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This paper describes a methodology designed to support the decision-making process by developing 
seaport infrastructure to meet future demand. In order to determine an optimum number of berths at a 
sea port, the queuing theory is applied in the light of port facilities and activities. The aim is to avoid 
inadvertent over and under-building. Within this methodology, the movements in port should firstly be 
analyzed. The waiting time of vessels outside the port and in queue is calculated in accordance with the 
considered queuing model. The theoretical functions representing the actual vessel arrival and service 
time distributions are determined. For the economic considerations, cost estimate studies including 
cost of port and waiting vessels are carried out. Finally, the optimum number of berths that minimizes 
the total port costs can be decided. Both proposed mathematical and economical models are applied to 
Alexandria port in Egypt. 
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INTRODUCTION  
 
The port transportation system includes different physical 
elements, e.g. berths, handling equipments, storage and 
traffic facilities. Although the capacity of any single ele-
ment may be expressed as an absolute figure, such as 
the number of containers loaded per hour by a certain 
crane, the aggregate capacity of the whole port cannot be 
so simply described. Each element can limit the overall 
port productivity. 

Port productivity can be viewed from two standpoints. 
To ship operators, productivity implies the time needed at 
the port to serve ships, while at national level, port 
productivity can be defined as the amount of cargo 
transported through the port during a certain time period. 

Port development is often affected by operating policies 
as well as by the traffic demand imposed in the port in 
terms of the volume of cargo expected to be accom-
modated, the service time at the available berths within 
which this volume should be handled, and the frequency 
of ships arrivals. 

It would be possible to develop the port facilities so that 
its capacity is fully utilized at all times. In this manner, 
changes in demand have to be accommodated by forcing 
ships to wait (at anchorage) until ships that arrived 
previously  had  been  serviced.  This   policy   would   be 

inefficient and uneconomic due to the delay costs of 
waiting ships. Conversely, developing the port so that 
ships are never forced to wait also represents an 
uneconomic use of port resources. 

The ideal situation is one in which all berths are 
occupied at all times and no ship is ever kept waiting. 
This situation is impossible to achieve in practice 
because of the random arrivals of cargo ships and the 
variations in service time of ships of different sizes.  
Therefore, decisions concerning port development can be 
made by trading-off the cost of increasing the port 
capacity and the costs of both waiting and service times. 

The purpose of this paper is to introduce a methodo-
logy which can be used to facilitate the decision-making 
process of port development. The proposed methodology 
covers two principal areas: 
 
a) Investigation of the pattern of ship traffic at a seaport 
from the standpoint of queuing theory, and to use the 
findings to draw some hypotheses regarding its 
application to the overall operation in sea ports. 
b) Determination of the optimum number of berths 
needed in a sea port that will minimize the total port 
usage costs. 
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Figure 1. Ship queue at a seaport. 

 
 
 

  
 
Figure 2. Ships arrival distribution as poisson function, hypothetical 
port. 
 
 
 
ANALYSIS OF SHIPS' MOVEMENT IN A SEAPORT 
 
An important parameter measuring the performance of a 
seaport is the delays that ships experience while waiting 
to be processed.  Two factors affect these delays: (a) the 
pattern of ships arrival, and (b) the berth time 
requirement for cargo handling. 

The arrival of a cargo ship in a port is often irregular, 
and when it arrives, it may be able to move directly onto a 
berth or has to wait until a berth becomes empty, if all 
berths are occupied. The berth time needed to serve a 
ship is also variable, as it depends on the amount of 
cargo which the ship carries and the capacity of the 
present facilities for handling and storing cargo (Gokkup, 
1995).  Figure 1 shows ship behavior at a seaport. 

The investigation of such random occurrences requires 
a complex and detailed analysis. The concept of 
“Queuing theory-waiting line problem” can successfully 
be applied. Queuing  Theory  is  one  of  the  most  useful  

 
 
 
 
tools for analyzing the behavior of waiting units (ships in 
this case), for investigating the components of a multiple 
operation system (Branislav and Nam, 2006).  Thus, 
queuing theory may be adequate for studying ship 
movement in sea ports. 

