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Lead and di-(2-ethylhexyl) phthalate (DEHP) are common environmental toxicants of concern around 
the world. Although effects of individual exposures to both agents are well documented, there is a 
dearth of information on the effects of co-exposure to both agents. In this study, combined exposure to 
lead and DEHP was investigated for effects on ATPase activities in the liver, brain and kidney tissues of 
rats. Male albino rats were daily exposed to either 200 ppm lead as lead acetate in their drinking water 
and/or 100 mg DEHP kg

-1
 body weight in olive oil by gastric intubation for 30 days. Changes in total 

body weight, relative organ weights as well as brain, hepatic and renal activities of total, Na
+
K

+ 
-, Ca

2+
 - 

and Mg
2+

-ATPases were used as biomarkers of toxicity. Hepatomegaly and brain atrophy heralded 
exposure to both agents. Individual exposure to lead and DEHP resulted in reduction in hepatic Ca

2+
- 

and Mg
2+

- ATPase activities but no significant effect on total ATPase activity, however combined 
exposure produced significant activation of Ca

2+
-, Na

+
K

+
- and total ATPase while restoring Mg

2+
 - 

ATPase towards control. A potentiating effect on lead by DEHP was observed in hepatic Na
+
K

+ 
- 

ATPase. Lead stimulated the activities of renal Ca
2+

- and total ATPases while DEHP on the contrary 
caused significant reduction in total ATPase activity and no significant effects on Ca

2+
- ATPase activity. 

Co-treatment produced antagonistic effects leading to normal renal Ca
2+

- and total ATPase activities. 
Brain Na

+
K

+ 
-, Ca

2+
 - and total ATPase activities were depressed in co-exposure while Mg

2+
 - ATPase was 

up-regulated. Lead potentiated DEHP-induced inhibition of brain total - ATPase while co-treatment 
produced antagonistic effects on brain Ca

2+
 - ATPase. The findings of this study highlight organ 

specific variations in response to combined lead and DEHP exposure in rats. 
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INTRODUCTION  
 

Despite the global move to phase out leaded-gasoline, 
lead has persisted as an environmental pollutant of grave 
concern with its deleterious effects particularly felt among 
children (Nriagu et al.,  1996).  The  emission  of  lead  by 

power plants, smelters and boilers that burn used motor 
oil is frequently deposited in the soil, where it is absorbed 
by crops and leaching into underground water. Hence 
lead  ends  up  in  food,  water  and  air  (Allouche  et  al.,  
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2011). In the recent past,lead poisoning of significant 
proportions broke out in northern Nigeria and claimed the 
lives of over 400 children (Medecins Sans Frontieres, 
2012). Lead is known to cause diseases in several 
systems of the body such as the hematopoietic and 
cardiovascular (Onunkwor et al., 2004; Adeniyi et al., 
2008), immunological (Basaran and Undeger, 2000), 
hepatic (Sharma et al., 2011b), renal (Rastogi, 2008) and 
central nervous system effects (Sanders et al., 2009; 
Ademuyiwa et al., 2007; Sharma et al., 2011a) and it has 
also been implicated as a co-carcinogen and a teratogen 
(Pracheta and Singh, 2009; Markovac and Goldstein, 
1988). Several studies have shown that lead is ubiquitous 
in the environment (Ademuyiwa et al., 2002; Adeniyi and 
Anetor, 1999) and causes oxidative stress in the body by 
interacting with glutathione, a known natural antioxidant 
in the body (Jangid et al., 2016). Glutathione is a 
tripeptide consisting of γ-glutamic acid, cysteine and 
glycine. It is found in several tissues (Kosnet et al., 1998) 
and lead’s interaction with glutathione leads to 
replacement of the hydrogen on two sulphydryl groups on 
adjacent molecules by lead. The strong bond that results 
effectively eliminates the two glutathione molecules from 
further reaction thereby eliciting all the conditions that 
arise as a result of oxidative stress, such as diabetes, 
nervous system disorders, cardiovascular diseases, 
aging, cancer etc (Ademuyiwa et al, 2005; 2007; Dosumu 
et al., 2005).  

