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The purpose of this research is to design, deploy and validate artificial intelligence (AI) algorithms 
operating on drone videos to enable a real time methodology for optimizing predictive mapping  
unknown, geographic locations (henceforth, geolocation)  of potential, seasonal, Anopheles (gambiae, 
and funestus)  larval habitats in an agro-village, epi-entomological, intervention site (Akonyibedo village) 
in Gulu District, Northern Uganda. Formulae are developed for classifying the drone swath, capture point, 
land cover in Akonyibedo agro-village. An AI algorithm is designed for constructing a smartphone 
application (app) in order to enable automatic detection of potential larval habitats from drone videos. The 
aim of this work is to enable scaling up to larger intervention sites (e.g., district level, sub-county) and 
then throughout entire Uganda. We demonstrate how capture point, stratifiable, drone swath coverage in 
Akonyibedo village can be accomplished employing temporal series of re-centered, real time, imaged, 
Anopheline, larval habitat, seasonal, map projections. We also define a remote methodology for detecting 
unknown, georeferenceable, capture point geolocations of potential, seasonal, breeding sites employing 
multispectral, wavelength, signature, reflux emissivities in a drone spectral library. Our results show that 
high-resolution  drone  imagery when processed employing state of the art AI algorithms can discriminate 
a profile of water bodies where Anopheles mosquitoes are most likely to breed (overall ground truth 
accuracy of 100%). Live, high definition, Anopheline larval habitat signature maps can be generated in 
real-time drone AI app on a smartphone or Apple device while the image is being captured or larvicidal 
application is taking place. 
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INTRODUCTION 
 
Real-time, geospatial, predictive mapping from remote 
sensing can identify mosquito larval habitats in a large 
area that is difficult or near impossible to survey using 
conventional ground-based techniques. Recent advances 
that identify the reflective spectral signatures of active 
mosquito breeding sites, and their temporal evolution, 
have made predictive algorithms possible to search and 
identify previously unidentified larval habitats from an 
Unmanned Aerial Vehicle (UAV), and monitor their activity 
in real time These aerial surveys can provide 
spatiotemporal data for targeting interventions to eliminate 
vectors before they become adult airborne biting 
mosquitoes, to reduce malaria transmission. Reference, 
capture point, larval habitats for Anopheles gambiae (An. 
arabiensis and An. Funestus), the main malaria mosquito 
vectors in Sub-Saharan Africa [www. who.int] can also be 
separately identified with the methodology. 

In this research, we describe a process of real time, 
UAV based identification of new malaria mosquito 
habitats. Known larval habitats are first remotely 
processed through a breakdown in their spectral patterns 
of their changing red, green, and blue (RGB) wavelengths 
from repeated captured drone video, and on-the-ground, 
spectrometric, temporal measurements. RGB datasets 
constructed in ArcGIS provides an index case for how the 
reflectivity of vector arthropod, larval, habitat changes 
through seasons (Jacob et al., 2015). By modeling all 
local, capture point, wavelength, color, surface reflux as a 
combination of fully specified RGB values in ArcGIS, color 
fringing artifacts may be avoided while preserving sharp 
edges of georeferenced, gridded, land use land cover 
(LULC), habitat boundaries and their eco-geographic, 
seasonal classified, feature attributes (Jacob et al., 2011) 
.This real time, cartographic methodology can aid in 
forecasting unknown, hyper-productive, aquatic and dry, 
Anopheles, larval, breeding sites using archived, time 
series, UAV, frequency-oriented, sample datasets. For 
remote identification of mosquito, vector arthropod, larval 
habitat and their respective, RGB, time series, capture 
point LULC signatures, the first step is often to construct a 
discrete tessellation of the region (Jacob et al., 2019). 

A UAV, capture point, time series, RGB indexed, 
signature framework represents a vital component for 
retrieval systems where a vector control officer submits an 
query video and a real time system retrieves a ranked list 
of visually similar, classified, LULC, habitat types (e.g., a 
hyper-productive, flooded, An. gambiae, roadside ditch, 
aquatic foci) by differentially corrected GPS coordinate 
which has a positional accuracy of 0.178 m  (Jacob  et  al., 
 

2015). The sensitivity and specificity of the RGB video 
signals at identifying multiple, grid-stratifiable, LULC 
classified, capture points can be subsequently evaluated 
 by real time seasonal identification of the Anopheles 
breeding sites in natural settings (e.g., peri-urban, 
riceland, agricultural fields during pre-rain sample frames), 
followed by field verification (that is, ―ground truthing‖) of  
the ArcGIS predictively mapped, aquatic, habitat sites.This 
data may then subsequently be fed into AI algorithms 
employing a real time app with associated software 
created to find other habitats with similar characteristics 
from new surveys of unknown terrain. 

Our proposed computer vision approach for real time, 
LULC mapping, seasonal, anopheline, larval habitats is 
based on a Faster Region-based Convolutional Neural 
Network (Faster R-CNN) algorithm employing seasonally 
retrieved, RGB capture point, video analog datasets in a 
UAV real time platform. Faster R-CNN algorithm (Ren et 
al., 2015) is a state of the art artificial intelligence (AI) 
technique that not only classifies entities within an image, 
but can also localize where the entities of interest are 
within an image. Informally, the term "artificial intelligence" 
is typically used to describe machines (or computers or 
algorithms) that mimic cognitive functions that humans 
associate with the human mind, such as "learning" and 
"problem solving". In our proposed technique, we first 
learn the core features of objects in our drone image 
dataset using convolutional neural networks (CNNs), and 
then integrate manual ground truthing of larval habitats 
and their geolocations within the images, with learned 
feature maps from prior training in order to design a final 
region-based neural network for classification and 
localization. Subsequently, we assumed that at run-time, 
our network could classify unseen images as larval 
habitats as they are detected and localized where they are 
in the images. The technique also provides a confidence 
metric to the operator which can help remotely 
differentiate grid-stratifiable LULC aggregation and non-
aggregation geolocations of georeferenced breeding site 
Anopheles foci based on like and unlike, neighboring  
feature habitat attributes (levels of intermittent canopy 
vegetation, catchment slope coefficients etc.). 

