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This research has demonstrated conflicting findings related to how environmental factors may affect 
the spread of tuberculosis (TB). A better understanding of this may have implications for health 
planning given the changing world climate. This study examines environmental factors, specifically 
elevation and temperature, demographic and income covariates and their association with TB incidence 
within the Appalachian region. County-wide TB incidence data were collected from the thirteen states 
within the Appalachian region for the most recent year available, 2017 or 2018, along with data from the 
American Community Survey for the corresponding year. A correlation analysis was performed 
followed by multiple negative binomial regression models to find models with the best fit. The analyses 
identified clusters of incident TB cases distributed throughout the Appalachian region. Hot spots (that 
is, highly positively autocorrelated geographic locations) utilizing Getis-Ord Gi* were found within the 
Southern portion of the Appalachian region while clusters utilizing Anselin local Moran’s I were more 
spread throughout the region. Temperature was found to be significantly associated with TB incidence 
in all models, but ethnic distribution explained some of the variation. Future research could benefit 
from replicating this study with longitudinal data to assess how temperature changes over time affect 
TB incidence. 
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INTRODUCTION 
 
While tuberculosis (TB) incidence has declined, it 
remains one of the top ten leading causes of death 
globally with an estimated 10 million cases and 1.4 
million deaths worldwide in 2019 (World Health 
Organization [WHO], 2020). 

However, the distribution of cases is not uniform and 
certain areas and nations are disproportionately  affected. 

The effect that temperature and elevation may have on 
TB transmission is a particularly pertinent question given 
concern that the rapidly changing world climate may 
effect disease transmission (Caminade et al., 2019) and 
may introduce organisms to higher elevations than 
previously seen (Pauchard et al., 2016). A greater 
understanding   of   how  elevation  and  TB  transmission 
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potentially interact may allow researchers to predict new 
areas of spread and assist in the prevention and 
treatment planning. These questions may particularly 
benefit the Appalachian region, a region where 15.8% of 
residents live below the poverty line (Pollard and 
Jacobsen, 2020) and the supply of physicians is 12% 
lower than the national average (Appalachian Regional 
Commission, 2017) making it particularly vulnerable to 
infectious diseases such as TB.  

Historically, higher geographic elevations have been 
presumed to be ideal treatment locations for individuals 
with active TB (Amrein, 1921, 1929) due to lower 
temperature, lower barometric pressure, and high levels 
of sunshine which were thought to assist individuals to 
heal (Amrein, 1921). However, these historical studies 
have generally focused on the effect elevation has on the 
treatment process once an individual is infected and less 
emphasis has been placed on the effect that altitude may 
have on the incidence of disease. Recent research into 
elevation and TB incidence have focused on how TB may 
spread within samples at differing elevations (Eisen et al., 
2013) as well as examining covariates associated with 
clinical records (Pérez-Guzmán et al., 2014) government-
provided incidence rates (Sun et al., 2015), and imputing 
incidence in data-limited settings (Tadesse et al., 2018).  

Recent studies have also shown conflicting information 
regarding temperature's effect on TB incidence. While 
some studies have shown a negative association 
between temperature and TB incidence (Li et al., 2019; 
Mollalo et al., 2019; Zhang and Zhang, 2019; Huang et 
al., 2020; Xu et al., 2020) other studies have shown 
positive associations between increasing temperatures 
and both TB notification (Bonell et al., 2020) and poor TB 
treatment outcomes (Alene et al., 2019). In addition, a 
recent systematic review of nine articles demonstrated 
that TB notification increases with lowering altitude and 
higher temperature (Gelaw et al., 2019). Other studies 
have shown non-significant results overall (Jaganath et 
al., 2019; Kirolos et al., 2021) while sub-group analyses 
revealed both positive and negative associations 
depending on the sub-group (Kirolos et al., 2021). 
However, while these studies have focused on various 
populations, only one of these analyses took place within 
the United Stated and to our knowledge this is the first 
study to investigate the effect of both temperature and 
elevation on TB incidence within the Appalachian region.  

In this research, the primary objectives were to 1) 
determine covariates associated with TB incidence by 
constructing multiple negative binomial regression 
models and 2) determine geolocations of potential 
intervention sites for treating TB in the Appalachian 
region of the United States by generating a hot spot 
analysis. 
 

