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Glossina fuscipes fuscipes remain the main tsetse vectors of Trypanosoma brucei gambiense that 
causes Human African Trypanosomiasis (HAT) in South Sudan, where HAT Control Strategy does not 
involve vector control component. Information on the fly apparent density/trap/day helps identify 
priority areas for vector control. Insecurity and logistic problem makes it impossible for vector control 
to be carried out. Fly-human contacts might be reduced in areas where the fly infestation may 
contribute to the disease transmission. This study employs Linear Regression Analysis to predict adult 
G. f. fuscipes  apparent density/trap/day in Kajo-keji County.  Tsetse field surveys were carried out 
along 8 streams in the study area from January 2012 to December 2012. Twelve linear regression 
models were developed to predict the apparent density /trap/day as function of potential predictors for 
tsetse fly catches. The difference between the fly apparent densities generated by the models and the 
actual densities from the survey was analyzed using paired samples T-test in SPSS. Models’ predictive 
values showed the monthly trends of G. f. fuscipes abundance with the upper and lower limits of the 
model agreements of 5.97 and -11.65, respectively. The model appears fit for the data and prediction of 
the fly apparent density from the various predictors (F (4,11) =14.321, P  <0.02). The densities predicted 
by the model did not statistically (df=11; P = 0.69) vary from the actual ones. This study could 
contribute to predict the peaks of the vector abundance that guide strategic plans for tsetse and HAT 
control programmes  in South Sudan.  
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INTRODUCTION 
 
Tsetse fly (Glossina sp.) is the main vector for 
trypanosomes, the parasites which cause 
trypanosomiasis and these vectors are grouped into three 

main subgroups, namely, the riverine subgroup known as 
the “palpalis”, the savannah subgroup called the 
‘’morsitans subgroup’’and forest-dwelling tsetse known as 
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the ‘’fusca’’(Wamwiri and Changasi, 2016).  

Glossina fuscipes are the most important biological 
vectors of Human African Trypanosomiasis (HAT), in 
almost 90% of all disease cases across Africa (Omolo et 
al., 2009). Evidence has also shown that patches of G. 
fuscipes fuscipes exist on the margins of Lake Victoria in 
Tanzania (Krafsur et al., 2008), and in Southwestern 
Ethiopia and South Sudan (Rogers and Robinson, 2004). 
In South Sudan/Sudan, G. f. fuscipes are the main 
vectors of Trypanosoma brucei gambiense, though G. 
tachinoides, G. pallidipes, and G. morsitans have also 
been found in the Greater Equatoria Region (Mohammed 
et al., 2010; Ruiz-Postigo et al., 2012). Several studies 
have shown that G. f. fuscipes, a riverine species of the 
Palpalis group, prefer dense vegetation on river banks as 
habitats with conducive conditions of humidity, warmth 
and light prevail (Albert et al., 2015). River banks provide 
source of blood supply to tsetse from the dwellers during 
water collection. 

Understanding how environmental factors and their 
drivers provide impetus for shaping tsetse (G. f. fuscipes) 
population may be crucial for tsetse control and 
intervention programmes. Population dynamics of the 
tsetse may be influenced by environmental factors/ 
predictors such as temperature, rainfall, humidity and 
wind speed. Effects of these factors/predictors on the 
monthly apparent density of G.f.fuscipes can be best 
quantified using regression models. Regression is a 
statistical tool used to quantify the association between 
an outcome measure and predictor variables. This 
approach has been used in the predictive mapping of 
various vectors and associated vector-borne diseases, 
including malaria and Rift Valley fever (RVF), with broad 
applications in environmental disease risk (Albert et al., 
2015).  

Multiple regression models are often used in many 
study areas using simple assumptions (Ladu et al., 
2012). This model comprises both independent and 
dependent variables, and is easily verified, based on 
three viewpoints. The first is the correctness of the values 
predicted by the model. The second is the multi-
collinearity between independent factors, and the third is 
whether the errors in the model have normality or not.  
Several studies have been carried out using Multiple 
Linear Regression Model (MLRM) for forecasting 
Bluetongue disease outbreak in sheep in India (Selvaraju 
et  al., 2013) and adult female Aedes aegypti in Saudi  
Arabia (Khormi et al., 2013). Similarly, the model has 
been applied to study the potential impacts of climate 
change on stable flies (Gilles et al., 2008) and to predict 
mosquito abundance and habitats in USA (Cleckner et 
al., 2011). 