Two basic elements are necessary for the application 
of queuing theory to a waiting line problem: an arrival 
function and a service function. These functions should 
first be modeled. Once the validity of these models is 
tested, the different characteristics of the theoretical 
models, which describe the actual system with the accu-
racy that may be realized in estimating future traffic, can 
then be determined. 

To analyze the movement of ships in a sea port using 
the queuing theory, the following conditions are assumed: 
 
i) Ships arrivals and service times conform to the pattern 
of random occurrences. 
ii) Ships are processed on the “first-come first-served” 
queue discipline. 
iii) The queue length is unlimited, that is, if a ship arrives 
and finds a long queue, it joins the waiting ships and 
does not leave the port. 
 
 
Modeling ship arrival  
 
Probably the two most commonly encountered arrival 
patterns of ships in a sea port are the random and 
scheduled arrivals with considerable delays.  Thus, to 
predict the number of ships present in a port in a certain 
time period (usually a day), the arrival pattern of ships 
may be approximated by a Poisson function (Tadashi, 
2003).  In this way, the probability Pn of the arrival of n 
ships in the port in a given time can be expressed as in 
Figure 2: 
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Where 
λ = average arrival rate of ships during the given time 
(one day, for example), 
e = base of the natural logarithm (e = 2.71828...),  
λn = the average arrival rate of n ships, and; 
n!  = the factorial of the ship number.  
 
The distribution of ships arrivals with Poisson function 
can be calculated, only if the average arrival rate during 
an entire period is known. The expected frequency Fn of 
n ships in port in a given time T is: 
 

nn PTF .=  
 
T is the considered time period of the port operation 
(often expressed on an annual basis as 365 days). 
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Figure 3. Service time distribution as Erlang Function, hypothetical port. 

 
 
 
Modeling of service time  
 
The duration of ships at a berth for handling cargo may 
be described as an Erlang-function (Son and Kim, 2004) 
which is usually used to present service times that are 
more regularly spaced in time than those represented by 
the Poisson distribution. 

There are purely theoretical curves (Erlang-functions), 
each of which is based on the assumption that the 
service time is split into two or more operating phases 
following one another, and that the ship does not leave 
the berth until all phases are completed. “k” is the number 
of “Erlang Phases” of ships service time distribution at a 
berth. Each function has a negative exponential 
distribution. As “k” increases, the total service times 
become more uniform, until finally with k = � all service 
times are identical. In the general case the total service 
time probability P0 is given in Figure 3. 
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Where 
b = Average berth service time (in days), 
k = Erlang number (k = 1, 2, 3, …., �), and; 
n = Counter. 

for k = 1, .b
o eP −=   

for k = 2, .)21.(2 bb
o eP +−=  

for k = 3, .)2/931.(3 2bbb
o eP ++−=  

 
Through the choice of k, a service time function may be 
described as anything from the purely random 
exponential type (k = 1) to the completely regular 
constant service time type (k = �), the value of k should 
be  selected  and  tested  to  provide  the  best  fit  to   the  

observed data. 
 
 
QUEUING PHENOMENON  
 
As the nature of the problem is defined, in this paper, as 
multi-channels (berths), with exponential arrivals 
(Poisson), and multiple exponential services (Erlang), no 
feasible mathematical solution is possible (Zoran and 
Branislav, 2005).  The theoretical models available in the 
literature for multi-channel systems are inflexible for other 
than expo-nential distribution of arrivals and multiple 
exponential service time distribution. For investigating 
queuing situa-tions of multi-channel systems, models are 
accessible only for the following two cases: 
 
Case �: Exponential distributions for both arrivals and 
service times.  
Case II: Exponential arrivals and a constant service time. 
 