 
MATERIALS AND METHODS 

 
The Appalachian region is a section of the United  States  spanning  
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over 530,000 square kilometers and 420 counties and consists of a 
population of 25.7 million individuals as of 2018 (Appalachian 
Regional Commission, n.d.-a). The region spans thirteen states 
consisting of portions of twelve states in addition to the entirety of 
West Virginia which is contained completely (Appalachian Regional 
Commission, n.d.-a). Much of the region is rural with 107 of the 
counties classified as such (defined as non-metropolitan counties 
not adjacent to metropolitan areas) and the Appalachian mountains 
contained within the region (Appalachian Regional Commission, 
n.d.-a). The majority of the Appalachian population identifies as 
Non-Hispanic, White (81.0%) with higher minority populations 
concentrated in the larger metropolitan areas (Appalachian 
Regional Commission, n.d.-a). The mean income of Appalachian 
households was 80% that of the national average in 2018 and the 
percentage of individuals living in poverty was 15.8%, over 1% 
point higher than the national percentage of 14.1% (Appalachian 
Regional Commission, n.d.-a).  

County-wide TB incidence data were obtained through individual 
State Health Department websites for all thirteen states located 
within the Appalachian region (Alabama Public Health, 2019; 
Georgia Department of Public Health Tuberculosis Control 
Program, 2019; Kentucky Public Health, 2018; Maryland 
Department of Health, 2018; Mississippi State Department of 
Health, n.d.; New York State Department of Health, 2019; Ohio 
Department of Health, 2019; Pennsylvania Department of Health, 
n.d.; South Carolina Department of Health and Environmental 
Control, 2018; Tennessee Department of Health TB Elimination 
Program, 2019; Virginia Department of Health Tuberculosis 
Program, 2018; West Virginia Department of Health and Human 
Resources: Bureau of Public Health, 2018). While all thirteen states 
within the Appalachian region legally require TB cases to be 
reported to local health authorities, selection bias cannot be 
completely ruled out since individuals who may not have access to 
healthcare providers may not be accounted for. County data was 
collected for the most recently available year by state, 2017 for 
Kentucky and West Virginia counties and 2018 for the remaining 
counties. Covariate and population data were then obtained for the 
corresponding incidence year. Population estimates for 
standardization were obtained from the 5-year estimates for the 
United States Census Bureau’s American Community Survey at the 
county level. County incidence and covariate data were merged into 
a Microsoft Excel spreadsheet and connected by standard Federal 
Information Processing System (FIPS) codes. County designation 
within the Appalachian region was designated by the Appalachian 
Regional Commission (n.d.-b) and counties not included within this 
designation were removed from the dataset. 

Due to variations in state reporting groupings, incidence data 
were imputed in two separate and distinct ways. Maryland 
incidence data were originally grouped into cities and an aggregate 
“rural counties” which contained data for the three counties within 
the Appalachian region. To facilitate comparison, 5-year population 
estimate data were utilized from the U.S. census’ American 
Community Survey to impute an adjusted incidence estimate. As a 
result, the estimated rates for these three counties were by nature 
identical and allow only for comparison with counties outside of 
Maryland. South Carolina, Georgia, and Pennsylvania de-identified 
low incidence numbers between 1 to 4 and designated them 
collectively as “<5”. To allow for comparison, three distinct models 
were developed within the analyses. The first model, designated 
“Only Accurate”, excluded counties with the designation “<5”. The 
second model assumed a low estimation for these counties equal to 
one case per county, “Low Estimates Assumed”. Likewise, the third 
model assumed a high incidence equal to four cases per county, 
“High Estimates Assumed”. Apart from counties with the incidence 
designation of “<5”, all other county incidence numbers are the 
originally reported numbers and are identical in all models. 

