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Though tuberculosis (TB) prevalence has decreased dramatically in the United States, its continual 
presence remains a threat to those whose needs are often overlooked. Those already impacted by 
poverty are the most vulnerable to TB, and stand to bear the worst health impacts, should they contract 
this disease. Mathematical modeling and spatial analysis have become invaluable tools in TB 
surveillance monitoring and elimination efforts. In this contribution, we demonstrate the capability of 
employing a time series, interpolative, vulnerability model to forecasted, state-level TB prevalence in 
the United States by determining areas influenced by poverty, as well as existing TB data acquired from 
the Center of Disease Control (CDC). The random effects term in this orthogonal eigenvector spatial 
filter model was comprised of spatially structured and stochastic effects (that is, spatially unstructured) 
terms, which were substituted for diagnostic, remote, and clinical covariates in our model. It was 
assumed that random effects terms in the TB risk model had followed a Gaussian frequency 
distribution with a mean of zero. The estimate equations were as follows: 
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.  The resulting estimated number of cases 

for a given state and year was p̂Population0.99960.0885n̂TB  .  The Moran coefficient (MC) was 0.66, 

and its Geary Ratio (GR) was 0.35. The spatially unstructured random effects terms have only trace 
levels of spatial autocorrelation, with MC = 0.02, and Gr = 0.89.  Thus, the assumption of non-zero 
spatial autocorrelation was violated.  The forecast revealed possible hyperendemic transmission of TB 
in non-coastal, Northwestern states, as well as in some Northeastern states.  As such, more 
intervention efforts should be directed towards these areas. 
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INTRODUCTION 
 
Despite promising  headway  towards  the  elimination  of  tuberculosis in the United States in recent decades, there  
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has been recognized a disconcerting stagnation in what 
had been an encouraging downward trend. The year 
2014 marked a record low for new cases of TB in the US 
Kang et al., 2014). Still, the decline in incidence from 
2013 to 2014 represents the least dynamic change in 
over ten years (Scott et al., 2015).  With immigration, 
both documented and undocumented, as well as forced 
human displacement are frequently cited explanations for 
the persistence of US tuberculosis infections, and 
attention is often directed toward states with higher 
immigrant populations, particularly when the countries of 
origin for larger subpopulations are known to be of 
greater TB endemicity (Greenwood and Warriner, 2011; 
Ricks et al., 2011; Bennett et al., 2014; Davidow et al., 
2015; Stennis et al., 2015). Other discussions include 
transmission among those experiencing homelessness 
(CDC, 2012; Feske et al., 2013) and outbreaks among 
those inhabiting long-term care facilities (Cavanaugh et 
al., 2012). Appropriate screening, treatment, and other 
interventional measures are certainly necessary in all 
subpopulations deemed to be at-risk, but there may yet 
be pockets within the US population overall which are not 
being reached. These pockets may include rural areas 
where, despite a comparatively smaller population size, 
crowded housing and lack of mobility are still experienced 
by those living in poverty and extreme poverty.  Such 
living conditions are endured by many American Indian 
populations inhabiting reservations (Durand, 2015), a 
subject that often continues to be evaded in public 
discourse.  In addition to those born in the US, more 
contemporary trends in immigrant dispersion to ―new 
immigrant destination‖ sites should also be taken into 
account for TB transmission to be more thoroughly 
understood and predicted.  There may also be yet risk 
factors that have not been identified which may allow for 
better prediction of higher TB prevalence. Spatially 
speaking, if demographic and migration patterns of today 
are not incorporated into predictive analysis, resources 
for TB intervention may be allocated around the TB 
challenges of a different time. Spatial analysis and 
mathematical modeling of tuberculosis transmission 
incorporating known risk factors, as well as patterns of 
movement using bacillus genotyping as an indicator, is 
already a well-recognized area of study (Ferdinand et al., 
2013; France et al., 2015; Said et al., 2016).  

As Houben et al. (2014) noted, mathematical modeling 
of interventional strategies represents a viable alternative 
to more expensive, time-consuming, and potentially 
unethical randomized control trials. These studies tend to 
be conducted in countries where TB is perceived as a 
greater threat than in the United States, and may prove 
quite useful in places of higher HIV prevalence, given that 
TB is one of the most common deadly opportunistic 
infections in HIV positive individuals (Houben et al., 
2014).  Other studies concerned themselves with issues 
specific to the challenges of a particular local area, 
including Ge et al. (2015) study of the role of regional 
transportation   and   high   and   low   elevation    in    the 

 
 
 
 
Shandong Province of China, as well as Munch et al. 
(2003) investigation of the spatial distribution of TB in 
Cape Town, South Africa, including cluster analysis of 
shebeens (neighborhood bars), overcrowding, and 
unemployment (Winston and Navin, 2010).  Jacob et al. 
(2010) and Jacob et al. (2013) investigated multi-drug 
resistant tuberculosis and its dispersion through the 
community of San Juan de Lurigancho in Lima, Peru, 
where prison visitation was proved key to transmission. 

To our knowledge, there are no existing empirical 
models for the United States which geostatistically 
address country-wide trends.  A predictive, empirical 
approach which encompasses space, as well as time, in 
prevalence estimations may allow for a more judicious 
allocation of resources and interventions toward the 
elimination of tuberculosis in the United States. To date, 
a promising study by Feske et al. (2011) utilized kernel 
density maps in ArcGIS to identify statistically significant 
clusters for TB transmission in Harris State, Texas. We 
seek to expand upon the merits of this approach in the 
creation of a TB transmission risk model for the United 
States.  To accomplish this, we shall:  1) produce 
Poissonian and negative binomial regression models to 
determine frequentist pseudo R

2
 estimates, and 2) 

construct orthogonal spatial filter eigenvectors using a 
decompositional algorithm for cartographically displaying 
predictive abundance values. When creating a risk model 
for tuberculosis, and other communicable diseases, 
several measures should be taken to ensure optimal 
accuracy. For a given form of statistical analysis, certain 
assumptions are made concerning the distribution used. 
Any violations of these assumptions may result in 
misspecifications in the model, the implication being that 
limited resources may be allocated less efficiently.  
Spatial analysis represents a special case of predictive 
model construction which is better able to accommodate 
both multicollinearity and heteroscedasticity, as well as 
identify response variables. We further contend that 
assuming normality is largely impractical for the purposes 
of spatial epidemiological analysis. 
 
 
METHODOLOGY 
 
Endemic, TB-related, state-level, parameterizable data including 
prevalence, race, gender and other socio-demographic data were 
acquired for each state from 2000 to 2014 from Center for Disease 
Control (CDC). FLEXIBLE|FLE in SAS 9.2® (Carey, North Carolina) 
was employed to request the flexible-beta method. The clustering 
methods in SAS include average linkage, the centroid method, 
complete linkage, density linkage (including Wong’s hybrid and k-th 
nearest-neighbor methods), ML for mixtures of spherical, 
multivariate, normal distributions with equal variances but possibly 
unequal mixing proportions, the flexible-beta method, McQuitty’s 
similarity analysis, the median method, single linkage two-stage 
density linkage, and Ward’s minimum-variance method 
(http://ftp.sas.com). PROC CLUSTER displayed the table of 
eigenvalues of the covariance matrix for the canonical variables. 
Generally, in a PROC CLUSTER table output the first two columns 
list each eigenvalue and the difference between the eigenvalue and 
its successor, while the last two columns display the individual and  
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Table 1. Parameterizable clinical, field and remote covariate samples within stratified 
clusters of TB data in the state study sites as entered in SAS®. 
 

