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Globalization of the trade in agricultural commodities has contributed significantly to the discussion 
about potential hazards involved and has increased in particular the awareness of mycotoxins. Safety 
awareness in food and feed production has also risen due to the simple fact that methods for testing 
residues and undesirable substances have become noticeably more sophisticated and more available 
at all points of the supply chain. Mycotoxins comprise of a family of fungal toxins, many of which have 
been implicated as chemical progenitors of toxicity in man and animals. There are four classes of 
mycotoxins of major concern namely aflatoxins, zearalenone, ochratoxins, and fumonisins. Formation 
of mycotoxins varied between species as well as within a given species. A variety of physical, chemical, 
and biological methods to counteract the mycotoxin problem have been reported, but large-scale, 
practical, and cost-effective methods for detoxifying mycotoxin-containing feedstuffs are currently not 
available. Detoxification strategies for the contaminated foods and feeds should be done to reduce or 
eliminate the adverse actions of mycotoxin to improve food safety and prevent economic losses. The 
most recent approach to the problem has been the addition to the animal's diet of nonnutritive sorbents 
that sequester mycotoxins, reduce their gastrointestinal absorption and avoiding their toxic effects on 
livestock and toxin carryover into animal products. This review comments on the potential hazards of 
several mycotoxins together with prevention strategy for fungal and mycotoxin contamination.  
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INTRODUCTION 
 
Toxic substances are almost ubiquitous in the 
environment. Thus, they are also present in ingredients 
for animal feed. Adequate risk management depends on 
knowledge of absorption, metabolism, carry-over and 
toxicological profile of these substances and on practical 
measures to reduce them. Generally, toxic substances 
are metabolized before or after absorption through the 
intestinal tract (Kan and Meijer, 2007). Depending on 
their physico-chemical characteristics, some substances  
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are metabolized into naturally occurring and generally 
harmless constituents. Most veterinary drugs and feed 
additives fall into this group (Kan and Meijer, 2007). 
Some mycotoxins were heat stable up to as much as 
400°C. As a result, they may also be of relevance in 
processing operations (Mayer et al., 2008). 

Molds (fungi) develop from spores that are found 
ubiquitously in the environment. Mold growth on grain 
under field conditions or during storage can occur at 
moisture levels above 16% and at temperatures above 
freezing. The growth of molds on grain can affect the 
nutritional quality of grain in several ways (Marguardt, 
1996). First, they decrease the nutritional value of the 
commodity as they consume fats, protein and carbohydrates
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Table 1. Examples of fungal species and mycotoxins of economical significance in animal 
agriculture (D'Mello and Macdonald, 1997). 
 

Fungal species Mycotoxins 

Aspergillus flavus and A. parasiticus Aflatoxins 

A. Ochraceus, Penicillium viridicatum, and P. cyclopium Ochratoxin A 

Fusarium culmorum, F .graminearum, and F. sportrichoides Deoxynivalenol 

F. sporotrichoides and F. poae T-2 toxin 

F. sporotrichoides, F. graminearum, and F. poae  Diacetoxyscirpenol 

F. culmorum, F. graminearum, and F. sporotrichoides Zearalenone 

F. proliferatum, F. verticillioides Fumonisins 

Acremonium coenophialum Ergopeptine 

  

Alkaloids  

A. lolii Lolitrem alkaloids 

 
 
 
that are present in the grain. Thus these nutrients are no 
longer available to the animal. Secondly, some species of 
mold are able to produce highly toxic compounds called 
mycotoxins.  

These toxins can adversely affect animal health and 
production and can cause harmful effects to humans if 
transmitted into foods. The combined presence of mold 
and mycotoxins may cause decreased feed intake, 
decreased feed efficiency, decreased rate of gain, and 
increased risk of infection as well as reproductive 
problems (Marguardt, 1996).  

Mycotoxins are metabolized in the liver and the kidneys 
and also by microorganisms in the digestive tract. 
Therefore, often the chemical structure and associated 
toxicity of mycotoxin residues excreated by animals or 
found in their tissues are different from the parent 
molecule (Ratcliff, 2002). No region of the world escapes 
the problem of mycotoxins and according to Lowlor and 
Lynch (2005) mycotoxins are estimated to affect as much 
as 25% of the world

’
s crop each year.  

Moulds and associated mycotoxins are important 
factors adversely affecting foods produced using 
contaminated plant products or animal products derived 
from animals fed on contaminated feeds (Robens and 
Cardwell, 2003). Mycotoxins are toxic to humans and 
animals, which explains the major concern of food and 
feed industries in preventing them from entering the food 
chain (Pierre, 2007). Toxin-producing moulds may invade 
plant material in the field before harvest, during post-
harvest handling and storage and during processing into 
food and feed products. Thus, toxigenic fungi have been 
roughly classified into two groups (i) field fungi; (ii) 
storage fungi (Pierre, 2007).  