Age, sex, race, ethnicity, and the percentages of households 
receiving   supplemental    nutrition    assistance   program  benefits  
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(SNAP) or food stamps were extracted at the county level from 5-
year estimates of the United States Census Bureau’s American 
Community Survey (United States Census Bureau, 2017; United 
States Census Bureau, 2018). Age was examined separately as 
median age per county and percentage of age groups categorically. 
Average temperature data were extracted from NOAA National 
Centers for Environmental information (NOAA National Centers for 
Environmental Protection, 2021) data at the county level for each of 
the thirteen included states. Average temperatures were taken for 
the period of January-December 2017 or 2018 dependent on TB 
incidence data for that state. The average elevation of each county 
was found using the Geographic Names Information System (GNIS) 
query tool provided by the U.S. Geological Survey (USGS) (1990-
2016) to find elevation on the centroid location of county polygons. 
These elevation estimates varied in year of collection from 1990 to 
2016 across counties and states.  

A regression analysis using SAS version 9.4 was undertaken 
with the aim to identify whether elevation and temperature in 
combination with demographics and income factors are 
independently significant predictors of TB incidence at the county 
level. Statistical significance was defined as an obtained alpha level 
of 0.05 or lower. Prior to regression analysis, a correlation analysis 
using the “proc corr” procedure was conducted to ensure 
multicollinearity would not impair the projected models. After 
assessing the correlation matrix, models were assessed for 
overdispersion and a negative binomial model was decided upon 
for the regression rather than a Poisson model due to the 
significance of the overdispersion. After selecting model type, 
preliminary negative binomial regressions were fitted by covariate 
category and incidence rate ratios (IRR) were generated by 
exponentiating given coefficients. The incidence rates include TB 
incidence counts for one year and are assumed to be uniform for all 
observed counties. IRRs reflect the ratio of annual TB incidence at 
a given value of a predictor divided by the predicted TB incidence at 
a value of one less for the predictor.   

A correlation analysis was undertaken with a cut-off value for 
correlations of positive or negative 0.30 such that all covariates with 
larger correlations than the cut-off value were not placed within the 
same model. Due to the nature of the outcome variable being a 
count, Poisson regression and negative binomial models were 
considered for fit. Due to concerns of the TB incidence counts being 
potentially skewed toward higher populations and cities, the log of 
the total population was used as an offset within the model to obtain 
regression estimates based upon incidence rates. Upon fitting the 
negative binomial model, it was discovered that the data was 
significantly over dispersed (p<0.01 for all models) and a negative 
binomial model was selected.  

The authors ran two racial models to examine the effect of race, 
one including the county percentages of non-Black individuals (that 
is, white and “other” racial designation) individuals and one model 
including the county percentages of non-white individuals (that is, 
all races excluding white). Subsequently, a comparison of Akaike 
Information Criterion (AIC) values was completed to decide which 
model fit the data better. For modeling TB incidence with only exact 
data (no high and low values imputed for areas with de-identified 
data), the AIC was roughly the same for the two groups (Excluding 
white: 578.1411; excluding black: 578.1922) and it was decided to 
keep the model excluding white individuals due to its higher 
likelihood of illuminating racial disparities within the models and its 
slightly lower AIC value.  

After this preliminary statistical assessment within SAS, a spatial 
cluster and outlier analysis using Anselin Local Moran’s I and a hot 
spot analysis using the Getis-Ord Gi* statistic were conducted 
within ArcGIS Pro version 2.5. After joining the data, the global 
Moran’s I test for spatial autocorrelation was run at distances of 
55,000 to 125,000 meters in increments of 5,000 for each of the 
three TB rate estimates (only accurate, low, and high estimates 
assumed for deidentified counties)  to  establish  the  best  distance  

 
 
 
 
band for the underlying data. Based on the first corresponding z-
score peaks, a fixed distance band of 75,000 meters was chosen 
for the data without imputation and for low estimates assumed while 
a band of 85,000 was chosen for the high estimate data.  

The hot spot and cluster and outlier analyses were performed 
using a False Discovery Rate (FDR) correction for both dependent 
and independent variables and with a fixed distance band. The 
fixed band was chosen because the data will be either the TB rate 
per 100,000 citizens (in the case of incidence) or average (in the 
case of temperature) for the entire county and fixed distance bands 
ensure a consistent scale of analysis. This was done to assess 
whether statistically significant hot spots and cool spots for TB 
incidence visually correspond with hot spots and cool spots for 
elevation and temperature as well as race, ethnicity, age, sex, and 
SNAP usage. A total of 9,999 permutations were run to identify 
statistically significant outliers for both dependent and independent 
variables and to provide a sufficient amount of precision within the 
analysis. This high number of permutations was chosen after an 
assessment of lower numbers of permutations was compared. 
 
