical and environmental-

sampled MDR-TB explanatory covariates in z  were randomly 
permuted, it was assumed that we would obtain this result.  In this 

research the set of !n  random permutations, revealed that  
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We also used a Residual MC Minimization criterion 

suggested by van Tiefelsdorf and Griffith (2007) to further 
decompose the MC generated from the spatial decomposition of 
the sampled MDR-TB predictor variables to detect hidden NSA in 
the clinical and environmental data. The MC expected value for 
residuals from a linear spatial filter analyses was constructed with 
the eigenvectors from the MDR-TB data analyses using: 
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where X=1Ep was a covariate matrix, 1 was an n-by-1 vector of 
ones, C was the binary geographic weights connectivity matrix 
when , cij = 1 but only  if, georeferenced  health centers i and j were 
adjacent, and cij = 0 otherwise; 1

T
C1 counted the number of ones in 

the spatially weights matrix, T denoted matrix transpose, TR 
denoted the matrix trace operator, Ep was the n-by-P matrix of 
selected eigenvectors, kj was the eigenvalue corresponding to the 

jth eigenvector appearing in the SF 







 jTi

C

n
MC 

11
; H was 

the number of selected eigenvectors portraying PSA, K – (H + 1) 
were the number of selected eigenvectors classified as 

compensatory and P – K were the number of selected eigenvectors 
portraying NSA in the MDR-TB model residuals generated from the 
spatial filter analyses. The right-hand side of Equation 2.8 then 
contained three terms. The first represented the expected value of 
MC for the PSA uncovered with the restricted candidate set of PSA 
eigenvectors; the second represented the expected value of MC for 
the additional PSA eigenvectors selected to counterbalance 
selection of NSA eigenvectors; and, the third represented the 
expected value of MC for the eigenvectors capturing hidden NSA. 

Equation 2.9 then indicated that when the residual MC value was 
positive and a hidden NSA spatial filter moved the corresponding 
residual   MC   expected   value   back  toward  zero,  but  at  a  rate 
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Figure 3. 1 km grid-based algorithm for Canto Grande Health Center with display of MDR-TB 
prevalence rate. 

 

 
 

discounted by the denominator adjustment (that is, the additional 
subtraction of P – K). Meanwhile, the residual MC for a spatial filter 
was given by: 
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where MCY denoted the MC for the georeferenced response 
variable Y, MCY denoted the MC for a constructed spatial filter, and 

bj denoted the linear regression coefficient of the jth eigenvector. 
In this research all spatially filtered MDR-TB data in SAS/GIS® 

were integrated with SAS® application, using SAS/EIS. SAS/GIS
®
 

allowed for the creation and modification of the MDR-TB maps, as 
well as interactive feature selection and exploration. Typically, 
SAS/GIS

® 
application sessions, driven from SAS/EIS

®
or SAS/AF

®
, 

provide powerful SAS Component Language (SCL) components 
and data step processing capabilities for manipulating data, such as 
theme datasets utilized in disease mapping (Jacob et al. 2010a). 
The SAS/GIS

® 
module allowed for the creation and modification of 

the MDR-TB maps to accurately display results, as well as 

interactive feature selection and exploration of each georeferenced 
health center. Spatial information, of each individual health center 
was imported interactively and in a batch mode.  

Additionally, Proc MAPIMPORT was used to import the shapefile 

data created from the MDR-TB data into a SAS/Graph as map 
datasets.  The geographic tables generated, however, had to be 
processed to identify the coordinates of each health center, with 
attribute tables being joined to the sampled MDR-TB explanatory 
covariates for statistical analyses and cartographic display. 
Additionally, the SAS/GIS

®
 program action linked each table 

generated with a subset of key predictor variables associated to 
each sampled Health Center. Thematic map layers were  then used 
to provide more detail for each table. In this research SAS/GIS® 
used SAS/SHARE to open all datasets, allowing GIS applications to 
simultaneously read and update all data generated.  

 
 

RESULTS 
 
A grid-based algorithm and a 1 km buffer generated in an 
ArcGIS

®
 geodatabase, overlaid on the QuickBird visible 

and NIR data identified all health centers in the SJL study 
site.  Each grid cell within the matrix contained an 
attribute value (MDR-TB covariate coefficient value), as 
well as location coordinates. The spatial location of each 
cell was implicitly contained within the ordering of the 
matrix. The health center with the highest MDR-TB 
prevalence rate was Canto Grande (9.3), while the lowest 
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Table 2. Global spatial analyses of MDR-TB prevalence rates by Health Centers in the San Lurigancho study site.  
 