Furthermore, we assumed a text-based real time 
retrieval system may be implementable in the future [e.g., 
where a vector control officer or researcher collaborator 
submits a textual description of an ecologically 
georeferenced, (henceforth eco-georeferenced), 
Anopheles, aquatic, breeding site, seasonal, capture 
point).The real time portal would retrieve  a  ranked  list  of 
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relevant, unknown, habitat,capture point, grid-
stratified,LULC locations stratified based on GPS ground 
coordinates. This real time portal, we assumed, could also 
facilitate this retrieval by finding the video clip of the 
unknown larval habitats that were manually assigned 
similar textual description (annotations) which may 
subsequently be employed for enabling the RGB signature 
framework through an iOS or Android application (app). 

To summarize, the overall goal of this project is to 
develop a customized smartphone app that could identify 
the LULC geolocation of unknown, eco-georeferenceable, 
Anopheles, larval habitat capture points in agro-village, 
pasturelands from processed, real time, RGB, video 
images employing RGB signatures obtained from a drone 
aircraft seasonally flown in Akonyibedo village in Gulu 
District, Northern Uganda. Further, we assumed that once 
an Anopheline capture point, LULC, larval, habitat site, 
aquatic foci was identified and field validated, local village 
and entomological teams could be mobilized to the 
mapped habitat location employing the app and the GPS 
coordinates of the mapped site. Subsequently we 
assumed that an environmentally friendly tactic (―Seek 
and Destroy‖) could be used to bury the habitat using soil 
substrate and henceforth monitored for reapplication.  
Larger breeding habitats (e.g., rock-pit quarries, swamps) 
may be remotely real time targeted and treated with an 
environmental friendly larvicidal agent. 

Interest in larval source management (LSM) as an 
adjunct intervention to control and eliminate malaria 
transmission in Uganda has recently increased mainly 
because long-lasting insecticidal nets (LLINs) and indoor 
residual spray (IRS) are ineffective against exophagic and 
exophilic mosquitoes. The urgent need to redesign vector 
control tools for mosquito populations resistant to current 
interventions may also require precise, seasonal, drone 
targeting of georeferenced, Anopheline habitats for 
increasing the relevance of LSM in Uganda. Therefore, 
knowledge of real time, drone sensed, time series, larval 
habitat, capture point, indexed, RGB, signature 
characterization for identification of unknown, productive, 
seasonal, positive, water bodies in endemic communities 
in Uganda would help to increase the impact of targeted 
larval mosquito control. 

Here we develop a novel technique based on state-of-
the-art AI enabled, real time, forecast vulnerability, grid-
based, seasonal, model employing real time, geosampled, 
drone sensed, eco-georeferenced, Anopheles (gambiae, 
funestus arabiensis), LULC, stratified, capture points for 
optimally identifying  and subsequently forecasting 
geolocations of unknown, unsampled, seasonal, breeding 
site foci in Akonyibedo pastureland agro-village in 
Northern Uganda via a smartphone app.   We develop 
multiple, real time, RGB, time series, habitat signatures so 
as to elucidate precise Anopheline, capture point 
geolocations. We develop binary bounding boxes (that is, 
0-no habitat present and 1-habitat  present)  along  with  a 

 
 
 
 
confidence metric on classified, drone sensed, gridded 
LULCs at the epi-entomological intervention site and 
develop a remote test procedure based on a real time 
resampling method so as to cartographically delineate 
unknown unsampled geolocations of potential, seasonal, 
hyper-productive, aquatic and non-aquatic, breeding site 
regions in the intervention study site. Thereafter, we 
conducted intense ground truthing exercises. Simulation 
studies in a real time UAV platform may be usable to 
generate a real time, drone sensing, RGB LULC, 
signature, iterative, interpolative methodology employing 
AI algorithms for  optimally remotely identifying unknown, 
unsampled, eco-georefernceable, hyper-productive, 
seasonal, aquatic and non-aquatic, Anopheles (gambiae, 
funestus and arabiensis) larval habitats throughout 
Uganda. 
 
 

METHODOLOGY 
  
Study site 
 
Uganda lies between the eastern and western sections of Africa’s 
Great Rift Valley. The country shares borders with Sudan to the 
north, Kenya to the east, Lake Victoria to the southeast, Tanzania 
and Rwanda to the south and the Democratic Republic of Congo 
(DRC) to the west. Whilst the landscape is generally quite flat, most 
of the country is over 1,000 m (3,280 ft) in altitude. Mountainous 
regions include the Rwenzori Mountains that run along the border 
with the DRC, the Virunga Mountains on the border with Rwanda 
and the DRC, and Kigezi in the southwest of the country. An extinct 
volcano, Mount Elgon, straddles the border with Kenya. The capital 
city, Kampala, lies on the shores of Lake Victoria, the largest lake in 
Africa and second-largest freshwater inland body of water in the 
world. Jinja, located on the lake, is considered to be the start point of 
the River Nile, which traverses much of the country. The varied 
scenery includes tropical forest, a semi-desert area in the northeast, 
the arid plains of the Karamoja, the lush, heavily populated 
Buganda, the rolling savannah of Acholi, Bunyoro, Tororo and 
Ankole, tea plantations and the fertile cotton area of Teso. 

 Gulu District is a district in Northern Uganda. The district is 
named after its chief municipal, administrative and commercial 
center, the town of Gulu. The District is bordered by Lamwo District 
to the north, Pader District to the east, Oyam District to the south, 
Nwoya District to the southwest and Amuru District to the west. The 
district headquarters at Gulu are located approximately 340 
kilometers (210 mi), by road, north of Uganda's capital city, 
Kampala. The coordinates of the district are: 02 45N, 32 00E. 

 
 
Malaria background in Northern Uganda  
 
The transmission intensity of malaria depends on: (1) Vector 
population or density which also depends on the presence of 
breeding sites and favorable temperatures, (2) Parasite-carrying 
individuals from whom mosquitoes pick the parasites; and, 3) 
Presence of a malaria susceptible population especially people with 
low immunity such as people migrating from areas of low malaria 
prevalence, pregnant women, children below 5 years and people 
living with HIV (www.who.gov). Once these individuals are bitten by 
infected mosquitoes, they develop clinical malaria after an incubation 
period of 1 to 2 weeks following an infective bite. 

Malaria   is   caused   by  the  Plasmodium  parasite.  Four  human
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Figure 1. (a) Malaria patients in hospital in Lira; (b) Treatment facility in Gulu district; (c) Malaria Health 
Clinic in Dokolo. 

 
 
 

 
 
Figure 2. Malaria endemicity in Uganda. 