 

RESULTS 
 

Table 1 demonstrates the obtained IRR values for the 
univariate models. In a univariate model containing only 
average elevation in meters, it was found that elevation 
was a non-significant predictor for TB incidence (IRR: 
0.9988, p=0.0513) although borderline significance at the 
0.05 level was achieved when data without low or high 
estimates were included. When TB incidence did have 
low estimates imputed for de-identified counties, 
elevation was a significant predictor (IRR: 0.9988, 
p<0.05) although this was not true for TB incidence with 
high estimates imputed (IRR: 0.9991, p=0.0779). 
Conversely, average temperature was a highly significant 
predictor in all univariate models containing only 
temperature (IRR: 1.1126, p<0.0001) regardless of how 
deidentified TB incidence data was estimated. Table 1 
gives full details of these findings. 

After preliminary examination of covariate groups, 
several models were additionally fitted to the data 
according to which variables were not heavily correlated 
within the previous assessment. AIC and BIC values 
were then utilized to assess best fitting models using 
backwards stepwise regression by deleting the most non-
significant covariate from the model until a parsimonious 
model was reached. Results of the best fitting model 
assessment can be found in Table 2. It was found that 
the best fitting models found TB incidence was 
significantly predicted by both temperature and Hispanic 
ethnicity or a model containing temperature and Other 
Race. This was true for all three models, regardless of 
how deidentified data was handled (no estimation, low 
estimates, or high estimates). 

After this preliminary statistical assessment within SAS, 
a spatial cluster and outlier analysis using Anselin Local 
Moran’s I was conducted within ArcGIS Pro version 2.5. 
For this analysis, a fixed distance band was utilized and a 
False Discover Rate (FDR) correction was applied. To 
increase efficiency, cluster models using 9999 
permutations  were  the  final  choice  and can be seen in  
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Table 1. Univariate analyses.  
 

Covariate 
  

  

Outcome IRR (Wald Chi-Square P-value) 

TB cases 

(Only accurate) 

TB cases 

(Low estimates) 

TB Cases 

(High estimates) 

Elevation(meters)   0.9988 (0.0513) 0.9988 (0.0329) 0.9991 (0.0779) 

Elevation (per thousand meters)  0.3012 0.3012 0.4066 

Average temperature (Fahrenheit)   1.1108 (<0.0001) 1.0972 (<0.0001) 1.0804 (<0.0001) 

Average temperature (Fahrenheit per 10 degrees)  2.8605 2.529 2.166 

Gender (percent female)   1.2561 (<0.05) 1.2066 (<0.05) 1.1191 (0.1149) 

Median age   0.9159 (<0.001) 0.9347 (<0.005) 0.9554 (0.0436) 

 
  

   

Age percentage 

Under 5 1.4649 (0.2587) 1.415 (0.2529) 0.9144 (0.7624) 

5 to 9 1.7640 (0.0576) 1.7296 (<0.05) 1.7876 (<0.05) 

10 to 14 1.3094 (0.3688) 1.2481 (0.4033) 1.245 (0.3970) 

15 to 19 1.4553 (0.1954) 1.4282 (0.1673) 1.0874 (0.7371) 

20 to 24 1.2289 (0.4091) 1.218 (0.3654) 1.0800 (0.7164) 

25 to 34 1.4777 (0.1394) 1.4169 (0.1376) 1.2940 (0.2637) 

35 to 44 1.5477 (0.0797) 1.4727 (0.0754) 0.9122 (0.6688) 

45 to 54 1.0211 (0.9388) 1.0547 (0.8253) 1.1125 (0.6404) 

55 to 59 0.9837 (0.9589) 0.9693 (0.9125) 0.7196 (0.2370) 

60 to 64 1.3539 (0.3626) 1.3756 (0.2793) 0.8931 (0.9498) 

65 to 74 1.5126 (0.1081) 1.5258 (0.0543) 1.4832 (0.0575) 

75 to 84 1.3164 (0.4370) 1.2573 (0.4695) 0.8931 (0.7008) 

85 and Over 1.0 1.0 1.0 

 
  

   

Racial Percentages (Excluding White) 

American Indian and Alaskan Native 1.0278 (0.6540) 1.0283 (0.6215) 0.9850 (0.8397) 