Study site n Transformation MC sMC GR 

San Lurigancho 120 LN(count + 1.5) 0.58 0.06 0.81 
 

LN, Natural logarithm; MC, Moran coefficient; sMC, the standard error of the MC; GR, geary ratio. 
 
 
 

Table 3. Poisson spatial filtering model results for MDR-TB 

prevalence rates by Health Centers in the San Lurigancho study 
site. 
 

Spatial statistics Model output 

SF: No. of eigenvectors 7 

SF: MC 0.03 

SF: GR 0.68 

SF pseudo-R
2
 0.32 

Positive SA SF: No. of eigenvectors 2 

Positive SA SF: MC .899 

Positive SA SF: GR 0.06 

Positive SA SF pseudo-R
2
 0.04 

Negative SA SF: No. of eigenvectors 3 

Negative SA SF: MC -0.48 

Negative SA SF: GR 0.63 

Negative SA SF pseudo-R
2
 0.29 

Deviance statistic 1.03 

Dispersion parameter 0.11 
 

MC, Moran’s coefficient; GR, Geary’s ratio; SF, spatial filter; SA, 
spatial autocorrelation; A pseudo-R

2
 is the squared correlation 

between observed and GLM-predicted counts. 
 
 

 
Table 4. Poisson spatial filter (SF) generalized linear mixed 

model (GLMM) random effects for MDR-TB prevalence rates by 

Health Centers in the San Lurigancho study site 
 

Statistics  Model ouput 

Mean 0.03 

Standard deviation 0.31 

MC 0.14 

GR 0.78 

Pseudo-R
2
 0.86 

Changes in significance (using a 
0.10 level) of eigenvectors 

none 

 

MC, the Moran coefficient; GR, the geary ratio; SA, spatial 
autocorrelation. 

 
 
 

MDR-TB resistant rate was Campoy Altos (0.5) (Figure 
3). 

An examination of the model output from the Poisson 
regression analyses indicated that significant over-
dispersion was present in the sampled MDR-TB data. 
Therefore, a negative binomial was used to model the 
overdispersed Poisson data. Negative binomial 
regression models estimate a dispersion parameter that 
can be used to remove the effects of overdispersion and 

provide   more   accurate   estimates   of   standard  error  
(Kaiser and Cressie, 1997). The negative binomial was 
derived as a Poisson–gamma mixture and as a GLM. 
PROC GENMOD expresses the variance of the response 
for the negative binomial as variance(y) = μ + kμ2, as 
opposed to the more common notation, (y) = μ + μ2/vμ 
(Pielou, 1969).  In this research the difference in notation 
was trivial (k = 1/v). 

The straightforward derivation of the linear MDR-TB 
model, from the negative binomial probability distribution 
function, did not, equate with the Poisson–gamma 
mixture-based version of the negative binomial. Rather, 
canonical link and inverse canonical link were converted 
to log form. A GLM-based negative binomial was 
produced that yielded identical parameter estimates 
based on the sampled MDR-TB covariates to those 
calculated by the mixture-based model. As a non-
canonical linked model, however, the standard errors did 
differ slightly from the mixture model. A maximum 
likelihood estimator used an observed information matrix 
to produce standard errors. The GLM algorithm produced 
standard errors, based on the expected information 
matrix using the difference in standard errors in the 
negative binomial analyses. The GLM negative binomial 
algorithm was amended to allow production of standard 
errors based on the sampled MDR-TB data. The amen-
ded GLM-based negative binomial produced identical 
estimates and standard errors to that of the mixture-
based negative binomial analyses. The log-negative 
binomial data was then imported into an ArcGIS

®
 

database, using the spatial analytical tools in SAS/GIS
®
. 

The spatial autocorrelation analysis rendered the 
results included in Table 2. Results indicated that negli-
gible PSA was detected in the geographic distribution of 
the clinical and remote-sampled MDR-TB predictor 
variables. Estimation results from SAS PROC GENMOD 
for these models appear in Table 3. Positive spatial 
autocorrelation and NSA spatial filter component pseudo-
R

2
 values are reported. These values did not exactly sum 

for the complete spatial filter; however, the values were 
very close to their corresponding totals, suggesting that 
any induced multicollinearity was quite small. 