Di-(2-ethylhexyl) phthalate (DEHP) is another equally 
widespread toxicant in the environment because of its 
common use as a plasticizer in the plastic making 
industry. It is added to plastic to make it softer and more 
flexible. However, DEHP easily dislodges from the 
complex with the plastic and leaches into the contents of 
the plastic containers especially at high temperatures 
(Fromme et al., 2012). This is how storing foods and 
drinks in plastic wraps and bottles could lead to phthalate 
toxicity. DEHP could also leach into blood when it is used 
in medical devices such as intravenous tubing and blood 
storage bags (Padmakumaran et al., 1998). Despite the 
potential hazard, there is a steady rise in the use of 
plastic bottles as against glass in the storage of drinks 
and beverages. Phthalates have been associated with 
endocrine disruption (Ye et al., 2017; Grün, 2010; 
Miodovnik et al., 2011), metabolic disorders, reproductive 
and developmental defects (Foster et al., 2001; Jiang, 
2007; Engel et al., 2010). DEHP is one of the most 
commonly used of the phthalates and hence the most 
abundant in the environment (Kamrin, 2009). Since both 
lead and DEHP are quite  ubiquitous  in  the  environment 

 

and may be present in air, soil and drinking water at the 
same time, there is a high potential for a simultaneous 
exposure to both toxicants. Both agents are known to 
exert toxicity through the generation of oxidative stress 
(Onunkwor et al., 2004; Dosumu et al., 2005; Xu et al., 
2008; Afolabi et al., 2015; Wójtowicz et al., 2019) and this 
makes the study of their co-exposure of particular 
interest. Lead and phthalates have attracted much 
research attention separately, however, there is scarce 
information on their combined effect on key biomarker 
enzymes such as the ATPases. 

ATPases are membrane bound enzymes involved in 
the uphill transport of ions coupled with energy 
expenditure in the form of ATP. Previous studies on lead 
toxicity in humans showed that erythrocyte membrane 
ATPases were down-regulated by lead (Yücebilgic et al., 
2003; Abam et al., 2008, Okediran et al., 2009). 
Specifically, erythrocyte membrane Na

+
K

+
-ATPase and 

Ca
2+

-ATPase were shown to be inhibited by lead in 
occupationally exposed workers (Yücebilgic et al., 2003) 
while phthalates were also shown to inhibit some 
ATPases in the organs of rats (Afolabi et al., 2016; 
Dhanya et al., 2003). The focus of this study therefore 
was to investigate the effects of combined exposure to 
lead and DEHP on membrane ATPases of brain, liver 
and kidney of rats. 
 
 
MATERIALS AND METHODS 

 
Chemicals 

 
Lead acetate and DEHP were products of Sigma-Aldrich, Munich, 
Germany. All other chemicals used in this study were of the purest 
grade available and were obtained from British Drug House (BDH) 
Chemicals Limited, Poole, England. 

 
 
Experimental design 

 
Twenty-four (24) male Wistar rats were obtained from the animal 
house of University of Ibadan (UI), Ibadan, Oyo state, weighing an 
average of 140 g and housed in the animal house of Bells 
University of Technology, Ota, Ogun State Nigeria. The animals 
were acclimatized for 14 days prior to the commencement of the 
study. Afterwards, they were randomly distributed into four groups 
of six animals each. Group 1 animals served as control and were 
administered olive oil and lead-free distilled water. Group 2 animals 
received 200 ppm lead as lead acetate in their drinking water. 
Group 3 animals were administered a homologous mixture of 100 
mg DEHP kg

-1
 body weight in olive oil by gastric intubation. Group 4  

received both 200 ppm lead in drinking water and 100 mg DEHP kg
-

1
 body  weight  in  olive  oil.  Doses were chosen based on previous 
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Table 1. Body and relative organ weights of rats.  
 

Groups 
Initial body 

wt (g) 
Final body 

wt (g) 
% change in body 

wt (%) 
Relative brain 

wt (g/100 g bw) 
Relative liver 

wt (g/100 g bw) 
Relative kidney 
wt (g/100 g bw) 

Control 155.8 ± 1.53 175 ± 1.44 12.32 ± 1.96
a
 1.03 ± 0.02

a
 2.83 ± 0.04a 0.54 ± 0.02

a
 

200ppm Pb 155.0 ± 1.18 172 ± 1.44 10.99 ± 3.97
a
 0.88 ± 0.03

b
 3.18 ± 0.07

a
 0.61 ± 0.03

b
 

DEHP 153.0 ± 0.45 134.6 ± 3.18 -12.54 ± 1.16
b
 0.86 ± 0.03

b
 3.47 ± 0.10

b
 0.51 ± 0.01

a
 

Pb & DEHP 151.0 ± 2.42 179.2 ± 5.15 18.38 ± 5.37
c
 0.73 ± 0.02

c
 3.38 ± 0.18

b
 0.54 ± 0.04

a
 

 

Values are expressed as mean ± SEM. (n = 6). Means in a column with different letters (a – d) are significantly different from each other at p < 0.05. 
 