 
 
 
species of Plasmodium (malaria, vive, oval and falciparum) occur in 
Northern Uganda although the predominant one is P. falciparum 
which accounts for 99% of the cases, according to Uganda Malaria 
Indicator Survey 2018. The malaria vectors in this region are 
mosquitoes of the Anopheles family, which breed in fresh water in 
temporary pools such as footprints and road cuts especially after 
rainfall and irrigation. 

Anopheles gambiae, a highly efficient vector, along with An. 
funestus are the two main vectors; and morphometrically fewer 
arabiensis species are also present. These vectors are 
predominantly anthropophagic, endophilic and endophagic. The 
Ministry of Health (MoH), Uganda observed that using the Test, 
Treat and Track policy confirmed that malaria is the leading cause of 
morbidity and mortality; it accounts for 30-50% of outpatient visits at 
health facilities, 15-20% of all hospital admissions, up to  20%  of  all 

hospital deaths and 27.2% of inpatient deaths (Figure 1a, b and c). 
Malaria transmission in Uganda (Figure 2) exhibits seasonality which 
follows the rainfall pattern. For example, in the northern region 
where there are two rainfall peaks, similar peak transmission periods 
occur that lag behind the rainy season peaks by about 4 weeks. 
These are associated with malaria morbidity which has been 
increasing in the recent decades.  

The main malaria vector control method practiced in Northern 
Uganda is the use of Long Lasting Insecticide Treated Nets (LLINs) 
which has been continuously distributed to people but unfortunately 
has failed to curb down malaria transmission. This is due to the fact 
that many vectors are exophagic with the preferred biting time 
beginning in the early hours of the night when people are still 
outdoors. Secondly, majority of the local people go to bed late 
preferring to stay outdoors working while others socialize; hence, the
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Figure 3. DJ 4 Phantom. 

 
 
 

 
 

Figure 4. DJI 4K camera with a 8.8 mm/24 
mm; f/2.8; 1'' CMOS; 20 MP) for RGB 
capture point Anopheline habitat imaging 
in the Akonyibedo village epi-
entomological, intervention, study site. 

 
 
 

human vector contact in the early hours of the night has sustained  
malaria transmission. Also extensive agricultural insecticide and 
pesticides used on seeds, crops and horticultural gardens washed 
by rains into the running water have contaminated nearby breeding  
sites exposing immature stages of malaria vectors to these 
chemicals which have contributed to the resistance expressed in 
adults. Hence our assumption was that destruction of breeding sites 
would present a lasting solution to these challenges hampering 
malaria control in Northern Uganda. 

Malaria transmission occurs year-round with two peaks from May 
to June and from November to December following distinct rainy 
seasons in Northern Uganda. In addition to climate and altitude, 
other factors that influence malaria in the country include high 
human concentration near vector habitats (e.g., agro-villages and 
boarding schools in proximity to marshlands or rice fields), 
population movement (especially from areas of low to high 
transmission), irrigation schemes (especially in the eastern and 
southern parts of the country), and cross-border movement of 
people (especially in the eastern and southeastern parts of the 
country). 

 
 
UAV tactics 

 
Drone   surveys   were   carried   out   using   a   DJI Phantom 4 Pro 

quadcopter (Figure 3) fitted with a DJI 4K camera (Figure 4)  for 
seasonal, RGB, capture point, Anopheline, larval habitat ,imagery 
collection. The camera was composed of single-band cameras 
[Green, Red, Red Edge and Near Infrared—(NIR)] of 1.2 MP for 
multispectral imagery collection.  

The wayward flight plan over the agro-pastureland, epi-
entomological, intervention study site in Northern Uganda was 
programmed with Pix4D Capture app in an iPad Mini 4 (Apple, 
California, US) (Figure 5). Pix4Dcapture automatically imaged the 
Anopheline, larval habitat, RGB, multispectral, capture image, LULC 
data. We processed post-flight images on the cloud applications 
which produced georeferenced maps and models that were tailored 
for ground truthing. The connection between the controller and DJI 
Phantom 4 Pro and 3DR Solo was set up using DJI GO 4 app 
(Figure 6). 

For RGB capture point of Anopheline larval habitat and real time, 
LULC, 2-D and 3-D mapping in Akonyibedo village, the DJI Phantom 
4 Pro drone was flown to an altitude of approximately 100 m, initially 
which gave a ground sampling distance (GSD) or spatial resolution 
of 0.1 m/pixel. Grids of 500 m × 500 m were drawn in Pix4D. 
Households and a buffer of at least 250 m were covered using 
several grids for imaging multiple, georeferenced, Anopheles, larval 
habitat, capture points. In each grid, 50 LULC waypoints were 
automatically calculated to ensure an overlap of at least 70% 
between neighboring images, necessary to generate an orthomosaic 
image. The flight plan was preloaded onto  the  DJI  Phantom  4  Pro
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Figure 5. Pix4D Capture app in an iPad Mini 4 for real time UAV 
signature RGB seasonal mapping Anopheline larval habitat capture 
points in Akonyibedo agro-village. 

 
 
 

 
 

Figure 6.  The DJI GO 4 app. 
 
 
 

drone and the flight path was followed automatically. A flying time of 
~30 min without a change of battery was required to complete the 
survey in each grid (Figure 7). The optimal flight height was 25-30 ft 
(7.5-9 m) above the capture point. We monitored the flight height in 
real time.  Multispectral  mapping  was  conducted  over  7  randomly 

sampled water bodies. In each water body, the drone was flown to 
an altitude of approximately 6 ft to 25 ft, which assured a GSD of 
0.02 m/pixel. A grid of 270 m × 270 m was drawn in Pix4D and the 
RGB multispectral camera was set up to take an image each second 
during the 20-min flight time of the drone. 
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Figure 7. Simulated image of capture point RGB mapping. 

 
 
 
Orthomosaic construction 
 
The photogrammetric processing (gridded, LULC surface, capture 
point, habitat measurements based on photographs) was conducted 
in AgiSoft Photoscan Pro (www.agisoft.com). The resulting real time  
UAV imagery was imported into Photoscan and processed to 
construct an orthomosaic (that is, mosaic of overlapped LULC 
images) which included correction for topographic, capture point, 
signature distortions) for each georeferenced,  Anopheline, larval 
habitat. 