Asian 1.0790 (0.1025) 1.0571 (0.1551) 1.0398 (0.4144) 

Black or African American 1.0166 (0.0413) 1.0129 (0.0781) 1.0058 (0.4654) 

Native Hawaiian or Other Pacific Islander 0.2361 (0.1159) 0.2508 (0.0969) 0.0986 (<0.01) 

Other Race 1.2647 (<0.001) 1.2272 (<0.001) 1.3581 (<0.0001) 

 
  

   

Hispanic ethnicity percent   1.1277 (<0.0001) 1.0719 (<0.0005) 1.1014 (<0.0001) 

SNAP/food stamp household percentage 0.9832 (0.4001) 0.9828 (0.3273) 0.9743 (0.1660) 

 
 
 
Figure 1 for no estimates, low estimates, and high 
estimates for deidentified TB rates. These 
revealed similar cluster  structures with  a  total  of 

three to four High-Low outlier counties and 
several Low-High outliers and Low-Low clusters 
identified  clusters   throughout   the   Appalachian 

region. High-Low outlier counties indicate areas 
that experience statistically significantly high 
clustering  as compared with surrounding counties  
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Table 2. Multivariate best fitting models. 
 

Covariate 

  

Outcome IRR (Wald Chi-Square P-value) 

TB cases  

(Only accurate) 

TB cases 

 (Low estimates) 

TB cases 

(High estimates) 

Model 1 

Average temperature 1.0862 (<0.0001) 1.0837 (<0.0001) 1.0607 (<0.001) 

Hispanic ethnicity (percent) 1.0901 (<0.001) 1.0427 (<0.05) 1.0775 (<0.001) 
  

   
Model 2 

Average temperature 1.0914 (<0.0001) 1.0797 (<0.0001) 1.0595 (<0.005) 

Other race (percent) 1.1597 (<0.05) 1.1439 (0.0053) 1.2298 (<0.001) 
  

   
Model 3 

Median age 0.9402 (<0.05) - - 

Gender (percent female) 1.2376 (<0.05) - - 

Hispanic ethnicity (percent) 1.1077 (<0.0005) - - 

 
 
 

 
 

Figure 1. Cluster analysis (local Moran’s I). 

 
 
 
while Low-High indicate the opposite and Low-Low 
clusters indicate areas with statistically low clusters of 
cases. 

Within the high estimates, many counties were 
clustered around estimated value  counties indicating this 

spatial clustering may be a false effect based on the 
imputation method. Specific counties are identified in 
supplemental Table 1. 

Subsequent to the cluster and outlier analysis, a hot 
spot    analysis    utilizing    Getis-Ord  Gi*   statistic    was  
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Figure 2. Hot spot analysis (Getis-Ord Gi*). 

 
 
 
conducted and results can be seen in Figure 2. This 
revealed differing areas generally concentrated toward 
the Southern end of the Appalachian region for hot spots. 
Specifically identified counties can be found in 
Supplemental Table 2. No cold spots were identified 
which may reflect the number of counties with no 
reported TB cases for the time period. Additionally, in the 
model where de-identified TB incidence were assumed to 
be on the higher end of possible incidence numbers (four 
cases per county), hot spots were grouped around de-
identified counties indicating these estimates may be 
partially to do with the resulting hot spots. However, 
areas surrounding this area to the West and East were 
statistically significant hot spots in both the model with no 
estimates and low estimates for de-identified counties 
indicating these areas may still be of concern due to their 
close proximity although this cannot be reliably 
determined without knowing the exact estimates.  

Finally, choropleth maps were developed for the 
previously mentioned covariates that were found to be 
statistically significantly associated with increasing TB 
rate incidence within the negative binomial models. 
These were then overlaid with graduated point markers 
increasing in size with TB incidence to visually display 
these  associations.  A   visual  examination  of  this  data 

within Figure 3 reinforces the previous findings as very 
little association can be seen between elevation and TB 
incidence while a stronger association is indicated for 
temperature and TB incidence. Other covariates of “other” 
racial designation and Hispanic ethnicity demonstrate the 
slight associations previously seen within the negative 
binomial models. 
 