 
 
studies (Ademuyiwa et al., 2009; Afolabi et al., 2015, 2016). These 
treatments were maintained for thirty days. Animals were placed on 
a standard pellet diet and distilled water (or their various lead-
poisoned water) ad libitum for the duration of the study. Weights 
were monitored weekly using a weighing balance with accuracy ± 
0.1g. At the end of the treatment, animals were fasted overnight 
and blood collected by cardiac puncture under light ether 
anesthesia. Plasma was obtained from the blood by centrifuging at 
3,000 g for 10 minutes. The brain, liver and kidney were removed 
and homogenized in 150 mmol L

-1 
ice-cold KCl to obtain a 10 % 

homogenate which was further centrifuged at 15,000 g for 15 
minutes at 4°C to obtain the post-mitochondrial fraction which was 
stored at -20°C until further biochemical analyses. The experiment 
was carried out in accordance with the Bells University of 
Technology, Department of Chemical and Food Sciences 
(Biochemistry Unit) guidelines for the care and use of laboratory 
animals. 

 
 
Biochemical analyses  

 
Total ATPase (E.C.3.6.1.3) activity in tissue homogenates was 
assayed using the method of Evans (1969). The final assay mixture 
of 2 ml contained 0.1 M Tris-HCl (pH 7.4), 0.1 M NaCl, 0.1 M 
MgCl2, 0.01 M ATP, 0.1 M KCl and 0.1 ml of the tissue 
homogenate.  The reaction was incubated at 37°C in a water bath 
for 20 min and stopped by adding 1 ml of 10% trichloroacetic acid 
(TCA) and then centrifuged. The inorganic phosphorus (Pi) 
liberated was then estimated in the supernatant by the method of 
Lowry and Lopez (1946) which involved the use of ammonium 
molybdate and vitamin C.  
Assay for Na

+
/K

+
-ATPase (E.C.3.6.1.37) activity followed the 

procedure of Hesketh et al. (1978) as described by Afolabi et al 
(2016). The reaction mixture contained 0.35 M NaCl, 17.5 mM KCl, 
21.0 mM MgCl2, 10 mM Tris-HCl (pH 7.4), 8.0 mM ATP and tissue 
homogenate. The mixture was incubated at 37°C for 1 h and the 
reaction terminated by the addition of 0.8 ml of ice-cold 10% (w/v) 
TCA. Afterwards, the mixture was allowed to stand for 20 min at 
4°C and then centrifuged. Pi in the supernatant was measured as 
described already.  

The activity of Ca
2+

-ATPase (E.C.3.6.1.38) was assayed 
according to the method of Hjerten and Pan (1983). The reaction 
mixture contained 125 mM Tris-HCl buffer (pH 8), 50 mM CaCl2 and 
10 mM ATP. The contents were incubated at 37°C for 15 min and 
the reaction arrested by the addition of 0.5 ml of ice-cold 10% TCA 
and centrifuged. Pi was then determined as described already. The 
activity of Mg

2+
-ATPase (E.C.3.6.1.39) was assayed according to 

the method of Ohnishi et al. (1982). The reaction mixture contained 
0.1 ml each of 375 mM Tris-HCl buffer  (pH 7.6), 25 mM  MgCl2,  10 

mM ATP and tissue homogenate. The contents were incubated at 
37°C for 15 min and the reaction was then stopped with the addition 
of 0.5 ml of 10% TCA and centrifuged. Pi was then determined 
following the technique as described already. 

Protein concentration was determined in the brain, liver and 
kidney homogenates using Bradford method (Bradford, 1976). 
 
 
Statistical analysis 
 
Results are expressed as mean ± SEM. The statistical significance 
was evaluated by one-way analysis of variance (ANOVA) followed 
by Tukey Post Hoc Multiple Comparisons using Statistical Package 
for the Social Sciences (SPSS) version 15.00 for Windows (SPSS 
Inc; CA, USA). A value of p < 0.05 was considered statistically 
significant between groups.  
 