Variable Description Units 

GCP Ground control points Decimal-degrees 

EDUC El Meters 

RCE Race Percentage 

GEN Gender Percentage 

AGE Age Percentage 

PPOS Previous positive cases Numeric value 

ECON Income Percentage 
 
 
 

cumulative proportion of variation associated with each eigenvalue 
(www.sas.com). In the TB distribution model, the squared multiple 
correlations, pseudo R2, was the proportion of variance accounted 
for by the stratified, state-level, geo-referenceable clusters. The 
approximate expected value of pseudo R2 was then given in the 
column labelled ―ERSQ‖. The next three columns displaced the 
values of the cubic clustering criterion (CCC), pseudo F (PSF), and 
t2 (PST2) statistics. These statistics were useful in quantitating the 
number of specified predictive, state-level, parameterizable, intra-
cluster, covariate estimators. One method of judging the number of 
clusters in a dataset in PROC CLUSTER is to examine the pseudo 
F statistic (PSF) (www.sas.com).  The CLUSTER procedure 
hierarchically clustered the state-level observations using SAS 
data. The data were then cartographically illustrated by mapping 
the endemic geocoordinates and squaring Euclidean distance 
measurements within a flexible-beta method in PROC CLUSTER.  

The PROC CLUSTER statement initiated the procedure, which 
digitally specified a clustering method based on state-level 
prevalence measures, and then optionally specified each 
explanatory cluster covariate coefficient. The PROC CLUSTER 
statement specified a clustering method, and optionally specified 
details for clustering methods, data processing, and then displayed 
an output. The model estimated the number of possible 
transmission centers a person may encounter per state.  This was 
calculated by multiplying the proportional prevalence probability 
estimates with the proportion of gridded state geolocations stratified 
by economics and ancestry of origin, and their human population 
distribution. The agglomerative, hierarchical clustering procedure 
then utilized geosampled, state-level observations to create 
geospatial clusters based on asymptotically normalized clinical TB 
data in a cluster by itself. Clusters were then merged to form a new 
cluster that replaced the two old clusters, and merging of the two 
closest clusters was repeated until only one cluster was left. 

Beta was set at -100 for epidemiological forecasting cluster-
based analyses in SAS PROC CLUSTER. The flexible-beta method 
began by specifying METHOD=FLEXIBLE. PROC CLUSTER then 
created an output, interpolative, time series, asymptotically unbiased 
dataset to reveal a cluster hierarchy of normalized, state-level data 
feature attributes based on parameterized, covariate coefficient, 
and estimator values. Since the explanatory estimators were 
deemed to be equally important, we employed the STD option in 
PROC CLUSTER to standardize the cluster-based predictor 
covariate coefficients to mean 0 with standard deviation. Covariates 
with large variances tended to have a greater effect on the resulting 
geospatialized TB clusters than variables with small variances.  
However, if all coefficients are considered equally important in the 
model, the STD option in PROC CLUSTER standardizes the geo-
spatiotemporally geosampled variables.  

The STDIZE procedure standardized the covariate estimators in 
the SAS dataset by subtracting the state-level, stratified, gridded 
measures, and then dividing them by a scale measure.  Finally, a 

unique identifier was incorporated for each cluster. The PLOTS 
option in the PROC CLUSTER statement produced plots of the 
cubic clustering criterion (CCC), the pseudo F (PSF) statistic, and 
the pseudo (PST2) statistic, which were then all plotted against the 
number of geosampled, state-level TB clusters. 

In order to reduce the likelihood of chaining among the TB 
cluster-based dataset of predictor covariates, a partition that best 
represented the estimates was identified. This was performed by 
finding the intersection between a manageable number of state-
level, cluster-based, varying and constant, explanatory covariate 
coefficients and then auto-probabilistically and auto-regressively 
quantitating them with large jumps in the normalized, Euclidean 
distance measurements in PROC CLUSTER. The cluster-based, 
covariate estimators were plotted against ArcGIS-based, Euclidean 
distance measurements. This revealed a clear flattening of the 
curve in the digitally overlain data in PROC CLUSTER, indicating 
that adequate separation of the parameterizable clustering 
covariate coefficients could not be achieved beyond a specific 
georeferenced capture point (for example, Veteran Administration 
Hospital). The number of interpolatable, geosampled TB 
transmission clusters in the data was also determined by 
preliminary evaluations with varying numbers of cluster solutions 
aimed at avoiding trivial error.  Evaluation was done by plotting the 
state-level TB data in discriminant function space in PROC 
CLUSTER, and seeking adequate separation among group 
centroids. In order to compute meaningful standardized rates, the 
individual georeferenced state-level predictors were aggregated 
geographically into high-low stratified clusters in ArcGIS.  
 
 
Environmental data analyses 
 
Univariate statistics and regression models were generated by 
employing the data stored in PROC CLUSTER for regressively 
summarizing the geospatially clustered covariate coefficients. We 
generated a misspecification term for constructing an 
autoregressive, time series model in SAS. Multiple data layers were 
created using different coded values for the various known data 
feature attributes. Distance measurements and endemic 
transmission foci measures were then calculated by using the WV-3 
data and the field-sampling information (Table 1). 
 
 
Regression analyses 
 
The relationship between the state-level, endemic TB data and 
each individual predictive, geospatially clustering covariate was 
investigated by single variable regression analysis in PROC NL 
MIXED. Since prevalence data are binomial fractions, a regression 
model was employed; as it is a standard practice for vulnerability 
analysis. Poisson probability regression analyses were employed to  
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infer the relationship between the TB count data variables and the 
archived empirical, clinical, field and remote-specified state-level 
characteristics (that is, independent variables) in PROC LOGISTIC. 

The regression analyses assumed independent counts (that is, Ni) 
taken at multiple geosampled, state sub-locations .,,2,1 ni   

The geo-spatiotemporal-related state-level counts were then 

described by a set of variables denoted by matrix ,iX  where a 

p1  was a vector of covariate coefficient indicator values for 

geosampled endemic transmission foci i. The expected value of 

these data was given by      ,exp  iiiii n XXX  where   was 

the vector of the parameterizable, non-redundant, geosampled 
covariates in the epidemiological,  state-level, risk model, and 

where the Poisson rates were given by      .iiiiii n XXX   

The rates parameter  ii X  was both the mean and the variance of 

the Poisson distribution for each geosampled state location i. The 
dependent variable was state-level prevalence. The Poisson 
regression model assumed that the predictors were equally 
dispersed. That implied that the conditional variance equaled the 
condition mean. Partial correlations were then defined after 
introducing the concept of conditional distributions. We initially 
restricted ourselves to only the conditional distributions obtained 

from the multivariate, normalized distributions. We noted an 1n  

random vector Z, which we partitioned  into two random vectors X 

and Y, where X was an 11 n  vector and Y was an 12 n  vector 

in the equation  .XYZ   The conditional distribution properties 

of the regressed, state-level, covariate coefficients were then 
defined. Thereafter, we partitioned the mean vector and covariance 

matrix in a corresponding manner:   21  and 

 
22122111   . This way, 1  rendered the means for 

the regressed predictor variables in the set ,1x  and 
11  along 

with the variances and covariances for set .1x  The matrix 
12  

thereafter  provided the covariances between the predictor 

variables in set 1x  and set 2x  as did matrix .
21  Any distribution 

for a subset of variables from multivariate normal, conditional on 
known values for another subset of variables has a multivariate 
normal distribution (Griffith, 2003).  