Tsetse   flies    are   vectors   of   human    and    animal 

 
 
 
 
trypanosomosis in sub-Saharan Africa and are the 
targets of the Pan African Tsetse and Trypanosomiasis 
Eradication Campaign (PATTEC) (Dicko et al., 2014).  

It is evidenced that the HAT remains one of the 
important Tropical Neglected Diseases (TNDs) threating 
human health in sub-Saharan Africa (Simarro et al., 
2010; Mboera et al., 2011). Studies in Uganda and 
Democratic Republic of the Congo showed that HAT can 
impact the functioning of households with the 
consequences of increased poverty; decline in agricultural 
activities often leading to famine or lack of basic food 
security; disruption of children's education and; generally, 
reversal of role in obligations, which are more often than 
not enhance women's and children's burdens (Bukachi et 
al., 2017). As a result of Glossina-borne parasite that 
causes HAT, it has been found that approximately 1.6 
million DALYs (Disability Adjusted Life Years) is due to 
HAT and considered second among all vector-borne 
diseases in Africa for mortality and fourth for related 
disability (Mwiinde et al., 2017). Human African 
Trypanosomiasis has seriously impacted populations with 
greater social, cultural, and economic vulnerabilities 
(Holanda-Freitas et al. 2020) and has greatly affected 
settlements and economic developments in most African 
countries, particularly those south of the Sahara Desert 
where it is transmitted mainly by tsetse flies (Kuye, 2020). 

In South Sudan, Gambian HAT control activities rely 
mostly on case detection and treatment of the detected 
cases. World Health Organization (WHO) has targeted 
elimination of HAT as public health problems by 2020 
(Courtin et al., 2015). Vector control programme included 
in the Gambian HAT control strategy in South Sudan has 
been initiated by PATTEC since 2009 (Rahman et al., 
2010). However, the programme has never been well-
implemented mainly due to insecurity problems in some 
foci of HAT and/or logistics constraints. Disadvantage of 
case detection strategy for HAT control is that the 
programme hardly covers more than 75% of the 
population and an alternate method is to eliminate the 
tsetse fly which transmits the parasite causing the 
disease (Courtin et al., 2015). Therefore, vector control 
remains an important component of HAT control and 
elimination programme. Vector control has the advantage 
of completely interrupting HAT transmission although it is 
too expensive and difficult to carry out in resource-poor 
settings (Tirados et al., 2015). The need for tsetse vector 
control component in HAT control programme may speed 
up HAT eradication as advocated by PATTEC. 
Implementing tsetse vector control needs enough 
resources among many others. Therefore, financial, 
logistics and technical constraints could hinder tsetse 
vector control activities. Solution to the insufficient 
resource  allocation  for vector control programmes might 
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be done by implementing the programme in certain areas 
where the vector control activities might achieve greater 
impacts. Such areas need be given priorities and this can 
be done on the basis of the fly apparent densities. 

So far, there has no information about the apparent 
densities of G. f. fuscipes available in South Sudan. 
Therefore, up-to-date information is needed for the 
numbers of flies caught/trap/day as a function of 
environmental predictors for decision-making processes 
and improved planning for tsetse control interventions. 
The MLRM method might be applied to give an insight 
into the fly density once all the necessary environmental 
predictors of the sites or the areas are obtained either 
from the country’s meteorological station or from any 
other reliable sources.  

In situations where vector control intervention is 
infeasible, knowledge on the fly apparent densities is still 
needed.  Because human tsetse contacts play a role for 
T. b. gambiense transmission the level of human 
exposure to tsetse flies in the areas of human tsetse 
contacts can be reduced (Courtin et al., 2015) and this 
will at least prevent HAT transmission to a proportion of 
population in those areas with tsetse infestation. 