Three approaches were employed for conducting the spectro-
temporal  explicit  LULC classification: (1) a classifier with particular 
focus on identifying water bodies placing the orthomosaic images 
into five groups: low vegetation, high vegetation, bare soil, urban and 
water bodies; (2) a classifier with a particular focus on differentiating 
water bodies with presence or absence of  Anopheles  larvae, 
classifying the orthomosaics into six groups: low vegetation, high 
vegetation, bare soil, urban, water bodies positive for Anopheles and 
water bodies negative for  Anopheles  and (3) a classifier with a 
particular focus on differentiating water bodies as positive or 
negative for  Anopheles classifying only the water bodies drone  
detected into two groups: water bodies positive and negative 
for  Anopheles. 

In order to measure the statistical separability between positive 
(aquatic habitats consistently harboring Anopheles >50% of the 
time)-and    negative    (aquatic    habitats    consistently     harboring 

Anopheles < 50% of the time) - water body classes in approaches 2 
and 3, an interclass separability analysis was conducted using the 
Jeffries Matusita (JM) distance. Briefly, JM is a measure of the 
average difference between two-class (positive and negative water 
body) density functions by pair-wise comparison and ranges 
between 0 and 2. A JM distance of 0 implied no separation and 2 for 
full separation between LULC classes geosampled in Akonyibedo 
village (Figure 8). 

The position of the drone at the time of image capture for each 
photo was recorded automatically by the on-board GPS; thus, an 
orthomosaic was georeferenced without the need of Ground Control 
Points (GCP).  A  3-D digital elevation model (DEM) was built in the 
real time portal using WGS 84 resolution of 0.1 m per pixel for the 
RGB and multispectral, capture point, LULC, georeferenced, 
Anopheline habitat, UAV images. 

A normalized difference vegetation index (NDVI) was calculated 
for each capture point LULC based on the bands from the drone 
camera using the following formula: NDVI=(NIR−Red)(NIR+ Red). 
The NDVI is a simple graphical indicator that can be used to analyze 
remote sensing measurements, from a space platform, and assess 
whether an Anopheline, larval habitat, capture point being observed 
contains live green vegetation or not (Jacob et al., 2015) (Figure 9). 
For each georeferenced capture point in Akonyibedo village 
orthomosaics were constructed: (1) a 3-band RGB image from the 
DJI 4K camera and an 8-band composite image (Table 1). 

The  image  classification  was  conducted in Google Earth Engine

https://www.agisoft.com/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353212/table/pntd.0007105.t001/


 

 

Minakshi et al.           209 
 
 
 

 
 

Figure 8. (A) Partially shade-canopied Anopheline larval habitat capture point in Akonyibedo 
agro-village complex; (B) Sampling for immature Anopheles in a road side ditch habitat. 

 
 
 

 
 

Figure 9(a and b). Two seasonal NDVI maps of varying LULCs in Akonyibedo agro-village. 
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Table 1. RGB and multispectral bands used as features in the classification. 
 

 Spectral band Label Wavelength range (nm) Resolution (m) 

RGB bands 

Blue Blue 492 to 455  

0.1 Green Green 577 to 492  

Red Red 780 to 622 
     

Multispectral bands 

Green green_m 550  

0.02 
Red red_m 660  

Red Edge edge_red 735  

Near Infrared nir 790  
     

Other NDVI ndvi -1 to 1 0.02 

 
 
 

Table 2. Relevant details on our dataset of breeding habitats. 
 

Total duration of all videos 32 min 

Total number of frames 1,889 

Total number of frames with breeding habitats 1,100 

Total number of frames without breeding habitats 789 

 
 
 
(GEE). GEE is a cloud-based platform for planetary-scale geospatial 
analysis. [https://earthengine.google.com]. All classification analyses 
were conducted in the online Integrated Development Environment 
(IDE) at https://code.earthengine.google.com (repositories for data 
and code available in Supplementary information). All 8-band 
multispectral orthomosaics were uploaded to GEE assets and a 
supervised classification was performed using AI algorithms on RGB 
data. 
 
 
Technical details 
 
Data preparation 
  
We collected around 32 min video of the whole village using DJI4 
Drone (GPS enabled) during three seasonal collection frames (dry, 
pre-rain and rain) throughout 2019. Essentially four data gathering 
experiment were conducted, and each experiment was approximately 
8 min long. Relevant details on our dataset are shown in Table 2. 
The data were used to train and validate our AI algorithm. We state 
clearly here that the height of the drone was chosen between 6ft to 
25ft during these experiments. 

After the process of data collection, and in order to process the 
videos, we first extracted each frame within each video as one 
image. For the entire duration of 32 min the number of frames (that 
is, images) extracted was 1,889. Out of these, the images which 
contained potential larval habitats (that is, sources of standing water) 
were 1,100 that were subsequently annotated (localized and 
labeled) using labelImg tool (GitHub-Tzutalin, 2019). The others did 
not contain any source of stagnant water. Annotated images were 
further verified by an expert researcher for ground truth validity. In 
our efforts in designing an AI algorithm for classification, we 
employed 70% of annotated images towards training a model, and 
the rest images were used for validation. The total number of training 
and validation images generated after the aforementioned split were 
770, and 330 respectively (for the class of images containing a 
potential   larval   habitat),  and  the  split  was  similar  for  the  other 

classes. 
We point out that the resolution of each original image extracted 

was 4,096 × 2,160 pixels, where each pixel was a representation of 
RGB color space. This was a relatively large size hence we 
assumed that there would be slow down training time. In order to 
accelerate training, without compromising accuracy, we reduced the 
image size by a factor of 4. This resulted in an image of size 1,024 × 
524 (we observed no loss in model accuracy with this reduced size). 
After that, we normalized the RBG value of each pixel in an image 
by dividing it by 255. This aided in avoiding poor contrast from the 
image. Further, to increase the training images, we randomly 
zoomed in/ zoomed out each image between 0.5 and 1.5. Doing so, 
helped to add more robustness to our model for operating on unseen 
entomological and LULC data. Via this procedure, the total number 
of training images (original and scaled) generated was 1,540. We 
point out that the DJI Phantom drone provided GPS extraction 
capability using the notion of .SRT files containing the GPS 
information for each frame. Naturally, these were also extracted per 
frame, and they were stored in a .CSV file. 
 