It was noted that the conditional distribution of 1x  given the known 

values for 2x  was multivariate normal with a mean vector covariance 

  .12221221matirx
211211212   x . The 

procedure employed ML estimation to find the operationalized, 
time-series, dependent, regression coefficients. The data were then 
log-transformed before analysis to normalize the distribution and 
minimize standard error. There was considerable overdispersion in 
the regression-based model residual forecasts, so a negative 
binomial model with a non-homogenous distributed mean was 
employed to quantitate the covariates associated with the 
geosampled data. Over-dispersion is often encountered when fitting 
very simple parametric models, such as those based on the 
Poisson distribution (Griffith, 2003).  

A Poisson mixture model with a negative binomial distribution 
was employed where the mean of the Poisson distribution was itself 
a random variable drawn from the gamma distribution. This 
introduced an additional free parameter in the empirical, state-level, 
TB distribution model. If over-dispersion is a feature in an 
asymptotical, predictive risk model, an alternative model with 
additional free parameters may provide a better fit (Griffith, 2003). 
Jacob et al. (2013) employed a family of negative binomial 
distributions for treating over-dispersion in an MDR-TB forecasting, 
vulnerability   model.   The   Poisson   distribution    has    one    free  

 
 
 
 
parameter and does not allow for the variance to be adjusted 
independently of the mean (Griffith, 2003). A parameterization 
technique was then employed in PROC LOGISTIC such that any 
two state-level had explanatory regressable variables p and r with 

10  p  and .0r  Lack of fit and over-dispersion can be 

assessed using the Pearson and deviance statistics available in the 
GENMOD, LOGISTIC, and PROBIT procedures 
(http://support.sas.com/kb/22/630.html). Under this parameterization, 
the probability mass function (pmf) of the predictor variables with a 

NegBin  pr,  distribution took the following form:  
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Also, an alternative parameterization was employed for quantitating 

the state-level TB data using the mean  
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where   and r were the parameters. Under this parameterization, 
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r   was generated, which resembled the 

mass function of a Poisson-distributed random variable with 
Poisson rate (i.e., . ). In other words, the negative binomial 

distribution generated from the regressed, parameterizable 
covariates converged to the Poisson distribution, and r controlled 
the deviation from the Poisson. This made the negative binomial 
habitat model suitable as a robust alternative to the Poisson 
regression-based framework for risk modeling the interpolatable, 
time-series, clinical, field and remote-specified predictors. 

The negative binomial distribution of the explanatory, state-level, 
TB covariates arose as a continuous mixture of Poisson 
distributions where the mixing distribution of the Poisson rate was a 
gamma distribution. The mass function of the negative binomial 
distribution of the geosampled transmission predictor variables then 
was written as: 
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Figure 1.  The study site consisted of the contiguous United States. 
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Spatial analyses 
 

This is represented by Figure 1. Initially, a misspecification 
perspective for the asymptotically normalized estimation models 
was generated in SAS/GIS 9.2 assuming that the geo-

spatiotemporal, risk model parameter fit was  Xy  (that is, 

regression equation). The primary function of the model generation was 

for quantitating the auto-correlated disturbances   in the residually 

forecasted, regression-based derivatives. The SAS/Graph mapping 
functionality allowed us to create choropleth, prism, block, and 
surface maps. This included the GMAP, GREMOVE, GREDUCE, 
GPROJECT and MAPIMPORT procedures. Three key techniques 
were highlighted to deliver SAS/GRAPH auto-regressable, 
predictive risk maps: Map data, Annotate and the Output Delivery 
System (ODS). The latent autocorrelation coefficients were 
decomposed into a white-noise component, ,  and a set of 

unspecified and/or misspecified model outputs that had the 
structure .



 EXBy  White noise is a univariate or multivariate, 

discrete-time, stochastic process, whose terms are independent 
and identically distributed (i.i.d.) with a zero mean (Jacob et al., 
2013).  

The Annotate facility enabled generating a special dataset of 
graphics commands from which the state-level TB graphic output 

was created. The annotate output combined with the PROC GMAP 
output generated multiple customized surface maps. The 

misspecification term was     .exptSTS   Quantification of the 

topographic patterns rendered from the distribution of the 
regressed, predictive covariates was required to describe 
independent key dimensions of the underlying spatial processes in 
the geosampled data for heuristically defining a pattern in the 
misspecification term. SAS/GIS software provided an efficient 
interactive tool for organizing and analyzing the state-level TB, 
clinical, field and remote-sampled data that was referenced 
spatially. 

A geospatialized, time series, autoregressive model was 
generated employing a predictive, specified variable Y as a function 
of a nearby geosampled variable Y in the SAS/GIS autoregressive 
model. A covariate coefficient indicator value I, an autoregressive 
response, and the residual of Y were treated as a function of a 
nearby geosampled Y residuals, as a spatially autoregressive 
(SAR) or spatial error specification. For TB transmission risk 
modeling, the SAR model furnishes an alternative specification that 
frequently is written in terms of matrix W (Griffith, 2003). As such, 
the spatial covariance of the geosampled dataset was a function of 

the matrix      ,11 WIWICDICDI   T  where T denoted 

the matrix transpose. The resulting matrix was symmetric and was 
considered a second-order specification as it included the product 

of two spatial structure matrices  ..,i.e WWT  This matrix restricted 

positive values of the autoregressive parameter to the more 

intuitively interpretable range of .1ˆ0   

Distance between the predictive covariate coefficients was 
defined in terms of an n-by-n geographic weights matrix, C, whose  

https://www.google.com/url?url=https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwiK-PO57MnJAhWFlh4KHVEQAcIQFggWMAA&sig2=QyXd8HEZJv2mZHOC9Z3jUA&usg=AFQjCNE5GQXRksbFGDw19EERY0h1g3HhhA
https://www.google.com/url?url=https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwiK-PO57MnJAhWFlh4KHVEQAcIQFggWMAA&sig2=QyXd8HEZJv2mZHOC9Z3jUA&usg=AFQjCNE5GQXRksbFGDw19EERY0h1g3HhhA
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ijc  values were 1 if the geosampled locations i and j were deemed 

nearby, and 0 otherwise. Adjusting this matrix by dividing each row 
entry by its row sum then rendered C1, where 1 was an n-by-1 
vector of ones, and subsequently converted the time series 
regression-based matrix to matrix W. The resulting SAR model 
specification with no parameterizable predictor covariates the pure 
spatial autoregression specification, then took on the form 

  ,1  WY1Y  where   was the scalar conditional mean of Y, 

and   was an n-by-1 error vector with parameters independently and 

identically distributed (normally random variates). The spatial 
covariance matrix for analyzing the state-level covariate coefficients 

was thereafter expressed employing    1Y1Y 


E

   ,21


WIWI  where  E  denoted the calculus of 

expectations, I was the n-by-n identity matrix denoting the matrix 

transpose operation and 2  was the asymptotical, 

stochastically/deterministically-related error variance. 