This paper discusses how the apparent density of G. f. 
fuscipes is predicted from environmental predictors using 
the MLRM. These models could be applied to other 
studies that predict the effects of climate change on G.f. 
fuscipes infestation rates, feeding behavior and tsetse-
parasite interaction.  
 
 
METHODOLOGY  
 
Description   of the study area 
 
Kajo-keji County (KKC) lies between latitudes 3.67203- 4.13238 ˚N 
and longitudes 31.1004 -31.8172 ˚E. The County covers an area of 
approximately 113,000 km² bordering Uganda in the South, Yei 
River County in the West, Juba County in the North and the River 
Nile in the East. KKC is an area of the tropical rainforest with 
moderate soil fertility and the climate is marked by minimal 
variations in seasonal temperatures. The annual rainfall ranges 
between 1,200 and 2,000 mm for about 8 months from March to 
October.     
 
 
Entomological survey, sampling and sample size 
 
Tsetse field surveys were carried out in the study area from January 
2012 to December 2012. Sampling of flies was conducted for five 
consecutive days in each month as from 8:00 a.m to 4:00 p.m for 
24 months during wet and dry seasons. Tsetse samples were taken 
from eight streams which include Lorini, Kungupiri and Sanga in 
Lire Payam; Tenderi in Kangapo I Payam; Kibo, Lowiyu and Nyawa 
in Kangapo II Payam as well as Koyibo in Liwolo Payam. KKC is 
endowed with a number of streams. The banks of these streams 
are inhabited with various types of vegetation covers, trees and 
tsetse flies. The habitats on the bank of each stream are classified 
into single, double and peri-domesticated forest galleries based on 
their vegetation covers, trees and other ecological attributes (Lukaw 
et al., 2016). 

The sample size of tsetse was determined by 95% confidence 
interval at a desired level of 5% (Thrusfield, 1995) and the stratified 
random sampling method was used for  monitoring  the  prevalence 
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of tsetse and assessing species’ diversity and distribution. Unbaited 
biconical traps were deployed in seven different sites along the 
banks of the eight streams (Challier et al., 1977). These traps were 
deployed 150 m apart and 5 m distant from the streams (Mohamed-
Ahmad and Wynholds, 1997). The deployment of the traps 
occurred once every week during both the wet and the dry seasons. 
Captured flies were collected every 24 h, counted, and stored in 
cool boxes.                        
 
 
Tsetse fly apparent density/trap/day  
 
The fly apparent density/trap/day (AD) was calculated as described 
by Dede et al. (2005) as follows: 
 
AD    = No.of the caught flies/trap

day
 

 
 
Measurement of environmental variables 
 
Data for the monthly rainfall, temperature and relative humidity for 
the year 2012 were obtained from Juba National Meteorological 
Department. Similarly, the daily wind speed for 12 months was 
downloaded from the website www.yr.no. Then, the daily wind 
speed was presented as means for the final result. 
 
 
Modeling method: Multiple Linear Regression Models 
 
Multiple regressions analysis was performed using Statistical 
Packages for Social Sciences (SPSS-21) software for Windows. 
The multiple regression models were formulated using an 
organized data - set as follows:  
 
𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 
 
Where Y= AD/trap/day of Glossina f. fuscipes, X1 = Temperature 
(0C), X2 = rain fall (cm), X3= Relative Humidity, X4 = Wind Speed 
(cm/s).  

Generally, the coefficient of each variable represents the capacity 
or sensitivity of the variable. Therefore, the coefficients for two 
variables must show positive values in the multiple regression 
models.  

The apparent densities of the flies obtained from the survey were 
plotted with the one predicted by the model (predicted apparent 
density). 
 
 
Data management and statistical analysis 
 
SPSS-20 software compatible with Windows was used for the 
analysis of regression statistics and for the difference between the 
actual apparent densities and the ones generated from the 
predictive models. Statistical significance was made at P≤0.05 and 
very significant (P≤0.01). Microsoft Excel was used for the creation 
of the graph. 
 