 
Convolutional neural network based object-detection 
algorithms to localize the breeding habitats 
 
The state of the art techniques in image recognition relies on the 
notion of convolutional neural networks (CNNs) (Krizhevsky et al., 
2012). We provide a brief overview here. There are two components 
here - feature extraction part and classification. During feature 
extraction, the network performed a series of convolutions and 
pooling to get the critical LULC features in the gridded image that 
aided classification. The convolution layers extracted features from 
the images by performing convolution operation with the use of filters 
on the input images to generate the feature map. Each convolution 
layer had 3 dimensions (width, height and depth). Typically the 
image contained n filters where the filter size was (a, b, c) and where 
a and b was the width and height of the filter and c represented the 
number of  color  channels  of  an  image.  Each  filter  independently

https://code.earthengine.google.com/
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Figure 10. Learning rate for each iteration.  

 
 
 
convolved on the input image that was subsequently followed by 
pooling to generate a feature map. The pooling layer aided in 
reducing the size of the feature map. After the filter size was chosen, 
stride size needed to be chosen. Stride size is the size of the step by 
which filter moves across an image.  The process of convolution 
worked by computing a dot product between the filter and the local 
region of the image on which the filter was mounted. Since deep 
convolutional neural networks contain several convolution layers, 
each layer employed different filter sizes. As such, different feature 
maps were integrated together at the end and this acted as the final 
output of the convolution layer. 

Subsequently, after the convolution layers, we added a few dense 
layers for classification. The neurons (essentially a non-linear 
function that takes multiple inputs and renders out a single output) in 
the dense layers were fully connected to all the neurons of the 
previous layers. The last dense layers consisted of neurons equal to 
the number of classes. We aimed to classify, and render the 
probability of each class present in the image. The one with the 
highest probability was predicted as the correct class for the 
particular image when presented for classification. 

While classification of potential larval habitats in an image may 
alone suffice in most cases, we wanted to add another feature in our 
design to also highlight where the predicted larval habitat was within 
the image (that is, localization of the object within the image). When 
the operator viewed the habitat localized (bounded within a solid 
box) more details about the size of the larval habitat were inferred. 
Furthermore, the number of habitats present in the image was 
accessible. In addition, we generated a confidence metric to the 
operator for each bounding box which was emplaced in an image. 
Our solution to do so was based on the notion of Faster R-CNN. 

In this Region CNN approach, we executed several steps which 
were challenging. First, we trained the drone sensed, seasonal, 
capture point, gridded LULC, image datasets using a pre-trained 
convolutional neural network model and extracted the convolutional 
feature map from the last layer of the trained network. This step 
enabled the neural network to understand the key features within the 
image that separates multiple classes of objects within the image. To 
train towards feature recognition, the right neural network must be 
used and adapted. For this study, we used Inception V2 (Szegedy et 
al., 2016) as the base pre-trained convolutional network for 
extracting the feature maps. Inception V2 is a complex deep learning 
architecture which employs smart factorization methods to make the 
convolutions efficient in terms of computational complexity. This 
architecture helped in achieving the same for our problem. 

After extracting the feature maps, in order to localize objects of 
interest in the image, we employed the notion of Faster Region-
based CNNs (Faster R-CNNs) (Ren et al., 2015). To do so, a few 
steps needed to be executed. First, we predefined anchor aspect 
ratios and scaled in our images.  Anchors are the rectangular boxes 
that are used to scan objects in the image. These were emplaced 
during training the neural network. For the case of our drone 
imagery, we set the base anchor size as (256, 256) pixels, with 
scaling ratios and aspect ratios as (0.25, 0.5, 0.75, 1.0, 1.50, 2.0, 
2.5) and (0.25, 0.5, 0.75, 1.0, 1.50, 2.0, 2.5) respectively. The width 
and height of each anchor was set as 
 
width_anchor = scale[i] * sqrt(aspect_ratio[i]) * base_anchor[0], 
height_anchor = scale[i] * base_anchor[1] / sqrt(aspect_ratio[i]) 
 
where i was the index of the matrices of scales and aspect ratios. In 
total, 300 anchors were generated per image for training. Then, we 
fed our anchors and feature maps to the region proposal network 
(RPN).  Here, the task was to train the network to identify those 
boxes in the image that were indicative of Anopheles larval habitats. 
To do so, we manually ground truthed each box prior to training as a 
potential larval habitat and the classified background. The RPN 
consists of small convolutional layers, was trained to identify the 
anchors having the relevant objects of interest (in our case, a 
potential, eco-georeferenceable, seasonal, Anopheline larval habitat, 
capture point aquatic foci) with an ―objectness‖ score and return the 
ones that most likely contain objects within the image based on the 
score along with the center coordinates, width and height of all 
anchors [Ren et al. 2015). 

Finally, we resize the feature maps of the anchors (that is, 
anchors which contains objects of interest) learned from the above 
step into fixed sized feature maps which serve as input to two 
branches to: a) classifier to identify potential larval habitats within the 
anchor; and b) regression to tighten the anchor for improved 
accuracy. All two steps are done in parallel. We fine-tuned the 
classifier by varying learning rate. We used stochastic gradient 
descent (SGD) solver for 50,000 iterations with a base learning rate 
of 2e-5, then another 25,000 iterations  by reducing the base 
learning 2e -6 and the rest 25,000 with 2e-7 for faster convergence. 
The learning rate for each iteration is shown in Figure 10. 

During training, one important criterion for correctness is the loss 
function (Ren et al., 2015).  Briefly, the loss function measures the 
learning ability of a neural network architecture. Typically, it ranges 
from  0 to  1  where  0  means  perfect  learning  and   1   means   no
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Figure 11. Total loss graph (a) without and (b) with focal loss. 

 
 
 
learning. The goal of training the anopheline larval habitat data was 
to minimize the loss of training data. We noticed that the default 
binary cross entropy loss function (which is standard) had increased 
after 15,000 iterations. To minimize the loss, we applied a novel 
focal loss function which penalizes instances of false negatives 
which in our case was an actual larval habitat classified as 
background (Lin et al., 2017).  We noted that the number of anchors 
containing breeding habitats was lesser in comparison to anchors 
that contained the background class. Hence, the classifier was 
biased towards the background class which initially resulted in 
biased learning.  Focal loss is an improvement over the more 
standard cross entropy loss, since it operates by lowering the loss of 
well classified cases and emphasizing the misclassified ones (Lin et 
al., 2017). We considered the following equation, 

 

 

 
Here y denoted the ground-truth of the class (+1 for larval habitat 
and -1 for background), and          , which was the model 
estimated probability for the class label     .  The Focal loss (FL) 
for each anchor k is defined as 

 
FL(k)=-(1-Q) 


log(Q). 