The TB predictive model was written as: 
,
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where p ,,1   were the empirical covariate estimators, c was a 

constant and t  was the white noise. When coupled with regression 

and the normal probability model, an autoregressive specification 
results in a covariation term characterizing spatial autocorrelation 
by denoting the autoregressive parameter with   at a conditional 

autoregressive covariance specification (Griffith, 2003). This 
specification involved the matrix  CI   where I was an n-by-n 

identity matrix. In an autoregressive expression, however, the 
optimal response variable is on the left-side of the equation, while 
the spatial lagged version of the variable is on the right side 
(Griffith, 2003). Therefore, one of the main objectives in this 
research was to bring the spatially unlagged, TB predictor variable 
y exclusively to the left-hand side of the regression equation in 
order to decorrelate the normalized state-level TB covariate 
coefficients. This was accomplished by expanding the weighted 

regression coefficient matrix term: 
  kk

k

VVI  






0

1  as an infinite 

power series, which was feasible only under the assumption that 
the underlying spatial process in the normalized, state-level TB 
datasets was stationary. The autoregressive, interpolatable, 
forecasting error model was then rewritten as 

. VXXVyy  in AUTOREG. Substituting this 

transformation rendered: 
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The misspecification term   ,,1 kV kk  remained 

uncorrelated with the explanatory variable X, as the standard OLS 
assumption of the disturbances   was uncorrelated with the 

geosampled residualized variables generated from the parameter 
estimation process. The spatial lag model was expressed as 

  . XyVI  Substituting the transformation generated:  
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The misspecification term   XV kk    ,,1 k  then 

included the exogeneous variables X.  Consequently, the state-
level variables were correlated with the misspecification term. 
Under this condition, standard OLS results for the basic regression 

model  Xy  generated from the regressed covariate 

coefficients provided biased estimates ̂  of the underlying 

regression parameters .  

 
 

Eigenvector analyses 
 

The correlation, or lack thereof, between the predictor variables and 
the misspecification terms in the autoregressive risk model were 
utilized to design spatial proxy variables so the properties of either 
model could be satisfied. Unfortunately, misspecification of the 
main exposure variable, as well as other covariates, is not 
uncommon in regression models (Jacob et al., 2013).  

Functional forms can adversely affect tests of the association 
between the exposure and response variables (Jacob et al., 2013). In 
regression analyses, the process of developing a regression model 
consists of selecting an appropriate functional form for the model 
and then choosing which variables to be included in the regression 
procedure (Griffith, 2003). A function shall be defined for our 
purposes as a set of inputs and a set of permissible outputs with 
the property that each input is related to exactly one output (Griffith, 
2003). An example in transmission risk modeling is the function 
utilized by Jacob et al. (2014) when constructing the MDR-TB 
explanatory covariate coefficient x to its square x2. In the model, the 
output of a function f corresponded to an input x which then was 
denoted by f(x). The input variable(s) are sometimes referred to as 
the argument(s) of the function (Griffith, 2003). The first step for 
constructing a robust TB model in a SAS covariance matrix is to 
specify the model (Jacob et al., 2014). If an estimated covariate 
coefficient model is misspecified it will be biased and inconsistent 
(Jacob et al., 2013). In regression-based risk models, the term 
misspecification covers a broad range of modeling errors including 
measurement errors and discretizing continuous, normalized 
explanatory variables (Griffith, 2003). 

Two different projection matrices,     TTIM 1111
1

1


  and 

    .
1 TT

X XXXXIM


  in AUTOREG were considered for 

autoregressing the state-level TB data. The projection matrix  1M  

is a special case of the more general projection matrix  XM  

[ww.sas.edu]. The general projection matrix  XM  in the TB model 

included a constant unity vector 1, as well as additional TB-
transmission explanatory variables. A set of eigenvectors 

 SARnee ,,1   was then extracted from the regressed quadratic 

form  
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which was designed orthogonal to the exogeneous variable X. The 
projection matrix  XM  imposed this constraint. In contrast, the set 

of operationizable eigenvectors  Lagnee ,,1   was extracted from 
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 These two different sets of eigenvectors established a basis for 
constructing a robust, regression-based distribution model, with both 
expressions solely defined in terms of the regressed exogeneous 
information. This model feature in AUTOREG enabled us to employ 
the eigenvector spatial filtering approach for predictions of the 
regressed, endogeneous variable y. The associated sets of 

eigenvalues  Lagn ,,1   and   ,,,1 SARn  with 

,1 ii  range were then employed in AUTOREG for properly 

standardizing adjacent link matrices V that related to irregular 
spatial tessellations generated from the regressed, predictive state-
level TB covariate coefficients. The components of each eigenvector, 

,ie  were then mapped in SAS/GIS onto an underlying spatial 

tessellation which exhibited a distinctive topographic pattern ranging 
from positive spatial autocorrelation (PSA), or similar values of log-

transformed count data aggregating in space, for  IEi   to 

negative spatial autocorrelation NSA, which is the aggregation of 

dissimilar log-values in space for  .IEi   Each eigenvector was 

mapped where  IE  was the expected value of Moran’s I under the 

assumption of (a) spatial independences and (b) as outputs from 

related projection matrices  1M  or  ,XM  respectively.  

It was noted that the associated Moran’s I autocorrelation 

coefficient of each eigenvector ie  generated from the risk model was 

equal to its associated eigenvalue   iTT
ii eVVe   ,2 i

T
i
ee  but 

only if V was scaled to satisfy    .211 nVV TT  . Moran’s 

autocorrelation is often denoted as I, which is an extension of 
Pearson’s product moment correlation coefficient, a commonly used 
measure of the amount of autocorrelation in regressed, empirical, 
multivariate, estimators (Griffith, 2003). In previous research, Jacob 
et al. (2014) employed the Pearson’s correlation coefficient for 
spatially summarizing a dataset of autocovariance terms quantitated 
between multiple empirical, geosampled predictor variables to 
define the covariance of multivariate parameterized covariates 
divided by the product of their standard deviations using 
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 In this research the formula 

defined the normalized, state-level population, correlation coefficient. 
Substituting estimates of the covariances and variances derived from 
the auto-regressed dataset of covariate coefficients provided the 
sample correlation coefficient, denoted by: 
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An equivalent expression rendered the correlation coefficient as the 
mean of the products of the standard scores in AUTOREG. Based 
on paired normalized, spatial data feature attributes  ,,.,i.e ii YX  

the sample Pearson correlation coefficient was: 

 

 







 







 


 

 X

i

X

i
n

i
s

YY

s

XX

n
r

1
1

1 ,  

 

where 
X
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s

XX   and X  were the standard score sample mean and  
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the sample standard deviation, respectively.  