Rather than switching from a Poisson to a negative 
binomial probability model, the GLMM was extended to 
account for latent non-spatial correlation effects, as well 
as to allow inferences to be drawn for a much wider 
range of geographic sampling configurations. The GLMM 
included a random effect, which was specified in this 
research as a random intercept that was assumed to be 
normally  distributed  with  a   mean  of   zero, a  constant  
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Table 5.  A Residual MC minimization of the spatially filtered MDR-TB covariates in the SJL study site.    

     

Criterion 
Positive eigenvectors only Positive and negative eigenvectors 

# Eigenvectors Residual # Eigenvectors Residual|zMC| 

Min-Max          7       0              7 0.4 

 
 
 
variance, and zero  spatial  autocorrelation.  This  varying 
intercept term compensated for the non-constant mean 
associated with a negative binomial model GLMM 
specification. The spatial structuring of random effects 
was than implemented with a conditional autoregressive 
model which was generated with a spatial filter.  

The GLMM estimation results from SAS PROC 
NLMIXED appear in Table 4. Notably, an extremely 
strong linear correlation existed between the negative 
binomial dispersion parameter estimate reported in Table 
4 and the random effects variance estimate reported in 
Table 3. These spatial autocorrelation components 
suggested the presence of roughly 14% redundant 
information in the sampled datasets.  

The Residual MC minimization criterion analyses 
rendered the same set of PSA eigenvectors from the 
spatial decomposition of the Moran’s I statistic in a 
stepwise outcome but in a different order. Spatial filters 
corresponding to the tabulation of eigenvectors appear in 
Table 4. No compensatory eigenvectors appeared in the 
residual MC minimization selection criterion. There were 
no eigenvectors portraying NSA in the model output 
(Table 5). 
 
 

DISCUSSION  
 

In this research, we demarcated NSA spatial filters in a 
MDR-TB regression-based model using a Residual MC 
minimization criterion and a candidate set of eigenvectors 
from an eigenfunction decomposition algorithm. A 
Thiessen polygon surface was constructed for partioning 
the sampled MDR-TB data in ArcGIS using the MC 
criterion based on the spatial configuration of the health 
centers at the study site. Spatial filters were constructed 
from linear combination of eigenvectors calculated from 
the connectivity matrix representing a surface partitioning 
for a spatial dataset. In our spatial filtering analyses of the 
clinical and environmental MDR-TB data, synthetic 
variates from a set of eigenvectors  were extracted with 
the matrix (I - 11

T
/n) C (I - 11

T
/n) which  appeared in the 

numerator of the MC index. This matrix decomposed the 
Moran’s I statistic generated using the sampled MDR-TB 
explanatory covariate coefficients for generating a robust 
Poisson spatial filtering GLMM. The regression residuals 
represented spatially independent variable components. 
Mean, variance and statistical distribution characteri-
zations and descriptions of the georeferenced random 
variables and their interrelationships were then derived in 
terms of the eigenfunction spatial filter. The  eigenvectors 

described the full range of all possible mutually orthogo-
nal MDR-TB map patterns based on the spatiotemporal-
sampled clinical and environmental covariate coeffcients. 
The ratio of the areas of the Thiessen polygons to the 
gridded areas of their corresponding georeferenced 
health centers were then evaluated for global and local 
negative dependencies. When the ratios of the actual-to-
Thiessen-polygon area ratio were spatially quantified no 
NSA was detected in the model.    

The pioneering nature and the conceptualization of our 
analysis presented in this research alludes to many 
themes meriting future spatiotemporal MDR-TB research 
in the SJL study site. For example, hidden NSA may be 
detected and qualitatively assessed in a spatiotemporal 
MDR-TB model which may signify something beyond the 
more obvious model misspecifications. For example, 
seasonal MDR-TB model misspecifications may be 
associated with some anthropogenic population-
concentration mechanism at the SJL study site (e.g., 
rural-to-urban migration) that may require further 
quantitative monitoring and thereafter inputting as an 
independent covariate in a robust regression-based 
inference model. For instance, as people move into areas 
with little access to piped water as in shantytowns, there 
may be wider communal use of living quarters at the SJL 
study site. Additional socio-geographic dependent 
explanatory covariate coefficients therefore, may add 
more precision to a predictive spatial autoregressive 
MDR-TB transmission-oriented model.  