 
DISCUSSION 
 
This study examined the relationship between TB 
incidence and both environmental and demographic 
characteristics within the Appalachian region. During 
statistical assessment, univariate models suggested 
there may be a negative association between average 
elevation and TB cases suggesting that as elevation in 
meters goes up reported TB incidence tends to go down. 
However, these coefficients were only statistically 
significant in models with low imputed values and 
borderline significance was achieved when no imputation 
was undertaken. Accordingly, it is unclear whether 
elevation is a strong predictor for TB incidence and future 
research would benefit from more exact data than is 
publicly  available.  However,  average  temperature  was  
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Figure 3. TB incidence rates (low rates assumed) and selected covariates. 

 
 
 
highly significant in all univariate models regardless of 
how deidentified data was handled within the analysis 
and, importantly, this relationship was positive indicating 
that as average temperatures rise TB cases tend to rise 
as well.  

This finding of rising temperature as a significant 
predictor of rising TB incidence may have vital 
implications for health planning. While only one other 
study has examined similar environmental predictors on 
TB notification within the United States, these authors did 
notably find the opposite effect that rising minimum 
temperature was protective and posited that this may be 
due to individuals living in colder temperatures also 
potentially living in closer proximity with each other 
allowing the disease to spread more readily (Mollalo et 
al., 2019). Future research would benefit from inclusion of 
covariates related to average number of household 
members which may help to examine whether living in 
closer quarters may explain some of the effect that 
temperature plays in predicting the spread of TB.  

The most significant demographic characteristics were 
identifying as “Other” race and Hispanic ethnicity. When 
treated categorically, the age group 5 to 9 had the largest 
association with TB incidence and, when treated 
continuously, there was an overall negative association 
indicating young children may have an elevated risk for 
TB incidence  compared  to  other  age  groups. Although 

unfortunately data on nation of birth was unavailable for 
this analysis, it is known that having been born outside of 
the United States does increase the lifetime risk of 
contracting TB (Mollalo et al., 2019) and this may be 
more common within Hispanic communities and 
individuals who self-identify as racially “Other”. Identifying 
as female as opposed to male was also a significant 
predictor in both the low imputed univariate model and no 
imputation univariate model and was significant in the 
best fitting model that did not include average 
temperature as a covariate. This may reflect that females 
are more frequently primary caregivers for household 
members and may be put in more close contact. 
Interestingly, SNAP/food stamp household percentages 
were non-significant predictors in all models including 
univariate models which may reflect that this covariate is 
a poor proxy for household income rather than that 
household income does not influence TB incidence. 
Individuals who are on SNAP/food stamps may be more 
equipped to navigate social service networks and obtain 
care and thereby have their incidence data counted while 
other low-income individuals who are less able to 
navigate social service networks may be less likely to be 
diagnosed. 

While the cluster and hot spot analyses revealed 
different areas that may be at higher risk for TB within the 
Appalachian  region,  these  findings  are not at odds with  

 



 
 
 
 

each other and may both be valuable for different kinds of 
health planning. While cluster analysis using the Anselin 
local Moran’s I statistic compares each county to its 
neighboring counties looking for statistically significant 
high and low values in relation to these surrounding 
counties, hot spot analysis using the Getis-Ord Gi* 
statistic indicates where high and low values cluster 
spatially. As a result, the hot spot maps demonstrate 
areas that may be particularly prone to TB within the 
entire region while the cluster maps reveal areas that 
may have atypically high numbers of incident TB cases 
considering the number in the surrounding counties. As 
can be seen in supplemental Table 2, many of the hot 
spots actually have zero cases reported but due to their 
close proximity to counties with higher incidence values, 
they are still of concern and are statistically significant hot 
spots. Health planners within the Northern Appalachian 
region may find it useful to use these cluster maps for 
resource allocation while the hot spot maps offer a 
perspective of areas of concern for the region overall. 

In addition, there was considerable crossover between 
the hot spot and cluster counties identified for those with 
no estimates for deidentified counties and those identified 
within the low estimates for deidentified counties. Given 
the low number of absolute cases in many of the 
counties, this may imply that these two maps of clusters 
and hot spots may provide the most accurate 
representations. However, this is impossible to know 
without having exact data for these areas and, as such, 
all three estimates are provided such that researchers 
who do have access to this information can make health 
planning choices based on their additional knowledge. 