 

RESULTS 
 

Summary of percentage change in body weight and 
relative organ weight is depicted in Table 1. Rats treated 
with lead and DEHP did not show any obvious changes 
in behavior throughout the period of the study. Animals in 
all the groups increased in weight at the end of the 
exposure period except the animals treated with DEHP 
that experienced a 12.54 ± 1.16% reduction in body 
weight. Treatment with lead-only resulted in a weight gain 
of 10.99 ± 3.97% and increases in relative organ weights 
of the liver and kidney of the rats. Such increases were 
not observed in the brain in all the treatment groups 
(relative brain weights decreased by 15, 16 and 29% in 
the lead-only, DEHP and combined treatment groups 
respectively). DEHP and co-treatment with both toxicants 
resulted in increases in relative organ weights of the liver 
(23 and 19% respectively). Combined treatment yielded 
the highest gain in body weight (amounting to 18.38%) 
and highest decrease in relative brain weight (29%). 

ATPase activities in the organs of control and 
experimental animals are depicted in Figures 1 to 4. Lead 
exposure resulted in increase in total ATPase activity of 
20% in the kidney of the rats (Figure 1) while there was 
no significant difference in the liver and brain. Hepatic, 
renal and brain activities of total ATPases were 
significantly    reduced    by    DEHP    (14,   24   and   9%  
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Figure 1. Total ATPase activities in brain, liver and kidney of rats. Bars of the same 
compartment carrying different letters of the alphabet are significantly different from 
each other (p ˂ 0.05). 

 
 
 

 
 

Figure 2. Na
+
/K

+
 ATPase activities in brain, liver and kidney of rats. Bars of the same 

compartment carrying different letters of the alphabet are significantly different from each 
other (p ˂ 0.05). 

 
 
 
respectively), however, co-treatment produced a 
significant activation of total ATPase activity in the liver 
(39%)  while lead showed a potentiating effect on DEHP 
in the brain. Lead and DEHP produced antagonistic 
effects in the kidney effectively restoring enzyme activity 
towards control value. There were significant decreases 
in Na

+
K

+
 ATPase activities between control and treatment 

groups in the brain (amounting to 11, 12 and 14% in the 
lead, DEHP and co-treatment groups respectively) as 
displayed in Figure 2. On the contrary, in the liver, the 
activity of Na

+
K

+
 ATPase was increased by as much as 

132 and 32% by lead and DEHP respectively and co-
treatment produced additive effects (211%). There was 
no  significant  difference  in  renal Na

+
K

+
 ATPase activity  
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Figure 3. Ca
2+

 ATPase activities in brain, kidney and liver of rats. Bars of the same 
compartment carrying different letters of the alphabet are significantly different from each other 
(p ˂ 0.05). 

 
 
 
between control and lead treated groups, however DEHP 
and co-treatment caused approximately the same level of 
inhibition of the enzyme (16%).   

Activities of Ca
2+

 ATPases in the organs of the rats are 
presented in Figure 3. After 30 days, lead and DEHP 
inhibited Ca

2+
 ATPase to the tune of 6 and 36 % 

respectively in the brain while lead antagonized the 
effects of DEHP in the co-treatment group, reducing 
DEHP’s inhibition from 36 to 21%. In the liver, there was 
14% inhibition of Ca

2+
 ATPase by lead and 24% by 

DEHP, while combined treatment led to the activation of 
the enzyme by 17 %. In the kidney, Ca

2+
 ATPase activity 

was activated by 25% by lead, while there was no 
significant difference (p>0.05) in the DEHP and co-
treatment groups.   

Lead, DEHP and combined lead and DEHP treatment 
stimulated Mg

2+
 ATPase activities by 6, 12 and 5 % 

respectively in the brain. On the contrary, liver Mg
2+

 
ATPase activities were down-regulated by lead and 
DEHP treatments (19 and 26 % respectively) while co-
treatment neutralized the individual inhibitions, restoring 
enzyme activity towards control. Kidney Mg

2+
 ATPase 

activities were inhibited by 17, 27 and 28% in the lead, 
DEHP and co-treatment groups respectively. Figure 4.   