An approximate method has recently been proposed 
regarding the queuing model of case II (Wen-Chih et al., 
2007). The essential parameters are derived as follows: 
 
λ = Average arrival rate in ships/day (Poisson-
distribution), 
µ = Average service rate in ships/day (Erlang-distribution) 
   =   1/ average berth service time = 1/ b, and; 
S = Number of berths. 
 
The ratio of the arrival rate to the service rate � is usually 
known as the traffic intensity, thus: 
 

µ
λσ =

  
 
In this case, it can be noted that the average waiting time 
before service wk is given by (Erlang function)  (Wen-Chih 
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et al., 2007): 
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Where, 
w1 is the correction of the average constant service time 
obtained by selecting an Erlang-function with constant k 
number. w1 can be calculated from the following function, 
(Wen-Chih et al., 2007): 
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Where, n = actual number of ships present in a port in a 
certain time period. 
Thus the average time that a ship spends in seaport ts 
can be determined as follows: 
 

ks wbt +=  
 
From the above analysis of delays in the queue, 
computation can readily be made of the average length of 
queue, that is,for average number of ships waiting for a 
berth nw, the appropriate expression is: 
 

�� ��λη =  
 
The average number of ships ns present in port with S 
berths in a certain time period can be determined using 
the following formula: 
 

��� ηηη +=  
 
Where, 
nb = average number of  n ships served at S berths 
    = S × berth utilization factor 
    = S. (λ/(µ.S) = σ. 
 
Thus, it is seen that the traffic intensity, σ defined in the 
queuing theory equals the average number of ships 
served at berths nb. 
 
 
ANALYSIS OF PORT CAPACITY 
 
Minimum capacity 
 
The minimum number of berths Smin needed in a seaport 
to handle a certain amount of cargo can be calculated 
using the following procedure: 
 
Let Q = the total amount of cargo (in tons) handled in a 
port section in a time period T (for example, T = one year  

 
 
 
 
= 8760 h), and R = average rate of cargo transfer 
between ship and berth (in tons per hour). Then, 
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Thus, the gross berth time available is “Smin. T”.   
 
Then, let β (berth utilization) equal the % of berth usage 
throughout the period T. 
β = (berth time required)/ (berth time available), or 
 

)..(min TRS
Q=

. 
In this manner, the calculated number of berths is based 
on average values; regardless of the random arrivals of 
ships and the variation in berth service times. 
 
 
Optimum capacity  
 
If the number of berths in a port is S, the total cost spent 
in the port during a certain period, C equals the sum of 
two different types of costs: cost related to berths and 
cost related to ships present (Jan and Robert, 2002). 
Thus, it can be expressed as (Figure 4): 
 

ssb CSTCC η+= ..  
 
In which,  
C = total cost of a port with S berths during the period T, 
usually one year = 365 days, (in L.E.), 
Cb  = average cost of a berth; that is, construction and 
maintenance costs (L.E./day/berth), 
cs = average delay cost of a waiting ship (L.E./day/ship), 
and;  
ns = average number of ships present in port. 
 
Accordingly, if the amount of cargo that must be dealt 
with at a port during the period T is given as time 
planning target, then such number of berths S becomes 
the optimum that minimizes the total cost C. Therefore, C 
is a proper measure to examine the optimality of a port 
system. 

Now, both sides of the above equation are divided by 
“Cs.t” in order to decrease the number of the parameters 
involved.  Thus, 
 
Rs = C / (CS.T) = ) (cb/cS).S + ηs = (rbs. S) + ηs  
 
In which,  
rs = ratio of the total annual cost for port to annual ship 
cost, and  
rbs = berth-ship cost ratio. 
Assuming that S is optimum, then the following 
optimization condition must be held: 
rs < rs + 1,   and rs < rs-1 



 
 
 
 

 
 
Figure 4. Total usage cost, hypothetical port. 

 
 
 
Thus, rs will be adopted hereafter as a measure to 
determine the optimum number of berths. 