Overall, general findings in this research suggest 
several rules that should help guide a TB researcher in 
modeling clinical and environment sampled explanatory 
covariate coefficients in urban environments. Foremost, 
switching between spatial and non-spatial regression 
model specifications should yield similar intercept values. 
Second, non-normal sampled MDR-TB data are best 
described with non-normal probability models. Third, a 
Gaussian approximation spatial filter model can be used 
to quickly explore whether both PSA and NSA compo-
nents underpin a MDR-TB map; a spatial filter model 
specification enables a detailed understanding of latent 
spatial autocorrelation. And, fourth, a Residual MC mini-
mization criterion can be used to determine if hidden NSA 
furnishes a diagnostic for spatiotemporal MDR-TB model 
misspecification.  

Further, it is important to note that an autocorrelation 
graph can be employed to determine if a leptokurtic 
distribution is symmetrical in shape and similar to a 
normal distribution, while  simultaneously  quantitating   if 



 
 
 
 
the center peak is much higher; that is, if there is a higher 
frequency of the sampled MDR-TB clinical and environ-
mental covariate coefficients values near the mean. 
Moran scatterplot and prediction intervals can capture 
movements from a platykurtic to leptokurtic profile 
(Anselin, 1995). Leptokurtic distributions in robust 
spatiotemporal MDR-TB data would then be indicated in 
the model by higher central peak and larger tails than a 
normal distribution that persists over time. Theoretically, 
this output would be counter to the predictions for random 
walks in homogeneous time series-dependent MDR-TB 
population database as the central limit theorem (CLT) 
would predict that the distribution of the distances moved 
by infected individuals which would approach normality 
with repeated draws (e.g., seasonal samplings), if the 
draws are from the same population. In probability theory, 
the CLT states that, given certain conditions, the mean of 
a sufficiently large number of independent random 
variables, each with finite mean and variance, will be 
approximately normally distributed (Rice, 1995). Okubo 
(1980) and Skalski and Gilliam (2000) proposed a 
population heterogeneity hypothesis to explain leptokurtic 
distributions, drawing from the fact that leptokurtic 
distributions can be generated as the composite of two or 
more normal distributions with similar means and 
contrasting variances. Heterogeneity in infected MDR-
TB-related population movement behavior (e.g., from 
residence to employment sites and primary school 
locations) as revealed by scatterplots based on 
leptokurtic distributions could then help derive and 
quantitate important differences among sexes, age, or 
social status and disease transmission vulnerability. For 
example, other clinical explanatory covariate coefficients 
representing behavioral or psychological variables (e.g., 
homelessness, alcoholism) and/or more environmental 
proxy variables associated to MDR-TB transmission (e.g. 
Euclidean distance measurements to prison) may also 
reveal differences in MDR-TB transmission-oriented 
variables within a lagged scatterplot. Robustness testing 
differences in the variances of the normal distributions of 
any spatiotemporal-sampled MDR-TB covariates in-
fluenced by infected population movement distances, for 
example, could produce, leptokurtic patterns when 
plotted together.  

Interestingly, the spatial analyses in this research 
initially produced platykurtic distributions, but the 
autocorrelation died off exponentially and converged to a 
Gaussian relatively fast. Population heterogeneity 
produces leptokurtic distributions of distance moved 
when a subset of the individuals consistently move longer 
distance than others (Skalski and Gilliam, 2000; Fraser et 
al., 2001). When the heterogeneity is in the landscape, 
not in the individuals, the departures from a Gaussian will 
eventually be washed out because a particular individual 
will switch its movement behavior as it encounters 
patches of different sampled covariates (Betts, 2009).  

The speed of convergence  is  related  to  how  fast  the 
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individuals “forget” their previous direction 
(Fotheringham, 2002). In this research, the distribution of 
step vectors generated from the regressed MDR-TB 
covariate coefficients not only affected the rate of 
convergence but also the way in which convergence was 
achieved.  