 
 

DISCUSSION  
 
In this study, animals exposed to DEHP exhibited weight 
loss unlike the other treatment groups. This is contrary to 
other  studies  that  have  shown  DEHP-exposed  rats  to 

have increased body weight and fat mass (Jia et al., 
2016; Klöting et al., 2015). First and foremost, Klöting et 
al. (2015) worked with mice and not rats. Secondly, the 
mice were exposed to DEHP for 10 weeks, a much 
longer period than that employed in this study. Thirdly, 
the mice employed in the Klöting study were exposed to 
DEHP at a very low dose of 0.05 mg/kg bw/day. Hence 
summarily, the disparity in results could be attributed to 
the species of rodents used, duration of exposure and 
dose of DEHP administered factors that have been 
shown to influence the response of mammals to 
xenobiotics (Klaasen and Watkins, 2015). In this study, 
the DEHP-exposed rats displayed reduced appetite 
throughout the study compared to animals in the other 
groups and this might account for their weight loss. 
Reduced appetite could be attributed to inflammation-
associated anorexia arising from the particular 
concentration of DEHP and the duration that it was 
administered (Wang et al., 2019). It was also observed 
that Pb antagonized DEHP - induced decrease in 
bodyweight in this study, and mechanisms that may be 
compensatory led to the highest increase in total body 
weight in this co-treated group. DEHP - induced 
hepatomegaly was observed and Pb had no effect on this 
observed hepatomegaly as there was no significant 
difference between relative liver weights of the DEHP and 
DEHP and Pb co-treatment groups. Other studies have 
also observed DEHP-induced hepatomegaly in rats 
(Musthag et al., 1980). The modes of action of DEHP in 
inducing hepatomegaly has been proposed to include: (1) 
activation  of peroxisome proliferator-activated receptor-α  
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Figure 4. Mg
2+

 ATPase activities in brain, kidney and liver of rats. Bars of the same compartment 
carrying different letters of the alphabet are significantly different from each other (p ˂ 0.05). 

 
 
 
(PPARα) (2) proliferation of peroxisomes and induction of 
peroxisomal proteins, (3) induction of non-peroxisomal 
metabolism proteins, (4) induction of cell proliferation, (5) 
suppression of apoptosis, (6) production of reactive 
oxygen species, (7) oxidative DNA damage, and (8) 
inhibition of gap junctional intercellular communication 
(Blystone et al., 2010; Mitchell et al., 1985; NTP-CERHR 
2006; Rusyn et al., 2006; Zang et al., 2017; Rowdhwai 
and Cheng, 2018; Ito et al., 2019). 

Unlike in the liver, there was brain atrophy observed in 
the Pb and DEHP exposed groups and this effect was 
additive in co-treatment. Atrophy of the brain is a 
common feature of lead poisoning (Cecil et al., 2008) and 
many of the diseases that affect the brain. Brain atrophy 
describes a loss of neurons and the connections between 
them. It could be generalized, meaning that all of the 
brain has shrunk; or it could be focal, affecting only a 
limited area of the brain resulting in a decrease of the 
functions that area of the brain controls. The work of 
Mayeux and Stern (2012) estimated the global 
prevalence of dementia to be as high as 24 million, and 
predicted it to double every 20 years until at least 2040. 
With the global rise in prevalence of Alzheimer’s and 
dementia correlating with a global rise in the use of 
phthalate – containing plastic products (Horn et al., 
2004), and the result of this study that has shown an 
additive effect of lead and DEHP on brain atrophy, there 
is some scope in the hypothesis that world increase in 
prevalence of dementia  in  the  aged  could be  linked  to 

accumulation of  interaction of environmental pollutants 
such as lead and phthalates in the system (Stewart and 
Schwartz, 2007). 

This study has also shown that combined exposure to 
Pb and DEHP displayed different effects on organ 
ATPases from individual exposures to these toxicants. 
Response of the liver ATPases were especially 
significant and different in combined exposure. Ca

2+
 

ATPase functions in the transfer of Ca
2+

 ions across cell 
membranes, mediating diverse physiological processes 
such as gene expression, contraction, secretion, 
fertilization, proliferation and apoptosis (Jiang and Zi-
jiang, 2008; Mata and Sepulveda, 2010). One of the 
mechanisms through which Pb

2+
 exerts its toxic effects is 

by mimicking the action of Ca
2+

 in many physiological 
processes hence the supplementation of Ca

2+
 and Zn

2+
 

has been shown to ameliorate Pb
2+

 toxicity (Prasanthi et 
al., 2006). This is because these divalent cations 
compete for the same binding sites as Pb

2+
 in the 

intestinal mucosa. In this study, individual exposure to 
Pb

2+ 
and DEHP was found to inhibit hepatic  Ca

2+
-

ATPase - which is in consonance with the work of Abam 
et al. (2008) and Afolabi et al. (2016), however, co-
treatment with both agents resulted in significant 
induction of the protein. An explanation for this increase 
in hepatic activity of Ca