From the preceding information the procedure can be 
standardized as follows when given the data Q, R, cb, cs, 
λ, µ, k: 
 
Step 1. Calculate the minimum number of berths from the 

equation, 

 
TR

Q
S

.min =
. 

Step 2. Determine the value of traffic intensity σ  as; 

(
µ
λσ = ). 

Step 3. Compute the value of berth-ship cost ratio rbs 
from the given data cb and cs. 
Step 4. For each number of berths, with S greater than 
the minimum value, estimate the number of ships present 
in port ns, and predict the ratio rs. 
Step 5. The number of berths which satisfies the 
optimization condition (rs < rs+1, and rs < rs-1) is optimum. 
Step 6.  Compute the average berth utilization, β: 

��
�

σβ = . 

Step 7. Summarize the queuing results (average number 
of ships present in the port, average number of ships at 
berths, average number of waiting ships, average waiting 
time). 
 
 
APPLICATION OF THE PROPOSED METHODOLOGY TO 
ALEXANDRIA SEAPORT 
 
The foregoing methodology is applied to investigate the movements 
of ships in Alexandria Port and to predict the future capacity. The 
application is restricted to general cargo ships, excluding full-
container, bulk, and RO/RO ships which have particular berths at 
the port. 

Alexandria Port is the major port in Egypt. About 40.80 million 
tons passed through the port in the year 2007/2008, that is, 36% of 
the total volume of the foreign trade. The amount  of  general  cargo 
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handled in the port in that year was 4.326 million tons (Egyptian 
Maritime Data Bank, 2008). 

Alexandria port is constituted of an old and complicated layout 
with short quays and too narrow or too long piers. A large number 
of quays has limited drought less than 8.0 meters, and only a lower 
number of berths is capable to receive ships with more than 130.00 
meter length. The number of berths available for general cargo in 
the port is 32 berths. 
 
 
Data base 
 
The daily “log books” of the traffic department of the Alexandria Port 
Authority include (among others) the arrival time of each ship at the 
pilot vessel. In addition, detailed information concerning the move-
ment of each ship in the port is also available in the so-called “ship 
log sheets”. Every sheet is a ship report, and it contains the 
following data: 
 
a) Ship name, nationality, type of cargo, and total tonnage. 
b) Berth occupancy, including berth changes during the period in 
port. 
c) Date and time of arrival, berthing, and quitting the port. 
 
 
Ships arrivals 
 
If the distribution of ships arrivals can be predicted reliably, port 
planner can proceed with great confidence in making development 
plans that may avoid over-building or under-building the port 
facilities. 

The actual pattern of ship arrivals at the port of Alexandria is 
compared with the theoretical function prognosticated 
mathematically by Poisson distribution of random occurrences. The 
application includes a specific analysis of the number of ships 
present, day by day, over a period of one year (from July 1, 2007 to 
June 30, 2008). 

The number of ships present in the port, each day, was trans-
cribed from the port “log books” and then summarized to obtain the 
number of days, that various number of ships were present during 
the period studied. The theoretical distribution, Poisson is 
computed. 

Table 1 compares the predicted distribution with the actual one. 
The average arrival rate was 5.68 ships per day. Table 1 shows a 
good agreement between actual and predicted distributions. The 
number of days that various numbers of ships are predicted to be 
present in the port is in agreement with the actual distribution on 
336 days of 360 days, that is, on 92% of days. 

To judge whether the observed frequencies of ship arrival 
distribution is compatible with the predicted theoretical frequencies, 
Chi-square is computed, and the result, x2 = 20.0 with 10% 
probability, indicates a good fit. From the statistical standpoint, pro-
bability values between 5 and 95% designate good fit from which it 
is concluded that this theoretical distribution is plausible (Tadashi, 
2003). Figure 5 demonstrates the goodness of fit between actual 
and predicted distributions. 
 
 
Berth service times 
 
Information giving the date and time of arrival at a berth and the 
date and time of departure from the berth were obtained from the 
“ship log sheets”. A total of 315 observations, including those 
general cargo ships which were tied up at the berths between July 
1, 2007 and June 30, 2008 were randomly selected to be analyzed. 
A class interval of 15 hours was selected for such analysis. 