A formal treatment of the rate of convergence to a 
Gaussian in heterogeneous landscapes such as the SJL 
study site is beyond the scope of this research, but an 
inspection of the simulation results  revealed that the 
decay of kurtosis with time may be described using our 
model framework. Thus, the rate of convergence to a 
Gaussian will also be affected by skewness in 
spatiotemporal MDR-TB-related movement vectors. In 
this work, the occurrence of skewed distributions of 
distance movements at the SJL study site was minimized 
since there was no external bias in movement direction. 
The Bayesian Poisson model estimated rates of resis-
tance to each drug by characterizing the endogenous 
counts, which was thereafter classified by the sampled 
health center data. For pathogens that must be treated 
with combinations of antibiotics and acquire resistance 
through genetic mutation, knowledge of the order in 
which drug-resistance mutations occur may be important 
for determining treatment policies. (Reichman et al., 
1979) Our Bayesian approach fit branching tree models 
which revealed that isoniazid and rifampicin were 
important for MDR-TB treatment in the SJL study site. 
The standard "short" course treatment for TB-related 
diseases is isoniazid along with pyridoxal phosphate to 
obviate peripheral neuropathy caused by isoniazid, 
rifampicin, pyrazinamide, and ethambutol for two months, 
then isoniazid and rifampicin alone for a further four 
months (Iseman 1993).  
  The residual output from the model alludes to many 
Bayesian themes for future predictive spatiotemporal 
MDR-TB research in the SJL study   site. For example, 
once a robust Bayesian probabilistic estimation matrix 
renders an autoregresssive unbiased estimator it may be 
kriged using a deterministic interpolator (e.g., inverse 
distance weighting matrix) which may be employed for 
time series multivariate prediction of sampled clinical and 
environmental explanatory covariate coefficients. Since 
kriging can also be as a form of Bayesian inference 
(Griffith 2003), a TB analyst could hypothetically begin 
with a prior distribution over the functions rendered from 
regressed seasonal-sampled explanatory covariate 
coefficients. This prior would then be made to take the 
form of a Gaussian process in the spatiotemporal MDR-
TB model. Thus, N samples from a function in the model 
would be  normally distributed, whereas, the covariance 
between any two  of the samples would be  the 
covariance function or kernel of the Gaussian process 
evaluated at a spatial location (for example, georef-
erenced health center) where the  points were sampled,  
Next, a set of values would then be quantified whereby  
each value would be associated with the spatial  location.  

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Prior_probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Kernel_(set_theory)
http://en.wikipedia.org/wiki/Set_(mathematics)
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Thereafter, a new sampled clinical value can be predicted 
at any new spatial location, by combining the Gaussian 
prior with a Gaussian likelihood function for each of the 
observed MDR-TB –related Bayesian values. The 
resulting posterior distribution would also be Gaussian, 
with a mean and covariance that would then be simply 
computed from the observed values, their variance, and 
the kernel matrix derived from the prior. 
    In conclusion, the spatial analyses of the clinical and 
environmental covariates sampled in the SJL study site 
revealed PSA in all models tested; similar log-MDR-TB 
prevalence rates of the health centers aggregated in 
geographic space. Our spatial filter model specification 
enabled an eigenfunction decomposition of the regression 
residuals, to yield eigenvectors with latent spatial 
autocorrelation in the sampled data. The orthogonal para-
meter estimation algorithm allowed each parameter in the 
non–linear difference equation model to be estimated 
sequentially and independently of the other explanatory 
covariates in the model. The spatial filtering analyses 
transformed all variables containing spatial dependence 
into covariates free of spatial dependence, by partitioning 
the original georeferenced attribute variable into two 
synthetic variates: (1) a spatial filter variate capturing 
latent spatial dependency, that otherwise would have  
remained in the response residuals, and (2) a non-spatial 
variate that was free of spatial dependence. These 
spatial autocorrelation components suggested the 
presence of roughly 14% redundant information in the 
clinical and environmental sampled data. The residual 
MC minimization criterion analyses found no evidence to 
suggest that there were negative dependencies present 
in the model residuals. The algorithm, however, provided 
unbiased estimates in the presence of correlated noise 
and provided an indication of which terms to include in 
the final model. Linear mixed models, autocovariate 
regression, spatial eigenvector mapping and a residual 
MC Minimization criterion can be used for qualitatively 
assessing latent autocorrelation error coefficients in 
empirical datasets of spatiotemporal-sampled MDR-TB 
clinical and environmental explanatory covariate 
coefficients. A lagged-scatterplot can then allow the 
autocorrelation error coefficients to be displayed .This 
information can be used for analyzing clinical and 
environmental sampled MDR-TB data and for 
implementing control strategies in the SJL study site.  
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