2+
 ATPase could be that the 

interaction of Pb
2+

 and DEHP in co-treatment resulted in 
a greater bioavailability of Ca

2+
 ions leading to an 

increase   in   the   activity   of   Ca
2+

-ATPase  in  order  to 
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maintain low intracellular levels of calcium. Calcium is 
tightly regulated because of its significance as a powerful 
second messenger crucial in proliferation, differentiation, 
mitosis, and motility (Capiod et al., 2011) hence calcium 
is removed to the extracellular environment and/or 
sequestered in the endoplasmic reticulum. Secondly, 
intracellular calcium is also known to be regulated by 
Na

+
K

+
-ATPase (Tian and Xie, 2008). For example, 

binding of ouabain (a well-known physiological inhibitor of 
Na

+
K

+
-ATPase) to the enzyme leads to increase in 

intracellular calcium in cardiac myocytes, resulting in 
increases in myocardial contraction. This is the basis for 
the administration of digitalis in treating congestive heart 
failure. Mechanistically, the Na

+
K

+
-ATPase has been 

shown to regulate calcium entry through the Na
+
/Ca

2+
 

exchanger (NCX) by altering intracellular Na
+
 

concentration in cardiac myocytes (Blaustein et al., 
1998). Physical coupling among the Na

+
K

+
-ATPase, 

NCX, and sarcoplasmic reticulum calcium store has been 
demonstrated in smooth muscle cells (Moore et al., 
1993). Other workers (Juhaszova and Blaustein, 
1997; Song et al., 2006) have provided evidence that the 
Na

+
K

+
-ATPase interacts with NCX to form a specific 

calcium-signaling microdomain in many different cell 
types. The greater bioavailability of Ca

2+
 due to Pb

2+
 and 

DEHP co-treatment in the liver may have triggered an 
increase in NCX activity (Matsuoka, 1995) which in turn 
may have led to the observed increase in activity of 
Na

+
K

+
-ATPase activity.  Renal Ca

2+
 ATPase activity was 

also observed to be upregulated by Pb
2+

 in this study, 
which could be explained as hormetic. Hormesis is the 
concept whereby non-nutrtional toxic substances impart 
beneficial or stimulatory effects at low to moderate 
concentrations but adverse effects at high concentrations 
(Klaassen and Watkins, 2015). DEHP imparted no effects 
on the enzyme while co-treatment with Pb

2+
 and DEHP 

produced antagonistic effects. A similar antagonistic 
association between Pb

2+
 and DEHP combined treatment 

was also observed in brain Ca
2+

 ATPase activity 
suggesting that the binding of one toxicant may decrease 
the binding of the other toxicant through a conformational 
change in the enzyme. 

Unlike Ca
2+

 ATPase, individual exposures to Pb
2+

 and 
DEHP upregulated hepatic Na

+
K

+
-ATPase activities. This 

is contrary to various works that have recorded an 
inhibitory effect on the hepatic enzyme by both agents 
(Yücebilgiç et al., 2003; Dhanya et al., 2003; Krstić et al., 
2008; Afolabi et al., 2016). This disparity in results may 
be explained by differences in conditions, concentration 
of toxicant administered, ages and species of animals 
and subjects employed in the study – well established 
indices that have been shown to affect response to 
toxicants. Yücebilgiç et al. (2003) employed human 
subjects in their study and they observed the enzyme 
inhibition in the blood of the lead-exposed workers.   

 
 
 
 
Although Dhanya et al. (2003) worked on rats, DEHP was 
administered intraperitoneally and at a much lower dose  
of 750 μg/kg body weight (compared to 100 mg/Kg body 
weight employed in this study). Krstić et al. (2008) 
employed very large adult rats (average of 330 – 400 g) 
in their study unlike the present study that used rats with 
average weights of 140 g. Afolabi et al. (2016) employed 
rats with an average weight of 80 – 100 g (7 – 8 weeks 
old) unlike the present study. Co-treatment produced 
potentiating effects on Na