The model which excluded counties with the 
designation of “<5” with no imputation contained a total of 
395 counties out of the total 420 within the Appalachian 
region. As a result, while the population number is 
relatively low in absolute terms, the completeness of the 
available data does allow for a relatively complete 
dataset at the county level. However, given the small 
numbers of incidence rates at the county level within the 
Appalachian region (mean of 0.80 per 100,000 for non-
imputed group) this does unfortunately inherently 
underpower this study and future research would benefit 
from access to more localized data that would allow for a 
more thorough examination at a lower spatial level and 
may illuminate further disparities. 

There may also be factors specific to the Appalachian 
region that may affect how TB spreads there. For 
example, other studies outside of the United States have 
also demonstrated a significant association between 
rising temperature and rising incidence and have 
suggested that rising temperatures may affect the efficacy 
of drugs used for TB treatment and may thereby indirectly 
perpetuate the spread of TB within communities by 
making treatment more difficult (Alene et al., 2019). If so, 
it seems reasonable to expect that this effect would be 
seen more prominently in more rural communities like the 
Appalachian region where access to  care  may  be  more  
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difficult and medications may need to be transported 
longer distances. In addition, while pollution particulates 
have been found to influence the association between 
rising temperatures and TB incidence (Zhang and Zhang, 
2019), the current and historical industry of coal mining 
within the Appalachian region may also produce a similar 
effect and may factor into how the disease spreads within 
these communities. 
 
 
Conclusion 
 
Univariate models revealed that average temperature is a 
significant predictor of TB incidence within the 
Appalachian region while the best fitting models included 
average temperature and Hispanic ethnicity, average 
temperature and “Other” racial designation, and median 
age, gender, and Hispanic ethnicity. Future research may 
benefit from building upon this model by including data at 
a lower scale, focusing on high-risk groups such as HIV 
positive individuals, and examining how covariates 
change both seasonally and longitudinally. Specific 
populations that should also be examined in future work 
are coal miners and coal mining communities as well as 
Hispanic communities and communities with higher 
proportions of foreign-born individuals. This study has 
shown regions currently experiencing clusters and hot 
spots of TB incidence and may provide useful insight for 
future health planning and research predictions. 
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Supplemental Table 1. Cluster counties. 
 

Clusters 
County Names, State (TB Rate per 100,000) 

Only accurate Low estimates High estimates 

High-high clusters 

  DeKalb, AL (4.2135) 

  Etowah, AL (8.7430) 

  Barrow, GA (5.2024) 

  Bartow, GA (3.8603) 

  Chattooga, GA (16.1180) 

  Floyd, GA (4.1312) 

  Forsyth, GA(3.1836) 

  Gilmer, GA (13.3681) 

  Gordon, GA (7.0435) 

  Hall, GA (2.0412) 

  Madison, GA (13.8408) 

  Murray, GA (10.1120) 

  Polk, GA (12.0132) 

  Stephens, GA (15.5788) 

  Union, GA (17.5631) 

  Walker, GA (5.8119) 

  White, GA (13.8274) 

  Whitfield, GA (3.8517) 
    

High-low clusters 

Chambers, AL (2.9563) Chambers, AL (2.9563) Erie, PA (1.4494) 

Panola, MS (5.8406) Panola, MS (5.8406)  

Otsego, NY (1.6599) Otsego, NY (1.6599)  

 Lycoming, PA (0.8706)  
    

Low-high clusters 

Blount, AL (0) Blount, AL (0) Cherokee, AL (0) 

Cherokee, AL (0) Cherokee, AL (0) Jackson, AL (0) 

 Cullman, AL (0) Banks, GA (0) 

 Coffee, TN (0) Catoosa, GA (0) 

  Cherokee, GA (0) 

  Dade, GA (0) 

  Dawson, GA (0) 

  Fannin, GA (0) 

  Franklin, GA (0) 

  Habersham, GA (0) 

  Haralson, GA (0) 

  Hart, GA (0) 

  Jackson, GA (0) 

  Lumpkin, GA (0) 

  Paulding, GA (0) 

  Pickens, GA (0) 

  Clay, NC (0) 

  Oconee, SC (0) 

  Bradley, TN (0.9564) 