  
Here  is a tunable parameter. In this research, when a potential 
Anopheles larval habitat was misclassified as background and Q 

was small, the modulating factor (1-Q) 

, was close to 1 and this did 

not affect loss. When Q tends to 1, the modulating factor is close to 

0 and loss for well classified examples is down-weighted. =2 
performed optimal. After applying focal loss, we were able to 
determine that  overall  minimal  loss  was  achieved  in  the  model. 

Essentially, when the loss in training data is similar to the loss in 
validation data (recall that validation data is not used to train the 
model), and when they do not decrease any further, the process of 
training is complete. The process of training and validation of the 
model was an iterative process. The final set of parameters of the 
neural net architecture that met our (loss) criteria are presented 
(Figure 11a and b). 

We defined a user-understandable metric for revealing the quality 
of our trained and validated neural network. Our metric was mAP 
over Intersection over Union (IoU) threshold. The IoU metric 
measures the correctness of a given bounding box (Ren et al., 
2015). It is formally, the area of the intersection of the predicted box 
and ground truth box divided by the area of union of the predicted 
box and the ground truth box. It is illustrated in Figure 12 where 
Green denotes the Ground Truth Box, and Red denotes a Predicted 
Box.  In our design, the IoU threshold was set as 0.7. When the IoU 
is 1, then a perfect classification and emplacement of the bounding 
box occurred. Lower IoU values indicate poorer performance (Ren et 
al., 2015). 

By computing the True Positives, False Positives and False 
Negatives for classification in the validation set, we were able to 
integrate a final metric called mean Average Precision or mAP. 
Denoting AP as the Average Precision (AP) for finding the area 
under the precision-recall curve of each class, the mean Average 
Precision or mAP score was calculated by taking the mean AP over 
all classes over IoU threshold. Note that Precision and Recall are 
standard metrics in binary classification problems. The Precision 
was defined as the ratio of True Positives to the Sum of True 
Positives and False Positives. The Recall was subsequently defined 
as the ratio of True Positives to the Sum of True Positives and False 
Negatives. A high Precision and Recall indicate a more accurate 
classifier (Powers, 2011). 

The mean Average Precision (mAP) of all images in our validation 
set was determined to 0.87 for an IoU of 0.7.  Note that if when we 
set the IoU with lower thresholds (that  is,  less  than  0.7),  the  mAP

 

 

 
           
 
 
 

(A) 
(B) 

Q =    
       𝑖𝑓  = +1

1 −   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 



 

 

Minakshi et al.           213 
 
 
 

 
 

Figure 12. The mAP of the images in validation set. 

 
 
 

 
 

Figure 13. An Instance of a Predicted Anopheles larval habitat Akonyibedo 
by our AI Algorithm. 

 
 
 
was higher. We trained our Faster R-CNN model using the 
annotated images to detect and locate sources of breeding habitats 
(Figure 12). It took close to 10 hours test and validate the model 
using a graphic processing unit (GPU) cluster. The cluster has 4 
nodes of GeForce GTX TITAN X each with 12 GB memory. 
 
 

RESULTS 
 
In order to test the correctness (or accuracy) of our neural 
network model, we tested it with completely unseen 
images retrieved from the drone spectral library. By 
unseen, we mean that the images that were fed into the 
neural network for classification and localization of larval 
habitats   which   were   never   used   during   training   or 

validation (details of which are elaborated above). Our 
algorithm performed optimally here, and we were 
confident that our model was one of high fidelity. For 
testing we flew the UAV over neighboring unsampled 
locations at the pei-entomological, agro-pastureland, 
intervention site.During these wayward flights, 7 videos 
with a total of 15 min were collected. The total number of 
frames extracted was 959 with 60% of them containing at-
least one potential larval habitat. In some frames 
georeferenced breeding site, Anopheles foci were 
repeated  

Subsequently, each frame was fed into our model for 
classification and localization. We derived robust 
outcomes. Figures  13  and  14  reveal  breeding  habitats



 

 

214          J. Public Health Epidemiol. 
 
 
 

 
 

Figure 14. An instance of a predicted anopheles larval habitat Akonyibedo by our AI algorithm. 

 
 
 
identified accurately. The probabilities of detection by our 
neural network (that is, the confidence it had in making the 
prediction) were close to 0.99 in most images. This 
signifies that every potential source of stagnant water (that 
is, larval Anopheles habitat) was correctly classified and 
localized. There was a minute number of False Positives 
(<10%) present. It may be expected that our model 
accuracy would increase with increased training data. 

For practical deployment purposes, once we predicted a 
frame to have at-least one georeferenced, anopheline, 
larval habitat, it was extracted based on its GPS indexed 
geolocation from the associated .csv file which was 
provided by the drone.  The final output to the operator 
was provided as an image with bounding boxes and its 
GPS location was able to geolocate the anopheline 
habitats in the form of a simple smartphone app. These 
habitat sites were subsequently classified as productive or 
not for prioritizing seasonal, breeding sites, for 
implementing larval control strategies by overlaying a 
georeferenced Anopheline, RGB analog, video larval 
habitat seasonal capture point, signature over the UAV, 
real time, geosampled, gridded, LULC images. 

The sensitivity and specificity of the RGB drone signals 
at identifying positive and dry habitats were subsequently 
evaluated in blinded experimental studies in a natural 
setting followed by extensive ground-truthing of the UAV 
sampled, real time, LULC classified, model outputs 
employing ground coordinates which had a positional 
accuracy 0.178 m. All or 100% of the capture points from 
90 (unique) larval habitats forecasted by the model in 
Akonyibedo village were identified, and were found to 
contain Anopheles larvae. Pyrethrium Spray Catch (PSC) 
statistics were subsequently developed. 
 