The eigenvectors yielded distinct, predictive, geo-spatiotemporal, 
map pattern descriptions of latent spatial autocorrelation in the 
empirical, geosampled data. This was interpreted as synthetic map 
variables that represented specific natures (positive or negative) 
and degrees (negligible, weak, moderate and strong) of potential 
spatial autocorrelation.  

For the covariates, two counteracting spatial autocorrelation 
effects were conceptualized (that is, common factors leading to 
PSA, and competitive factors leading to NSA materializing) at the 
same time, with a possible net effect being global detection of near-
zero spatial autocorrelation. If a parsimonious set of eigenvectors is 
to be selected for, eigenvectors depicting near-zero spatial 
autocorrelation should be avoided, as such a set of latent vectors 
associated with a matrix equation will fail to capture any geographic 
information (Griffith, 2003). 

The eigenvector spatial filtering approach added a minimally 
sufficient set of eigenvectors as proxy-variables to the set of linear 
predictors in our predictive model by inducing mutual independence 
in the covariate estimators. The regression residuals represented geo-
spatiotemporally independent, state-level, predictor variable 
components. The spatial pattern in the eigenvectors was synthetic. 
In the state level TB model, positive global autocorrelation in the 
local patterns of the parameters exhibited only positive local 
autocorrelation and vice versa for negative global autocorrelation. 

The eigenvectors ie  and je  within each set of eigenvectors were 

then mutually orthogonal, as the symmetry transformation  TVV 
2

1  

was a quadratic form as revealed in Equations (2.1) and (2.2). 
As mentioned previously, the eigenvectors of specification (2.1) 

were orthogonal to the time-series, exogeneous, variables X of the 
regression TB forecast model constructed in AUTOREG employing 
the georeferenced, explanatory covariates. Conversely, the 
eigenvectors of specification (2.2) were orthogonal only to the 
constant unity vector 1 in X. This quantifiable orthogonality had 
implications for modeling the geospatialized misspecification terms 
in the risk model which allowed each collection of eigenvectors to 
be linked to its specific autoregressive model residual.  This was 
accomplished by letting SARE  be a matrix whose vectors were 

subsets of   .,,1 SARnee   Within-group estimation of higher-order 

autoregressive panel models were also considered with exogenous 
regressors and fixed effects, where the lag order was possibly 
misspecified. Even when disregarding the misspecification bias, the 
fixed-effect bias formula regressed differently from the correctly 
specified case, though its asymptotic order remained the same 
under stationary conditions. A linear combination of this subset was 
approximated by employing the misspecification term of the 
autoregressive version of the state-level, TB predictive, risk model 
which was expressed as 
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The linear combination SARE  remained orthogonal to 

exogeneous variables X, so the estimated predictor variables ̂  

were unbiased.  Also, as a property of the OLS estimator, the 

estimated term SARE  was orthogonal to the residuals .̂  The model 

 ˆˆˆ
SAREXy  decomposed the endogeneous predictor variable 

y into a systematic trend component, a stochastic signal component 
and white-noise residuals. The term ̂SARE  removed variance 

inflation in the mean square error (MSE) term attributable to spatial 
autocorrelation in dataset of covariate coefficients. 

Alternatively, for the spatial lag model (Equation 3), a risk model 
was constructed employing  

LagE , a  matrix  of  those  eigenvectors 
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which were a subset of   .,,1 Lagnee   The approximation of the 

misspecification term became 
 .
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

XVE kk

k
Lag

 Since LagE  

was correlated with the exogeneous variables X, its incorporation  
into the state-level, TB risk model corrected the bias of estimated 

plain OLS parameters ̂  in the analysis of latent spatial lag. The 

model  ˆˆˆ
LagEXy  was generated from covariates, which 

were a decomposition of the spatial lag model o, a systematic trend 
component, a stochastic signal component, and a dataset of white-
noise residuals. For the risk model, it was now noted that the trend 
and the stochastic/deterministic, time-series, signals were no longer 
uncorrelated and the mean square error (MSE) was deflated. 

The set of eigenvectors  Lagnee ,,1   of the spatial lag model 

(Equation 3) was then calculated in AUTOREG independently of 
the exogeneous, state-level, predictor variables X. This calculation 
was dependent on the underlying spatial link matrix V. It was found 
that this filtering approach was more adaptable to a specification 
search of the relevant exogeneous variables and spatial predictions 
with the regressed temporal shifting predictor variable values in our 
risk model in AUTOREG. In contrast, for the simultaneous 
autoregressive model (Equation 2), the eigenvectors 

 SARnee ,,1   depended through the projection of  XM  on the 

exogenous variables X. Thus, any change in the underlying model 
structure required a recalculation of the eigenvectors to generate 
more robust tessellations. Thereafter, spatial filtering of either the 
spatial lag model or the simultaneous autoregressive model with a 
common factor constraint only required identification of one set of 
selected eigenvectors, namely SARE  or ,LagE . The relevant set of 

eigenvectors was applied to all the TB predictor covariates in both 
models. For the generic autoregressive model (Equation 1), 
however, spatial filtering was applied individually to each covariate 
coefficient. The generic specification of autoregressive spatial 
models then associated a specific spatial lag factor with the 
endogeneous y variable and other lag factors for each additional 
exogeneous variable. The eigenvectors  Lagnee ,,1   were 

employed to filter spatial autocorrelation in the generic, autoregressive 
vulnerability model employing each geosampled covariate 
estimator. 

The next step was identification of appropriate, parsimonious 
subsets of eigenvectors SARE  or 

LagE  from either risk model 

explanatory specification (Equation 1) or (Equation 2). A particular  

 
 
 
 
subset of eigenvectors was deemed suitable if the optimizable 

residuals ̂  of the resulting spatially filtered model becomes 

stochastically independent with respect to the underlying sampled 
spatial structure V (Griffith, 2003). Thereafter, parsimony in model 
estimation was defined as the smallest possible subset of 
eigenvectors leading to geospatial independence in the residually 
forecasted derivatives of the TB model being identified. It was noted 
that geospatial patterns of different eigenvectors expressed 
independent and filter autocorrelation of the derivatives of the 
regression model as formalized by a georeferenced vector. Similar 
methodology has been employed for extrapolation of predictor 
covariates associated with hyperendemic transmission foci in other 
contexts.  
 
 
RESULTS 
 
Initially, a Poisson regression model was constructed in 
PROC LOGISTIC using temporospatial TB covariate 
coefficient measurement values. The Poisson process in 
our analysis was provided by the limit of a binomial 
distribution of the sampled state-level explanatory 
predictor covariate coefficient estimates using: 
 

                                    (4) 
 
The distribution was viewed as a function of the expected 
number of state-level count variables using the sample 
size N for quantifying the fixed p in Equation 1, which was 
then transformed into the linear equation: 
 

   
 
Based on the sample size N, the distribution as it 

approached  was: 

 

  
 
 

The PROC LOGISTIC procedure then fit a generalized 
linear model to the sampled data by maximum likelihood 
estimation of the parameter vector β. The PROC 
LOGISTIC procedure estimated the seasonal-sampled 
parameters of each state-level TB model numerically 
through an iterative fitting process. The dispersion 
parameter was then estimated by the residual deviance 
and by Pearson’s chi-square divided by the degrees of 
freedom (df). Covariances, standard errors, and p-values 
were computed for the sampled covariate coefficients 
based on the asymptotic normality derived from the 
maximum likelihood estimation. 