   Hamilton, TN (0.8391) 
    

Low-low 

 Estill, KY (0) Adair, KY (0) 

 Floyd, KY (0) Bath, KY (0) 

 Johnson, KY (0) Carter, KY (0) 

 Magoffin, KY (0) Casey, KY (0) 

 Menifee, KY (0) Clark, KY (0) 

  Montgomery, KY (0)  
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Low-low  Morgan, KY (0) 
Elliott, KY (0) 

  Powell, KY (0) 

  Wolfe, KY (0)  

   Estill, KY (0) 

   Fleming, KY (0) 

   Johnson, KY (0) 

   Lawrence, KY (0) 

   Lincoln, KY (0) 

   Madison, KY (0) 

   Menifee, KY (0) 

   Montgomery, KY(0) 

   Nicholas, KY (0) 

   Powell, KY (0) 

   Pulaski, KY (0) 

   Rowan, KY (0) 

   Russell, KY (0) 

   Wayne, KY (0) 

   Washington, OH (0) 

   Tyler, WV (0) 
 
 
 

Supplemental Table 2. Hot and cold spot counties by significance level.* 
 

 99% CI* 
County Names, State (TB Rate per 100,000) 

Only accurate Low estimates High estimates 

 Blount, AL (0) Blount, AL (0) Cherokee, AL (0) 

 Cherokee, AL (0) Cherokee, AL (0) DeKalb, AL (4.2135) 

 Cullman, AL (0) Cullman, AL (0) Etowah, AL (8.7430) 

 Etowah, AL (8.7430) Etowah, AL (8.7430) Banks, GA (0) 

 Cannon, TN (7.1551) Cannon, TN (7.1551) Barrow, GA (5.2024) 

 Coffee, TN (0) Coffee, TN (0) Bartow, GA (3.8603) 

   Catoosa, GA (0) 

   Chattooga, GA (16.1180) 

   Cherokee, GA (0) 

   Dade, GA (0) 

   Dawson, GA (0) 

   Floyd, Ga (4.1312) 

   Forsyth, GA (3.1836) 

   Gilmer, GA (13.3681) 

   Gordon, GA (7.0435) 

   Habersham, GA (0) 

   Hall, Ga (2.0412) 

   Hart, GA (0) 

   Jackson, GA (0) 

   Lumpkin, GA (0) 

   Madison, GA (13.8408) 

   Murray, GA (10.1120) 

   Paulding, GA (0) 

   Pickens, GA (0) 

   Polk, GA (12.0132) 

   Stephens, GA (15.5788) 
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  Union, GA (17.5631) 

  Walker, GA (5.8119) 

  White, GA (13.8274) 

  Whitfield, GA (3.8517) 

  Oconee, SC (0) 

    

95% CI* 

Cocke, TN (5.6600) Cocke, TN (5.6600) Jackson, AL (0) 

DeKalb, TN (10.2036) DeKalb, TN (10.2036) Marshall, AL (7.3572) 

Hamblen, TN (3.1377) Hamblen, TN (3.1377) Fannin, GA (0) 

Hancock, TN (15.1860) Hancock, TN (15.1860) Franklin, GA (0) 

Jefferson, TN (0) Jefferson, TN (0) Haralson, GA (0) 

Smith, TN (0) Smith, TN (0) Clay, NC (0) 

  Bradley, TN (0.9564) 

  Hamilton, TN (0.8391) 

    

90% CI* 

Calhoun, AL (2.6065) DeKalb, AL (4.2135) Blount, AL (0) 

DeKalb, AL (4.2135) Marshall, AL (7.3572) Calhoun, AL (2.6065) 

Marshall, AL (7.3572) Polk, GA (12.0132) Elbert, GA (0) 

Polk, GA (12.0132) Bell, KY (0) Gwinnett, GA (4.4331) 

Bell, KY (0) Itawamba, MS (0) Towns, GA (0) 

Itawamba, MS (0) Grundy, TN (7.5013)  

Grundy, TN (7.5013) Van Buren, TN (0)  

Union, TN (5.1832) Warren, TN (0)  

Van Buren, TN (0)   

Warren, TN (0)   
 

*False Discovery Rate (FDR) correction was applied, p-values will correspond to at least this threshold 
if not a more conservative estimate. 

 