 
DISCUSSION 
  
We employed  a   real  time,  UAV-differentially  corrected 

GPS-AI platform to prognosticatively delineate 
georeferenceable geolocations of probable unknown, 
unsampled, Anopheles, breeding site, oviposition, capture 
point, seasonal foci in various landscapes (e.g., grassy, 
streamside, irrigation ditches, vernal roadside pools etc.) 
in an peri-urban agro-village, pastureland complex 
(Akonyibedo) in Northern Uganda. We employed a DJ4 
Phantom drone which had a RGB camera, with a 1-inch, 
20-megapixel sensor that shot 4K video at 60 frames per 
second (fps) of different LULCs in the study site agro-
village complex employing a variety of automatic flight 
modes including Draw, ActiveTrack, TapFly, Gesture, and 
Tripod settings. The UAV had ample internal storage and 
battery life (up to 128GB via microSD and 30 minutes, 
respectively). Two flight altitudes (6-25 m) with two flight 
modes (stop and cruising modes) were employed for 
acquiring precise capture point, ground control point, 
indexed, landscape measurements. We eco-
georeferenced, multiple, An. gambiae funestus and 
arabiensis, breeding site, LULC, seasonal, capture points 
in a variety of different peri-urban, pastureland, agro-
village, land cover classifications in Akonyibedo village. 
These gridded images were assessed to identify 
characteristics unique to the habitats.  

We analyzed the influence of real time, multispectral, 
radiometric, UAV, real time, classified, spectral RGB 
signature, bi-directional reflux, wavelength, emissivity 
parameters for remote discrimination of multiple seasonal 
hyperproductive, aquatic and dry, seasonal, Anopheles, 
capture point, LULC images. The reflectance spectrum of 
multiple, agro-village, agro-pastureland anopheline 
habitats was established in the semi-autonomous, drone 
aircraft dashboard as a plot of the fraction of radiation 
capture point reflected which was a function of unmixed, 
RGB indexed, incident wavelengths in the peri-urban 
pastureland epi-entomological Ugandan intervention study 
site. 

  The AI component of our technique was the successful 
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training of a Faster R-CNN (Region-based Convolutional 
Neural Network) model using all annotated RGB images 
from the drone video to detect and locate sources of 
Anopheline aquatic breeding geolocations at the 
intervention, epi-entomological site. The R-CNN model 
essentially performed two tasks, classification and 
regression. The classification component found the object 
of interest (in our case, a potential larval habitat) within an 
image, and the regression components emplaced a tight 
bounding box. Our final metric to assess accuracy was 
mean Average Precision (mAP), which is a function of 
another metric called IoU, essentially compared the 
overlap amongst the ground truth datasets and predicted 
bounding boxes after classification and localization. For a 
relatively high IoU threshold of 0.7, the mAP value during 
validation was 0.87, which was a high number for a 
complex problem like ours. With more training data, the 
accuracy will only improve further.  

The sensitivity and specificity of the RGB capture point, 
LULC signals at identifying the targeted seasonal 
Anopheline habitats was then evaluated in blinded 
experimental studies by real time drone identification of 
breeding sites in a natural setting followed by extensive 
ground-truthing of the real time model outputs. All 
hyperproductive, seasonal aquatic and dry habitats were 
identified. Once optimized the models were incorporated 
into a mobile app that analyzed the density of breeding 
site pixels. The app was employed to remotely identify 
LULC properties in which individual breeding sites and 
clusters of habitats (that is, ―hot spots‖) were observed 
representing a potential, Anopheline, larval habitat, 
hyperproductive, aquatic and non-aquatic, seasonal, 
intervention site. The app was employed to remotely 
identify LULC properties in which individual breeding sites 
and clusters of habitats (―hot spots‖) were observed. 
These Anopheline, larval habitat, hyperproductive, aquatic 
foci were then prioritized based on field sampled 
entomological data (larval counts, Euclidean distance to a 
homestead etc.) and then catalogued as a seasonal, 
intervention site in the app.  The app in the real time 
platform recorded the GPS location of the aquatic 
breeding site as a pin of an unknown habitat on a Google 
Earth map. 

We noted that the real time platform performed all the 
necessary system checks (e.g., battery levels, differential 
correction of GCPs, camera storage, etc.) while 
autonomously flying a wayward mission in Akonyibedo 
village  with the proper ortho-overlapping for real time 
imaging an experimental or predicted, georeferenceable, 
capture point, Anopheline larval, habitat, LULC site. The 
platform had cloud image processing, single-click 
collaboration, export, and integration options with the 
capability of embedding object-based classification 
methods (e.g., capture point, RGB wavelength separation) 
for, optimal land cover mapping. The real time platform 
allowed   measuring   un-aggregated,   RGB,  wavelength, 
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reflectance, capture point, 2-D and 3-D, LULC reflux 
variations in the UAV, geosampled empirical datasets of 
seasonal, hyper-productive, aquatic and non-aquatic, 
habitat pixel frequencies, where probability of a habitat 
containing larvae or pupae was measureable. 

Eluicidating first-order, differential, eco-
georeferenceable, capture point, LULC surface reflux 
through dimensionless, radiation-based, discontinuously 
vegetated, seasonal, habitat canopies employing off-nadir, 
NIR and red wavelength, radiance in the Akonybedo agro-
village, pastureland, epi-entomological, intervention, study 
site, approximated unobserved, isoline convergence and 
soil-perturbed, LULC responses in the sub-meter 
resolution, Anopheline habitat,  spectral,  signatures in the 
drone dashboard real time machine learning module. The 
UAV allowed the mapping of the vegetation LULC at very 
high spatial resolution. For reflectance measurements and 
vegetation indices (Vis) to be comparable between 
seasonal, eco-georefernceable,  capture point, larval  
habitat sites and over time, careful flight planning and 
robust radiometric calibration procedures is required 
(Jacob et al., 2019). 

Two sources of uncertainty that require attention for 
future, anopheline, larval habitat, signature mapping are 
illumination geometry and the effect of flying height. This 
study developed methods to quantify and visualize effects 
in imagery from the Parrot Sequoia, a UAV-mounted 
multispectral sensor. Changes in illumination geometry 
over one day had visible effects on both individual 
Anopheline habitat, capture point LULC images and 
orthomosaics. Average NIR reflectance and NDVI in 
regions of interest were slightly lower around solar noon, 
and the contrast between shadowed and well-illuminated 
areas increased over the day in all multispectral bands. 
Per-pixel differences in NDVI maps were spatially 
variable, and much larger than average differences in 
some classified LULC areas at the epi-entomological 
intervention study site. Results relating to flying height 
indicated that 6-25 though small increases in NIR 
reflectance with height were observed. These results 
underline the need to consider illumination geometry when 
carrying out UAV vegetation surveys for targeting eco-
georeferenceable, hyper-productive, aquatic and dry, 
seasonal, Anopheline larval habitat, capture points. 