Note that the sample size N completely dropped out of 
the probability function,  which  had  the  same  functional 

form for all the sampled state-level parameter estimator 

indicator values (that is, ). As expected, the Poisson 
distribution was normalized so that the sum of 
probabilities equaled 1. The ratio of probabilities was then 
determined by: 
 

 which was  

then expressed as  Our 
model  was  generalized  by  introducing  an  unobserved 



 
 
 
 
heterogeneity term for each sampled state-level 
observation . The TB weights were then assumed to 
differ randomly in a manner that was not fully accounted 
for by the other covariates. This state-level process was 

formulated as , where the 

unobserved heterogeneity term was independent 

of the vector of regressors . The distribution of  was 

conditional on  and had a Poisson specification with 

conditional mean and variance 

. We then let  be the probability density function of 

. At this point, the distribution  was no longer 

conditional on . Instead it was obtained by integrating 

 with respect to

  
It was found that an analytical solution to this integral 

existed in our state-level model when  was assumed 
to follow a gamma distribution. The model also revealed 
that  was the vector of the sampled predictor covariate 

coefficients while  was independently Poisson-

distributed with , and the mean 
parameter (that is, the mean number of state-level 
sampling events per temporospatial period) was given by 

, where  was a  parameter vector. 

The intercept in the model was  and the coefficients 

for the  regressors were  Taking the 

exponential of  ensured that the mean parameter 

 was nonnegative. Thereafter, the conditional mean 

was provided by .  The state-level 
parameter estimators were then evaluated using 

 in PROC LOGISTIC. Note, 
that the conditional variance of the count random variable 
was equal to the conditional mean (i.e., equidispersion) in 

our model . In a log-linear model 
the logarithm of the conditional mean is linear (Haight 
1970). The marginal effect of any state-level regressor in 
the TB model was provided by 

. Thus, a one-unit change 

in the th regressor in the model led to a proportional 

change in the conditional mean . The 
standard estimator for our Poisson model was the 
maximum   likelihood   estimator.   Since   the   state-level  
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observations were independent, the log-likelihood 
function in the model was then: 
 

  
 
Given the sampled dataset of state-level parameter 
estimators θ and an input vector x, the mean of the 
predicted Poisson distribution was provided by

.  This way, the Poisson distribution's 
probability mass function was then rendered by: 
 

 . 

 
The probability mass function in our targeted TB risk 
model is the primary means for defining a discrete 
probability distribution.  As such, functions could exist for 
either scalar or multivariate field-sampled random 
variables, given that the distribution is discrete (Jacob et 
al., 2015). Since the geosampled, state-level TB dataset 

consisted of m vectors , along 

with a set of m values , the sampled 
estimators θ, the probability of attaining this particular set 
of the sampled observations was provided by: 

 

  
 
Consequently, the set of θ that made this probability as 
large as possible in the model estimates was obtained. 
The equation was first rewritten as a likelihood function in 
PROC LOGISTIC in terms of θ: 
 

  
 
Note the expression on the right hand side in our model 
had not actually changed. Next, we used a log-likelihood 

.  
Because the logarithm is a monotonically increasing 
function, the logarithm of a function achieves its 
maximum value at the same points as the function itself, 
and, hence, the log-likelihood can be used in place of the 
likelihood in maximum likelihood estimation and related 
techniques (Hosmer and Lemeshew 2011). Finding the 
maximum of a function often involves taking the 
derivative of a function and solving for the parameter 
estimator being maximized; this is often easier when the 
function being maximized is a log-likelihood rather than 
the original likelihood function  (Jacob  et  al., 2012).   We  
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Table 2.  Summary of backward elimination. 
 

Summary of Backward Elimination 

Step 
Variable Number Partial Model 

C(p) F Value Pr > F 
Removed Vars In R-Square R-Square 

1 Black 21 0 0.5154 21.002 0 0.968 

2 Multiple_Races 20 0 0.5154 19.017 0.02 0.902 

3 Age_under_5 19 0 0.5153 17.036 0.02 0.889 

4 Native_Born 18 0.0025 0.5128 16.239 1.22 0.271 

5 Long_Care 17 0.0027 0.5101 15.517 1.29 0.257 

6 Age_25_44 16 0.0034 0.5067 15.146 1.65 0.201 

7 Age_45_64 15 0.0043 0.5024 15.185 2.06 0.153 

8 Age_65_More 14 0.0041 0.4983 15.147 1.97 0.162 

9 Age_5_14 13 0.0041 0.4942 15.12 1.97 0.162 

10 NonInject_Drug 12 0.0046 0.4896 15.31 2.18 0.141 

11 Alcohol 11 0.0049 0.4847 15.648 2.32 0.129 

12 Jail 10 0.0049 0.4798 15.992 2.31 0.13 

 
 
 
noted the parameters θ only appeared in the first two 
terms of each term in the summation. Therefore, given 
that we were only interested in finding the best value for θ 
in the state-level predictive TB regression model, we 
dropped the yi! and simply wrote: 
 

  
 
Thereafter, to find a maximum, we solved an equation 

 which had no closed-form solution. However, 

the negative log-likelihood (LL)  was a convex 
function, and so standard convex optimization was 
applied to find the optimal value of θ. It was found that, 
given the Poisson process in our regression model, the 
limit of a binomial distribution was: 

   
 
Viewing the distribution as a function of the expected 

number of successes  in the model, rather than 
the sample size N for fixed P, rendered the equation 
(2.1), which became: 
 

  
 
Our model revealed that as the sample size N became 
larger, the distribution approached P when the following 
equations aligned: 

 

.  
 

We then considered the Euler product  where 

 was the Riemann zeta function and  was the k 

the prime. . Thereafter, by taking the finite product 
up to k=n in our TB regression model and pre-multiplying 

by a factor , it was then possible to employ , 

which  rendered , or 1.431912. To check  for 

non-normalities (for example, heteroskedascity, 
multicolineraity) in the regression forecasts a stepwise 
backward model validating procedure in PROC 
LOGISTIC was employed (Table 2). 