 
RESULTS 
 
Regression models 
 
R-square indicates the “goodness of fit” of the model 
given that R-square for this model is 0.891, which means 
that the X variables (temperature, rainfall, relative 
humidity and wind speed) can explain about 89.1% of the 
change  in  Y (G.  f.  fuscipes  apparent  density/trap/day) 
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Table 1. Model summary of the predictors. 
 

Model R R square Adjusted R square Standard error (SE) of the estimate 
1 0.944a 0.891 0.829 0.79361 

 

a. Predictors: (Constant), wind speed (cm/s), rainfall (cm), relative humidity (%), temperature (°C). 
 
 
 

Table 2. Analysis of Variance (ANOVA) test for model fitness. 
 

ANOVA(b) 
Model  Sum of squares Df Mean square F Significance 

1 
Regression 36. 0079 4 9.02 

14.321 0.02a 
Residual 04.409 7 0.63 
Total 40.488 11 

  
 

 

a. Predictors: (Constant), wind speed (cm/s), rainfall (cm), relative humidity (%), temperature (°C);   b. Dependent Variable: AD 
 
 
 

Table 3. Summary of results from the regression analysis. 
 

Coefficients (a) 

Model 
Unstandardized coefficient Standardized coefficient 

Significance 
β Std. error Beta T 

1 

(Constant) 44.813 16.446 - 2.73 0.03 
Temperature -1.153 0.568 -0.768 -2.03 0.08 
Rainfall -0.219 0.179 -0.435 -1.22 0.26NS 
Humidity -12.759 4.496 -1.052 -2.84 0.03* 
Wind speed 0.774 0.765 0.332 1.01 0.35NS 

 

NS, Non-significant (P>0.05); *Significant (P≤0.05); **Very Significant (P≤0.01); a. Dependent Variable: AD. 
 
 
 
(Table 1). The ANOVA shows that the regression model 
has a significant predictive value, (F(4,11) =14.321, P 
<0.02) (Table 2). 

Table 4 shows twelve regression models based on the 
general regression formula to forecast  the effect of 
temperature, rainfall, humidity and wind speed on tsetse 
fly apparent density/trap/day. The estimated model 
predicted the synergistic effects of temperature, rainfall, 
relative humidity and wind speed on G. f. fuscipes 
AD/trap/day. Y1, Y2, Y3, Y4, Y5,……., Y12  represent the 
estimated apparent densities for the months of January, 
February, March, April, May,……,December  respectively. 

Maximum ADs/trap/day of 7.71 flies were recorded 
from the model. The maximum ADs/trap/day was 
observed in Janaury at the temperature,28.30°C; rainfall 
(cm); RH%,44 and wind speed, 1.76 cm/s. Similarly, 
minimum ADs/trap/day of 1.83 and 1.79 flies were 
recorded in September and October, respectively. As 
such, the minimum ADs/trap/ day revealed at 26.8°C; 
rainfall, 8cm; RH, 78% and wind speed, 1.35 cm/s.  
 
 
Model summary 
 
The model summary offers the multiple R and coefficient 
of determination (R2) for the regression model. R2 = 0.829 

indicates that 82.9% of the variance in the fly’s apparent 
density can be explained by the model. Hence, 
forecasting of the fly abundance during the period of 
study is strongly related to the selected environmental 
variables (Table 1). 
 
 
Model validation and fitness 
 
The overall combined linear effects of the environmental 
variables significantly predicted fluctuation of fly apparent 
density, F(4,11) =14.321, P <0.02. Therefore, the model 
has shown the power to predict the outcome more 
accurately than just using the means to model the data 
(Table 2).  
 
 
Model coefficients 
 
The model coefficients give the constant or intercept term 
and the regression coefficients (β) for each explanatory 
variable (Table 3). The constant value (44.813) represents 
the intercept, which is the predicted fly apparent density 
score when all variables score = 0. The other value here 
is the regression coefficients (β) for the selected 
environmental   variables.   For   every   unit   increase  in 
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Table 4. Multiple linear regression general model outputs for G. f. fuscipes AD/trap/day as a function of environmental parameters. 
 