Real time, UAV–based, seasonal, habitat time series 
mapping could have a wider range of applications for 
precisely determining geolocations of Anopheline, larval 
habitat, LULC capture points. For example, high resolution 
DEMs generated in a real time portal may be useful tools 
to analyze watersheds and small streams favorable 
to Anopheles breeding sites that are shaped by 
intermittent heavy rain. Moreover, these DEMs may 
support the identification of seasonally flooded areas, 
common in peri-urban agro-pastureland, epi-
entomological, intervention sites that possibly increase 
human-mosquito   contact   and  therefore  are  associated
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Figure 15. Another more complex instance of how our algorithms classify and localize larval 
habitats with a confidence metric in Akonyibedo village in Uganda. 

 
 
 
with a higher risk of malaria. Also, these seasonal, RGB, 
video, analog signatures may be input into a  real time 
framework in ArcGIS for efficient visual, larval habitat, 
capture point, similarity-based matching for scaling up to a 
larger epi-entomological intervention site (e.g., agro-
irrigated, pastureland, agro-village geolocation to a district 
level sub-county) in a real time UAV platform. All drone 
sampled real time data were streamed into ground 
stations via WiFi where control personnel viewed the live 
footage using a multi-directional, mobile, hand held device 
(e.g., Android technology, i-Phones). Sub-county, local, 
mosquito control personnel in Akonyibedo village 
measured the real time UAV captured, mosquito, capture 
point, signatures (that is, georeferenced breeding site, 
habitat targets). 

Sub-county control personnel at the intervention 
subsequently visited the field verified tagged properties 
and applied an environmental friendly treatment for 
controlling Anopheline habitats in the epi-entomological, 
intervention study site. This treatment included entirely 
burying the habitat with soil substrate. We all imitated a 
real time treatment for large habitats such as swamps and 
rock pit quarry habitats whereby the drone was used to 
deliver an environmental friendly insecticide to these foci 
within a period of 30 days there was a drastic reduction of 
airborne Anopheline mosquitoes based on Pyrethrium 
knockdown exercises conducted at random households at 

100% active breeding sites as at baseline, on average, 
over 8 female anopheles mosquitoes were found per 
house spayed. On destruction of 65% breeding sites, a 
monitoring PSC showed a vector reduction to 1 female 
Anopheles mosquitoes per household in 30 days. This 
means that if all the breeding sites were destroyed, there 
would be an effective vector reduction to zero indoor 
resting female Anopheles mosquitoes per house hold. 

In this research we noted that many active breeding 
sites in Akonyibedo village were potholes created by 
delivery trucks on marram roads; we also noted that these 
potholes were constantly stirred up by moving trucks, 
greatly destabilizing the young Anopheles mosquito 
development. This allowed ―Seek and Destroy‖ to focus on 
these small positive breeding sites. Ironically, these 
reports have indicated that the locals believe that filling 
road potholes is the job of the government, and so these 
potholes have remained the main breeding sites for 
Anopheles mosquitoes in these agro villages. 
Reapplication of soil substrates in peri-urban anopheline 
breeding sites may be required due to precipitation and 
other environmental changes (e.g., agricultural land cover 
changes  such as agro-irrigation flooding to post-tillering to 
pre-harvest rice seasonal cycle (approximately 120 to 150 
days) . Hence these treated habitats should be bi-weekly 
monitored. These sites may then then re-treated as 
necessary (Figure 15). 

 

 
 

 
 
 



 

 

 
 
 
 

Real time technology in a UAV offers the potential to 
identify and treat large water bodies such as a rock pit 
quarry habitats. For example, real time drone-based 
imagery has the potential to provide ancillary information 
for planning of logistics for treating large habitats: that is, 
location and nature of access capture points/routes to the 
swamps to direct field vector control teams to initate real 
time seasonal larvicidal treatment.  One of the greatest 
advantages of real time drone systems is their flexibility for 
real time larvicidal treatment for large habitats Anopheles; 
insecticide may be targeted which can be very cost-
effective. Blanket treatment protocols are very expensive 
(Jacob et al., 2015). Although drones cannot be flown in 
the rain, they are not reliant on clear sky conditions (as 
they are flown at low altitudes, below clouds, unlike optical 
satellites) which can be very efficient for treating large 
seasonal Anopheline habitats. Additionally, drone, real 
time imagery can be used to establish and monitor links 
between environmental factors  (e.g., low lying vegetation, 
soil moisture) and malaria, disease transmission, such as 
changes in land cover and the emergence of new vector 
habitats. 

Capturing data multiple longitudinal entomological 
surveys throughout Uganda would provide the tools to 
study Anophelinae breeding site dynamics for optimally 
employing ―Seek and Destroy‖ larval control for small 
commercial road ditch habitats and real time drone 
larviciding of larger rockpit quarry and swamp breeding 
habitats for lowering malaria transmission. For instance, 
the adaptation to more permanent anthropogenic larval 
habitats on LULC change sites (e.g., rice tillers to flooded 
pre-harvest habitat), eco-georeferenceable geolocations 
has been hypothesized to be the cause of a resident 
population of  An. arabiensis  in  rice schemes leading to a 
perennial presence of this species, hence promoting and 
maintaining continual Plasmodium transmission. ―Seek 
and Destroy‖ and season real time drone laravciding may 
be cost efficient and  timely implemented in these LULC 
seasonal change sites in Uganda. 

Overall the most important methodological caveat in this 
study is the definition of positive and negative, 
Anopheline, capture point water bodies. Although we 
sampled only 7 negative and 7 positive water bodies 
capture points for the presence of immature Anopheles, 
we achieved a 100% sensitivity and specificity during field 
verification exercises. Future research work in Uganda 
should consider more frequent, seasonal, drone sensed, 
real time surveillance of additional water bodies from other 
sub-county, epi-entomological, intervention communities 
and additional drone flights over the survey localities at 
different times of the day and under various atmospheric 
conditions. 

In conclusion, real time, drone sensed.  capture point, 
time series, Anopheles, breeding site, RGB, signature 
interpolation using machine learning algorithms can 
optimally    geolocate    unknown,   unsampled,   seasonal, 
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larval/pupal habitat, capture point, LULC, seasonal maps 
and 2-D live maps in a UAV dashboard. This data may be 
live streamed to mobile hand-held devices (i-phone, 
android technology) for immediate mapping of unknown, 
unsampled foci using an Android or IOS app. Thereafter 
environmental friendly Seek and Destroy and drone 
laraviciding may be implemented for reducing immature 
anophelines and hence reducing malaria transmission 
throughout Uganda. 
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