The model for overdispersion was then with a likelihood 
ratio test. This test quantified the equality of the mean 
and the variance imposed by the Poisson distribution 
against the alternative that the variance exceeded the 
mean. For the negative binomial distribution, the 
variance= mean + k mean

2
  (k≥ 0,  the  negative  binomial 



 
 
 
 
distribution reduces to Poisson when k=0 ) (Jacob et al., 
2013). For this study, the null hypothesis was H0: k=0 and 
the alternative hypothesis was Ha : k>0. To carry out the 
test, we used the following steps initially and then ran the 
model using negative binomial distribution and a record 
log-likelihood (LL) value. We then recorded LL for the 
Poissonized TB model. The likelihood ratio (LR) test was 
employed, and the LR statistic was computed, -2(LL 
(Poisson) – LL (negative binomial). The asymptotic 
distribution of the LR statistic had probability mass of one 
half at zero and one half – chi-square distribution with 1 
df. To test the null hypothesis further, the critical value of 
chi-sq distribution corresponding to significance level 2 
was used.  That is, H0 was rejected if LR statistic > 2

 
(1-2, 1 

df).  
Next, our predictor covariate coefficient estimates were 

assumed to be based on the log of the mean, which was 
a linear function of independent variables, log() = 
intercept + b1*X1 +b2*X2 + ....+ b3*Xm. This log-
transformation implied that the exponential function of 
independent variables equaled exp(intercept + b1*X1 
+b2*X2 + ....+ b3*Xm). Instead of assuming, as we did 
before, that the distribution of the state-level covariate 
coefficients Y was Poissonian, a negative binomial 
distribution was assumed. The implications meant 
relaxing the generalized linear Poisson regression 
specification assumption concerning equality of the mean 
and variance, since it was found in our model that the 
variance of negative binomial was equal to + k2, where k 
≥ 0 was a dispersion parameter. The maximum likelihood 
method was then used to estimate k as well as the 
parameter estimators of the model for log(). The SAS 
syntax for running negative binomial regression is very 
similar to the syntax for Poisson regression. The only 
change is the dist option in the MODEL statement is used 
instead of dist = poisson,dist = nb. The probability mass 
function of the negative binomial distribution with a 
gamma distributed mean in the predictive TB model was 
then expressed using the sampled covariate coefficients 
estimates as: 

 

 for the variables 

.  
 
In this equation, the quantity in parentheses was the 

binomial coefficient, and was equal to: 
 

  
 
This quantity was alternatively written as: 
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for explaining the negative binomial qualities in our 
regression model (Jacob et al., 2013).  

Results from both Poissonian and negative binomial 
model residuals revealed that the covariate coefficient 
estimates were highly significant, but furnished virtually 
no predictive power. Inclusion of indicator variables 
denoting the time sequence and the district location 
spatial structure were articulated with ArcGIS Thiessen 
polygons, which also failed to reveal meaningful 
covariates.  Perhaps the presence of noise in the 
geosampled state –level TB data was attributable for this 
misspecification.  Thus, the state-level TB data were 
adjusted and quantified for space-time consistency. Next, 
an Autoregressive Integrated Moving Average (ARIMA) 
analysis of individual district time-series was conducted in 
PROC ARIMA. Given our temporospatial data , where 

 was an integer index and the  the values, an ARIMA 
model was built using: 
 

  
 

where  was the lag operator,  were the parameters 
of the autoregressive portion of the model,  were the 
parameters of the moving average part, and  were 
error terms. ARIMA models are, in theory, the most 
general class of models for forecasting a time series 
which can be made stationary by transformations such as 
differencing and logging (Griffith, 2003). The easiest way 
to think of ARIMA models is as fine-tuned versions of 
random-walk and random-trend models: the fine-tuning 
consists of adding lags of the differenced series and/or 
lags of the forecast errors to the prediction equation, as 
needed to remove any last traces of autocorrelation from 
the forecast errors (Griffith 2003). The error terms  
were generally assumed to be independently sampled 
from a normal distribution with zero mean: ~ N(0,σ2), 
where σ2 was the variance. Thereafter, a random effects 
term was specified with the time series, state–level data. 
This random effects specification revealed a non-
constant, variable mean across states, which 
mathematically represented a state–level constant across 
time. The random effects specification also represented a 
state-specific intercept term, a random deviation from the 
overall intercept term, which was based on a draw from a 
normal frequency distribution. This random intercept 
represented the combined effect of all explicative state-
level predictor covariate coefficients, which caused some 
states to be prone to greater TB prevalence than others. 
Inclusion of a random intercept assumed random 
heterogeneity in the states’ propensity or underlying risk 
of TB prevalence which persisted throughout the entire 
duration of the time sequence under study. Values were 
procured for this random effects term, and state-level for 
prevalence regressed on predicted prevalence rates. The 
Poisson mean response specification was mu = exp[a + 
re+ LN(population)], Y ~Poisson(mu).  
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Figure 2. Scatterplot of the predicted and the observed TB rates by state and time period. 

 
 
 

A simple space-time binomial mixed model was then 
estimated, with the random effects term furnishing a 
common factor through time beyond the simple time 
sequence fixed component. This random effects term 
comprised spatially structured and spatially unstructured 
state-level components. The time sequence covariate 
alone accounts for roughly 2% of the variation in TB rates 
across the space-time series. Its combination with the 
random effects term accounts for roughly 99% of this 
variation. The deviance statistics for the excess binomial 
variation is 53.4. Figure 2 portrays the relationship 
between the predicted and the observed rates. The 
estimate equations are as follows: 

 

0.34W)-PS(S ),0.6059  0.0025,N(~ξ̂

e1

1
p̂

2

ξ̂0.0708T10.4180






  

 
The resulting estimated number of  cases  is  for  a  given  

state for a given year is: 

 

p̂Population0.99960.0885n̂TB   

 
The random effects term has both a spatially structured 
and a spatially unstructured component (Figure 3). The 
spatially structured random effects term contains five 
eigenvectors representing non-trivial levels of positive 
spatial autocorrelation, and accounts for roughly 50% of 
the variation in the random effects term. Its Moran 
Coefficient (MC) is 0.66, and its Geary Ratio (GR) is 0.35. 
The spatially unstructured random effects terms has only 
trace levels of spatial autocorrelation, with MC = 0.02, 
and Gr = 0.89. All three components closely conform to a 
bell-shaped curve (Figure 4). 
 
 
Limitations 
 
As with most predictive analyses, there were limitations in 
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Figure 3. Top left (a): random effects term; MC = 0.33, and GR = 0.55. Top right (b): spatially structure random effects 
term; MC = 0.66, and GR = 0.35. Bottom left (c): spatially unstructured random effects term; MC = 0.02, and GR = 0.89. 

 
 
 

 
 

Figure 4. Top left (a): normal quantile plot for the random effects term. Top right (b): normal quantile 
plot for the spatially structure random effects term. Bottom left (c): normal quantile plot for the 
spatially unstructured random effects term. 
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the proposed model which may lead to varying outcomes.  
The model may have too few variables for the scope of 
the problem that we are attacking.  As stated before, 
investigation into other potential risk factors, including 
diabetes is warranted for construction of more robust 
predictive models. A Bayesian approach may also 
provide superior methodology for finding local and 
residual autocorrelation that more traditional frequentist 
methods may be less sensitive to.  An autoregressive 
integrated moving average (ARIMA) model may also 
provide output more sensitive to temporality. 
 