Month GM 𝒀 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜷𝟑𝒙𝟑 + 𝜷𝟒𝒙𝟒+….𝜷𝒏𝒙𝒏 AT RF RH WS PAD  ACAD 
Jan 1 Y1=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 28.3 1 0.44 1.76 7.55 8.43 
Feb 2 Y2=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 29.5 2 0.45 1.82 5.9 5.6 
Mar 3 Y3=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 29.9 6 0.48 2.95 4.89 4.77 
Apr 4 Y4=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 29.2 9 0.69 3.63 3.44 3.16 
May 5 Y5=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 27.9 11 0.74 2.45 2.63 3.34 
Jun 6 Y6=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 26.9 9 0.83 1.2 2.25 2.61 
Jul 7 Y7=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 25.9 11 0.89 1.16 2.46 2.41 
Aug 8 Y8=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 26.1 11 0.84 1.45 3.05 2.17 
Sep 9 Y9=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 26.8 8 0.78 1.35 1.85 1.83 
Oct 10 Y10=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 27.5 9 0.82 1.45 1.77 1.87 
Nov 11 Y11=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 27.6 6 0.73 1.24 3.27 3.99 
Dec 12 Y12=44.813 -1.153X1-0.219X2- 12.759X3+0.774X4 27.7 1 0.67 0.9 4.99 4.61 

   

Paired samples T-test; df=11; P (2-tailed) = 0.69; GM, General Model; AT, Average Temperature (°C); RF, Rainfall (mm); AH,Atmospheric 
Humidity%; WS, Wind Speed (cm/s); PAD, Predicted Apparent density (Fly density/trap/day) and ACAD, actual apparent density (Fly 
density/trap/day). 

 
 
 
temperature the model predicts a decrease of 1.153 in 
the fly apparent density score; increase in the rainfall and 
humidity, the model predicts a decrease of 0.229 and 
12.729 in the fly apparent density scores, respectively. 
Whereas in every unit an increase in wind speed, the 
model predicts an increase of 0.774 in the fly apparent 
density score. 

Models predicted values that were more accurate had 
indicated the trends of G. f. fuscipes abundance on 
monthly basis. The limits of agreement were calculated 
from t ± 1.96σ, where ‘t’ is the mean of difference 
between each pair of predicted and actual values, and σ 
is the standard deviation of the difference between these 
pairs (Khormi et al., 2014). The upper and lower limits of 
agreements of model were 5.97 and -11.65, respectively. 
95% of datasets of the model were within the upper and 
lower limits of agreement, indicating a strong 
concordance between the predicted and actual average 
of monthly G. f. fuscipes. The t-test from the regression 
analysis indicates that only humidity variable (t= -2.84, P 
= 0.03) made a statistically significant contribution to the 
predictive power of the model.  

The apparent densities from the predoctive models and 
the one from from the survey did not statistically vary 
(Paired sample T-test; df=11; P = 0.69 ) (Table 4). 
 
 
DISCUSSION 
 
Evidence has shown that most insects respond to 
changes in meteorological conditions (Khormi et al., 
2013) and that the spatial distribution of vector-borne 
infections relies on environmental factors (Bergquist, 
2001). Ecological factors such as atmospheric 
temperature, rainfall and relative humidity might influence 
seasonal variations in the  fly  total  catches, male/female 