Search for a suitable model for the distribution of the durations at 
berths led to an Erlang distribution  giving  K  =  3.  The  mean  time  
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Table 1. Comparison of actual versus predicted ship arrival distribution. 
 

Arrival rate 
(Ships/day) 

Actual number of days 
(A) 

Predicted number 
of days (B) 

Minimum (A) or 
(B) 

0 1 1 1 
1 6 7 6 
2 18 20 18 
3 27 37 27 
4 49 54 49 
5 73 62 62 
6 60 59 59 
7 61 47 47 
8 37 34 34 
9 15 21 15 

10 9 12 9 
11 5 6 5 
12 2 3 2 
13 2 2 2 

Total 365 365 336 
 
 
 

 
 
Figure 5. Frequency Distribution of Ships Arrivals, Alexandria Port 
2007/2008 
 
 
 

 
 
Figure 6. Frequency distribution of berth service time, 
Alexandria port 2007/2008. 

spent at a berth was found 5.58 days for the 315 observations. The 
standard deviation of the distribution was computed and found to be 
± 1.43 days.  Figure 6 presents the frequency and the cumulative 
distributions of the observed data and compares the values of the 
cumulative distribution with those of the Erlang function having K = 
3.   

A Chi-square test was also performed to test the goodness of fit 
between the observed frequency distribution and the postulated 
Erlang function, and a value X2 = 14.87 for 42% probability was 
found. Comparison with other Erlang functions (K = 1, K = 2, and K 
= 4) indicates that K = 3 is the best choice for this distribution 
function.  Figure 6 also shows the observed data points and a plot 
of the selected function. 
 
 
Optimum number of berths 
 
To establish the optimum number of berths needed for general 
cargo handling at Alexandria port in the year 2017, applying the 
proposed procedure, the following input data are used: 
 
i) Due to the further development of the Egyptian ports, particularly 
the Dekheila port, the annual general cargo tonnage to be handled 
at the berths of Alexandria port will be only about 4.00 million tons 
at the target year (tonnage in year 2007/2008 = 4.326 million tons) 
(Egyptian Maritime Data Bank, 2008). 
ii) The average arrival rate of general cargo ships will be 5.68 ships 
/day, assuming that the average ships load equals 2084 tons (the 
present value). 
iii) The average rate of cargo handling at a general cargo berth R = 
373.5 tons per day (the existing rate). 
iv) The average cost of a berth cb = 2000 per day (approximately 
$600 per day), based on the development program of the 
Alexandria port (Egyptian Maritime Data Bank, 2008). 
v) The average delay cost of a general cargo ship cs = $ 6000 per 
day. 
 
The calculations are carried out as follows: 
 
Smin = 4000 000/(373.5 × 365) = 29.34 = 30 berths 
λ = 5.68 ships/day 
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Figure 7. Determination of optimum number of berths, �, Alexandria port, case study. 

 
 
 

 
 
Figure 8. Determination of Optimum Number of Berths, � due to different cost 
ratio, rbs, Alexandria Port, Case Study. 

 
 
 
µ = 1/5.58 = 0.18 ships/day 
� = 5.68/0.18 = 29.35 
rbs = 600/6000 = 0.10 
 
Figure 7 shows the relationships between traffic intensity and the 
cost ratio rs for a proper number of berths (from S = 29 to S = 34) 
The optimum port capacity is 33 berths. In this instance, rs = 34.34, 
and the total port costs C = $75.200 million (the development of 33 
berths plus the annual maintenance costs). 
 