 
DISCUSSION 
 
The clustering of like tendencies, according to this 
predictive analysis and shown by a Moran’s coefficient of 
0.66 for our spatially structured random effects model, 
produced results that, to say the least, would be 
considered anomalous with conventional wisdom. States 
that have been historically considered as hubs for 
immigrant inflow, including California, Texas, Illinois, 
Florida and New York, do not project higher rates of TB 
transmission according to our model.  In light of these 
findings, more contemporary patterns of human 
movement must be considered to fully understand the 
nature of TB transmission in the United States. Thanks 
much in part to economic growth in various regions 
through the 1990s and early 2000s, coupled with hostile 
policy toward less affluent immigrant populations in states 
such as California, the modern landscape for immigrant 
dispersion within the US began to shift dramatically (Ellis 
et al., 2014).  The Migration Policy Institute, citing the 
Office of Immigration Statistics of the Department of 
Homeland Security, states that the number of foreign-
born individuals grew by roughly 50 percent or more in 
the states of Alabama, Arkansas, Delaware, Georgia, 
Idaho, Indiana, Kentucky, Mississippi, Nevada, North 
Carolina, South Carolina, South Dakota, Tennessee, and 
Wyoming through the time period of 2000 to 2009 
(Terrazas, 2011). These, of course, are not states that 
were readily equated with heavier inward flow of 
immigrant populations through much of the last century. 

Very recent findings may also indicate an overall 
decline in tuberculosis in the foreign-born population in 
the US, some of which can be attributed to demographic 
changes. In their analysis, Baker et al. (2016) cite three 
reasons for this shift:  1) changes in the proportion of 
foreign-born persons through continued movement; 2) 
changes in the distribution of countries of origin, and 3) 
actual changes in TB rates for the countries of origin. 
True decreases in TB case rates in recent immigrants 
from China, India, and the Philippines were cited for the 
reason for the decline in these sub-populations, while a 
decrease in the Mexican sub-population size in the US 
was cited as the principal reason for the decline in this 
group. This study is fairly new but nevertheless  points  to  

 
 
 
 
the importance of considering dynamic demographics in 
the study of TB transmission.  Further, as TB is 
associated with lifestyle, employing an anthropological 
approach with ethnographic research concerning known 
risk factors may lend deeper insight into how these 
variables relate to transmission, as well as allow for 
existing transmission models to be individually tailored 
with unique explanatory variables for a given locale.  
Munch et al. (2003) employed such an anthropological 
approach in Cape Town, South Africa in an already cited 
study, as did Ge et al. (2015) with local transportation 
and population dispersion.  Such an approach may not 
be as useful at the national level, but it may allow for local 
governments and health departments to better detail 
individualized intervention and funding needs to their 
respective states. 

Still another set of challenges arises when we consider 
American Indian peoples, who continue to suffer higher 
rates of mortality and hospitalization for infectious 
diseases, including tuberculosis, as compared even with 
immigrant groups more often implicated in transmission 
in most research (Bloss et al., 2011; Cheek et al., 2014; 
Holman et al., 2011; Reilley et al., 2014; Schneider, 
2005). Though there is continued decline in rates of 
tuberculosis among American Indians, as well, they still 
continue to experience infectious disease transmission 
disproportionately as compared with other US 
populations.  In South Dakota in 2015, 11 of the 17 
reported TB cases (65%) were identified as Native 
American, with Native Americans maintaining almost 
consistently higher rates of mortality due to TB (South 
Dakota Department of Health, 2015). Montana has also 
continued to see higher rates of TB for American Indian 
populations over time (Montana Department of Public 
Health, 2015).  It is not uncommon knowledge that many 
common risk factors for TB, such as poverty, 
homelessness, and higher levels of alcohol consumption 
continue to endure in some American Indian 
communities.  These are colonial legacies that have been 
carried from the fairly recent past of a young nation’s 
history, and may remain as long as apathy remains.  It 
would seem that as much as the general US population 
seems to diversify and shift, the indigenous people are 
static by comparison.  Further challenges to quantifying 
the needs for tuberculosis treatment among American 
Indians lie with lack of coordination of patient records 
among care providers in several of these communities 
and use of coding systems that emphasize billing over 
surveillance (Podewils et al., 2014), as well as lack of 
adequate funding for the Indian Health Service. 

Other factors that must be taken into account are the 
distributions of other comorbid infections, as well as non-
communicable, chronic diseases that have risen 
alarmingly in the United States.  Potential comorbidities 
with other diseases are often cited as risk factors for TB.  
These include infectious diseases such as HIV, as well 
as the  more  behavioral  and  psychosocial  issues  of  IV  



 
 
 
 
drug use and alcoholism.  Coinfection with HIV 
contributes to higher rates of mortality from tuberculosis, 
and is already a well-established risk factor for TB, being 
one of the most common opportunistic infections in those 
of HIV positive status. Currently, diabetes is being 
investigated as another potential risk factor for 
tuberculosis (Demlow et al., 2015; Suwanpimolkul et al., 
2014; Gil-Santana et al., 2016).  Though more research 
is necessary, and does not appear at this point in time to 
affect the transmission of tuberculosis, it does appear to 
complicate existing cases (Gil-Santana et al., 2016).  This 
may increase overall healthcare costs and personal 
hardship for those enduring tuberculosis comorbid with 
diabetes, resulting in greater hardship as well as a 
greater general burden for healthcare providers.  The 
financial implications alone make diabetes worth 
investigating as a risk factor.  In communities where high 
rates for diabetes and tuberculosis overlap, more 
targeted interventions should be considered. 
 
 
CONCLUSION AND RECOMMENDATIONS 
 

Predictive modeling using GIS, remote sensing and 
geostatistics, of course, represents only the first step 
taken. Toward intervention, community-based 
approaches are already well known and may provide 
more specialized solutions closer to home for 
communities more heavily impacted by the persistence of 
TB.  Ecological interventions are best applied when 
individualized to the needs and wishes of the community 
in question. Identification of specific target areas within a 
larger area, potential contact investigations, weak points 
in community structure, and concerns of individuals 
specific to a particular locale are more efficient when 
members of the community are collaborated with by 
interventionists or researchers.  In this vein, the two-
phase PRECEDE-PROCEED Model (PPM) may be of 
use toward TB elimination in and out of the US.  The first 
grand phase encompasses bottom-up assessments of 
individual behaviors (proximal elements that directly 
affect an individual), social context and environment (mid-
level elements that an individual may), administrative 
policy (distal elements), as well as potential interplay of 
these elements (Gielen et al., 2008).  The second grand 
phase is comprised of implementation and evaluation 
with continuous improvement and modifications as 
needed (Gielen et al., 2008).  For this reason, the PPM 
need not be applied in a linear manner.  General 
community-based participatory research methods may 
also show promise in foreign-born populations, who may 
be prone to reactivation of latent TB.  For recent 
immigrants seeking classes in English as a second 
language upon arrival to the United States, community 
centers where these courses are held may be useful 
spaces for examination of attitudes and knowledge about 
TB; referrals for screening may also be a possibility 
(Wieland et al., 2011, 2012, 2013). 
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Though we have come very far in lowering the 
prevalence of tuberculosis in the US, further efforts 
should not fall by the wayside simply because of a 
leveling-off in decreasing prevalence rates.  With more 
rigorous screening of incoming individuals, including not 
only immigrants, but any individuals such as students 
who have spent a significant amount of time in a place of 
known hyperendemicity) and further research into risk 
factors that may indicate higher rates of transmission or 
complication of existing cases of TB, continued decrease 
in prevalence rates may be possible. 
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