abundance, AD and the infection rate (Lukaw et al., 
2014). The fly apparent density or tsetse trap catches 
depend on the activity pattern of each sex and such an 
activity in turn depends on environmental factors (hosts 
and weather) and the interrelationships between these 
factors, as well as the fly's endogenous circadian rhythm 
(Mohamed-Ahmed and Wynholds, 1997).  
        In this study, populations of G. f. fuscipes fluctuated 
in space and time as local climate changed. This is due 
to the fact that tsetse flies are very sensitive to 
environmental changes and ecological instability, and 
they are found in ecologically suitable habitats having 
necessary temperature, humidity and vegetation cover.  
Frequently, G. f. fuscipes thrive in the habitats, which are 
characterized by high humidity (Albert et al., 2015). The 
estimated models, preceding a 12-month average of the 
predictor variables, have been used to predict the 
apparent density of G. f. fuscipes in the study area. This 
study therefore attempts to explain prediction and 
fluctuations of the vector apparent density/ trap/day 
based on environmental predictors. Humidity contributed 
to the model (P=0.03) temperature, rainfall and wind 
speed did not display much contribution in the model 
(temperature, P=0.08; rainfall=0.26; windspeed, P= 0.35). 
With the exception of windspeed, all other independent 
variables had negative correlation weights (negative 
standardized β coefficients) in the estimated model 
regression models. Seemingly, the significantly positive 
value of standardized β coefficients of independent 
variables could indicate an increasing level of the 
dependent variable(s). Whereas, higher levels of the 
independent variables with negative correlation weights  
are expected to produce lower levels of the dependent 
variables.  

Ostensibly, the maximum ADs/trap/day records of the 
estimated  model and of the survey occurred   in January,  
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and the least ADs/trap/day records for the estimated 
models occurred in October and the survey in September 
that could be explained by the low levels of rainfall, RH 
and wind speed during January. In contrast, during 
September and October there are high rainfall, high RH% 
and relatively low wind speed. The mean annual 
temperature (19-30°C) for tsetse shown in this study 
could expose the flies to temperatures greater than the 
above and lower than the range reported. This might 
affect the fly indifferent ways leading to reduction in their 
abundance and hence the apparent density (DeVisser et 
al., 2010). This study has shown no temperatures below 
17-20°C which means that all the temperatures observed 
are within the tsetse optimum range. Seemingly, the 
maximum ADs/trap/day were observed in Janaury at the 
optimum temperature, low rainfall  level, low RH%, high 
wind speed, whereas minima ADs/trap/day in September 
were at optimum temperature, high rainfall level, high 
RH%  and  relatively low wind speed. The levels of these 
predictors might be responsible for G. f. fuscipes 
estimated AD peak in January. However, G. f. fuscipes 
density was low in September due to high rainfall and 
RH% levels, despite the reasonable temperature level 
observed during September.  

Generally speaking, the models showed that increased 
rainfall and humidity could lead to the reduction in fly 
density. Nevertheless, rainfall does not have any direct 
effect on tsetse, but it does so indirectly by affecting the 
humidity, causing local flooding which may drown many 
pupae and maintaining different vegetation zones, based 
on quantity of rainfalls and longevity of the rainy season 
(Isaac et al., 2011). These reasons could have 
contributed to the low fly density in September.  However, 
Kleynhans and Terblanche (2011) have confirmed that 
the temperature and RH variations in the field frequently 
affect the population dynamics of tsetse. This is in line 
with the findings of Khormi et al. (2013) who also 
correlated the tsetse distribution in Lake Victoria with 
environmental variation. Likewise, in KKC variations in 
ecological attributes affect the seasonal and population 
dynamics of G.f. fuscipes (Lukaw et al., 2014). 
 
 
Conclusion 
 
The Multiple Linear Regression Models predicted G. f. 
fuscipes apparent density/trap/day and demonstrated the 
effects of the environmental variables on the abundance 
of G. f. fuscipes in KKC.  

The model showed no statistically significant difference 
between the model-driven apparent densities and the 
actual apparent densities from the survey. This indicates 
that the developed models are authentic to a certain 
extent to predict and generate information on the fly’s 
apparent densities just as the survey study did. 

The MLRM models are powerful tools to predict tsetse 
fly apparent density/trap/day as a function of environ-
mental predictors. Therefore, the models are  robust  and  

 
 
 
 
flexible and could find applications in the various aspects 
of tsetse studies and provide useful information for tsetse 
and trypanosomiasis control programmes in South 
Sudan.  

Further studies are needed using the MLRM to predict 
the effects of climate change on G.f. fuscipes infestation 
rates, feeding behavior and tsetse-parasite interaction.  
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