The average berth utilization = 29.35/33 = 0.89 
 
Queuing results: 
 
Average number of ships present in port ns = 31.04 
Average number of ships served at berths nb = 2935 
Average number of waiting ships nw = 1.69 
Average waiting time per ship wk = 0.32 days 
 
The relationships in Figure 7 are prepared as design curves derived 
to determine the optimum number of berths  for  Alexandria  port  by  

changing the traffic intensity and/or the cost ratio rbs. 
The optimum number of berths corresponding to a suitable cost 

ratio rbs values (from 0.10 to 0.30) is noted in Figure 8. It can also 
be seen that a 33-berths set is the optimum port capacity in case of 
traffic intensity values varying between 27.58 and 29.60. 

Table 2 shows the calculation of the costs of idle berths and idle 
ships for 33 berths in view of the expected frequency (number of 
days per year). It also presents the combined costs (vacant berths 
and ships) in case of port size 31, 32, 33 and 34 berths. The cost 
comparison indicates that the total port cost is least when there are 
33 berths. This conclusion confirms the result previously obtained 
by applying the proposed methodology. 
 
 
RESULTS CONCLUSIONS 
 
This paper presents a methodology proposed to predict 
the optimum number of berths required in a sea port to 
meet the future traffic volumes. The methodology is 
based on the hypothesis that the  number  of  berths  can  
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Table 2. Cost calculation in case of 33 berths, and the comparison of the resulting value with those for 31, 32 and 34 berths. 
 

Arrival 
rate 

(ships/day) 
Predicted frequency (in days) Berth 

utilization 

Required 
number of 

berths 

Over-building Under-building 

Number 
of berths 

Berths-
days 

Number 
of ships Ships-days 

µµµµ F � = λλλλ ÷ µµµµ  33 – � F . (33 – �) λλλλ - X* F . (λλλλ - X*) 
0 1 0.00 0 33 33   
1 7 0.17 6 27 189   
2 20 0.34 12 21 420   

3 37 0.51 17 16 592   
4 54 0.68 23 10 540   
5 62 0.85 28 5 310   
6 59 1.00 33 0 0 0 0 
7 47     1 47 
8 34     2 68 
9 21     3 63 

10 12     4 48 
11 6     5 30 
12 3     6 18 
13 0     7 0 

Total 365    2086  274 
Cost in Million $ (using cb = 600, cs = 6000) 1.25 1.64 
Total costs for 33 berths in Million dollars 2.89 
Total costs for 31 berths in Million dollars 3.15 
Total costs for 32 berths in Million dollars 3.08 
Total costs for 34 berths in Million dollars 2.93 

 

X* = Number of available berths × maximum berth utilization / average service time = 33 × 1/5.58 = 6.00 
 
 
 
be increased as long as the marginal cost of berths (con-
struction and maintenance) is less than the delay costs of 
waiting ships. 

The “Queuing theory” has been employed to derive the 
number of waiting ships and the average ship delays. 
The usage of queuing theory is subjected to the following 
two assumptions: 
 
i) Ships arrivals at a sea port can be described as a 
negative exponential distribution, and,  
ii) Berth service time yields to a multi-exponential 
function. 
 
The employment of the queuing theory to study the 
movements of general cargo ships at Alexandria port was 
profitable. The observed pattern of ships arrivals appears 
to agree with Poisson’s law of random distribution. In 
addition, the berth service time for 315 ships was found 
to conform most closely to an Erlang distribution with K = 
3. The usage of an approximate model of queuing theory 
led to acceptable results. The criterion for acceptance of 
this model was the reasonable agreement achieved 
between the computed and observed values of average 
waiting time and average number of waiting ships in 
queues at berths. 

Thus, there is no doubt that ships arrive at Alexandria 
port in accordance with a random pattern and that the 
degree of accuracy compares favorably with the accuracy  
that may be realized in estimating future traffic. 

The application to Alexandria port verifies the antici-
pated  benefit of using the suggested methodology to 
evaluate the port size in the best interests of both ship 
operators and the port authority. The evaluation is settled 
on the premise that maximum port efficiency results when 
the total port cost is minimum, that is, the cost of vacant 
berths over a substantial period plus the time cost of 
ships waiting for a berth during the same period. 
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