+
K

+
-ATPase activity. Three 

mechanisms proposed for the potentiation of Pb
2+

-
induced activation of hepatic Na

+
K

+
-ATPase by DEHP in 

co-treatment are: (1) an increase in concentration of Na
+
 

or K
+
 or Ca

2+
, (2) some natural physiologic inhibitor of 

Na
+
K

+
-ATPase such as ouabain may have been 

downregulated as a result of Pb
2+

 and DEHP interaction 
in co-treatment leading to an up-regulation in the activity 
of the enzymes, (3) Some compensatory mechanisms. 
Increase in Na

+
K

+
-ATPase activity as a result of higher 

bioavailability of Ca
2+

 has already been discussed in the 
preceding paragraph. In the brain, Na

+
K

+
-ATPase 

activities were generally downregulated by Pb
2+

 and 
DEHP (in accordance with the work of Okediran et al., 
2009; Dhanya et al., 2003) while combined treatment 
produced no significantly different effects from the 
individual single exposures. Na

+
K

+
-ATPase plays a 

crucial role in the maintenance of the Na
+
 and K

+
 

gradients across the plasma membrane of neuronal cells 
hence the function of these cells are hinged on the 
efficient regulation of the transport function of this ion 
pump. Research on human genetic diseases and various 
animal models have confirmed that neuronal activity and 
survival are dependent on a normal functioning of the Na

+
 

pump. Adverse effects on the Na
+
,K

+
-ATPase pump may 

lead to neuronal death (Horisberger and Geering, 2009). 
Pb

2+
 had no effects on renal Na

+
K

+
 ATPase activity at the 

dose and duration administered, however DEHP and co-
treatment caused approximately the same level of 
inhibition of the enzyme showing the absence of any Pb

2+
 

effects on DEHP induced inhibition of the enzyme in the 
kidney. 

Mg
2+ 

ATPase activities showed organ-specific 
responses to Pb

2+
, DEHP and combined treatments with 

both toxicants just as already observed with the other 
ATPases. In the brain, Mg

2+
 ATPase activity was 

stimulated by individual exposure to Pb
2+

and DEHP while 
co-exposure to both toxicants produced an antagonistic 
effect of Pb

2+
 on DEHP. On the contrary, liver and kidney 

Mg
2+

 ATPase activities were down-regulated by lead and 
DEHP treatments while combined treatments with both 
toxicants restored enzyme activity towards control value 
in the liver but sustained DEHP induced inhibition in the 
kidney. Compensatory and adaptive mechanisms may 
explain the restoration of enzyme activities to control 
values in the liver. Such mechanisms are popular in organ 

https://www.sciencedirect.com/topics/medicine-and-dentistry/isotopes-of-calcium
https://www.sciencedirect.com/topics/medicine-and-dentistry/endoplasmic-reticulum


 

 
 

 
 
 
 
responses to toxicants (Klaassen and Watkins, 2015). 
Total ATPase enzyme responses to Pb

2+
 and DEHP 

treatment were also different from one organ to the other. 
Pb

2+
 showed a potentiating effect on DEHP induced 

inhibition of total ATPase in the brain, while an 
antagonistic effect was observed between both toxicants 
in the kidney. On the contrary in the liver, a significant 
activation of the enzyme was observed, which was in 
consonant with liver Na

+
K

+
 ATPase and Ca

2+
 ATPase. 

Only in Mg
2+

 ATPase liver activity was the compensatory 
mechanism not complete in co-treatment, rather, the 
individualy induced inhibitions were reversed to control 
value.  

In this study, it is observed that DEHP acted somewhat 
like a chelator for Pb

2+
 in the liver. The association 

between DEHP and Pb
2+ 

seemed to relieve Pb
2+

 and 
DEHP induced inhibitions of the ATPases in the liver 
leading to neutralization of Pb

2+
 and DEHP individual 

inhibitions of Mg
2+

 ATPase, conversion of individual 
inhibitions of Ca

2+
 ATPase to a 17 % activation of the 

enzyme, additive increase in Na
+
K

+
 ATPase activity over 

and above the increase in activity of the enzyme 
observed in individual exposures to both toxicants. This 
shows that at some concentrations, combined exposures 
to toxicants may actually neutralize their individual toxic 
effects in some organs while magnifying the toxic effects 
in other organs. 
 
 
Conclusion 
 

The findings of this study demonstrate tissue specific 
responses of ATPases to lead and DEHP co-exposure in 
rat, with hepatic effects deviating significantly from the 
brain and renal compartments. More work is needed to 
evaluate the compensatory and adaptive mechanisms 
that could have accounted for these deviations and how 
this contributes to or protects from hepatic degeneration. 
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