 Mycotoxins are secondary metabolites produced by 
filamentous fungi that cause a toxic response 
(mycotoxicosis) when ingested by higher animals. Cereal 
plants may be contaminated by mycotoxins in two ways: 
fungi growing as pathogens on plants or growing 
saprophytically on stored plants (Glenn, 2007). However, 

not all fungal growth results in mycotoxin formation and 
detection of fungi do not imply necessarily the presence 
of mycotoxins. Consumption of a mycotoxin-
contaminated diet may induce acute and long-term 
chronic effects resulting in teratogenic, carcinogenic, and 
oestrogenic or immune-suppressive effects. Direct 
consequences of consumption of mycotoxin-
contaminated animal feed include: reduced feed intake, 
feed refusal, poor feed conversion, diminished body 
weight gain, increased disease incidence (due to 
immune-suppression), and reduced reproductive 
capacities (Fink-Gremmels and Malekinejad, 2007; 
Morgavi and Riley, 2007; Pestka, 2007; Voss and 
Haschek, 2007) which leads to economic losses (Huwig 
et al., 2001; Wu, 2004, 2006).  

Due to modern laboratory methods and a growing 
interest in this field of research, more than 300 different 
mycotoxins have been differentiated thus far. However, 
for a practical consideration in the feed-manufacturing 
process only a small number of toxins are of relevance, 
with aflatoxins, trichothecenes, zearalenone, ochratoxins 
and fumonisins (Table 1) being of particular interest, 
although it has to be mentioned that the extent of each 
toxin impairment is highly species-dependant (Erber and 
Binder, 2004). The Fusarium genus, e.g. Fusarium 
verticillioides (formerly Fusarium moniliforme), Fusarium 
roseus, Fusarium tricinctum and Fusarium nivale, are 
ubiquitous soil organisms, which may infect cereals 
directly in the field thereby, increasing fumonisins, 
trichothecene, and zearalenone levels (depending on the 
species) during growth, ripening of grain and at 
harvesting. 

Although the scientific literature offers a broad variety 
of information on the effects of individual mycotoxins in 
various animal species, concurrent exposure to multiple 
mycotoxins is more likely in the livestock industry (Table 
2). For example, aflatoxin and fumonisin B1, as well as 
deoxynivalenol (DON) or other trichothecenes (one or 
even more  of  them)  and  zearalenone  frequently  occur  

http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Robens%2C+Jane)
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Cardwell%2C+Kitty)
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Cardwell%2C+Kitty)
http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=auteursNom:%20(JOUANY)
http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=auteursNom:%20(JOUANY)
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Table 2. Geographic occurrence of mycotoxins. 
  

Location Mycotoxins 

Western Europe Ochratoxin, Vomitoxin, Zearalenone 

Eastern Europe Zearalenone, Vomitoxin.  

North America Ochratoxin, Vomitoxin, Zearalenone, Aflatoxins 

South America Aflatoxins, fumonisins, Ochratoxin, Vomitoxin, T-2 toxin.  

Africa Aflatoxins, fumonisins, Zearalenone. 

Asia Aflatoxins 

Australia Aflatoxins, fumonisins 
 

Source: Devegowda et al. (1998). 

 
 
 
together in the same grain. Additionally, in the feed 
manufacturing process, various batches of different raw 
materials are mixed together thus producing a totally new 
matrix with a new risk profile. Poor livestock performance 
and/or disease symptoms observed in commercial 
operations may be due to the synergistic interactions 
between multiple mycotoxins. Scientific reports on 
synergistic effects of mycotoxins at acute toxicity levels 
describe combinations of aflatoxins with various 
trichothecenes, as well as with ochratoxins and 
fumonisins, but also combinations of fumonisins plus 
DON. Nevertheless it has to be pointed out that far more 
work has to be done in this particular field of research, 
especially in the sub-acute contamination range as well 
as with combinations of more than two toxins (CAST, 
2003; Erber and Binder, 2004). 

Several of the major mycotoxins exert their effects 
through different organ systems and different biological 
pathways. Aflatoxin, ochratoxin, and T-2 toxin all interfere 
with protein formation, but each does so in a different 
manner; aflatoxin binds to both RNA and DNA and blocks 
transcription (Kan and Meijer, 2007). T-2 toxin blocks 
initiation of translation, and ochratoxin blocks 
phenylalanine-t RNA synthetase, and thus blocks 
translation. Some scientists assume complete absorption 
of these noxious substances, as a worst-case scenario to 
predict residues in animal products from those in feed 
(Kan and Meijer, 2007). By doing so, they ignore the 
physiological processes occurring during transit through 
the intestine and after absorption into the general 
circulation as well as intermediary metabolism. 
Furthermore this approach does not take advantage of 
existing knowledge to identify or implement possible 
control points for reduction of levels of residues in animal 
products (Kan and Meijer, 2007). 

Multi-toxin occurrence may be one important 
explanation for divergences in effect levels described in 
the scientific literature, where defined, mostly purified 
mycotoxins are used in most studies. In field outbreaks, 
naturally contaminated feeds may contain multiple 
mycotoxins and thus apparently lower contamination 
levels of a single specific mycotoxin can be associated 
with more severe effects.  

Analytical methods for separation of mycotoxins 
included thin-layer chromatography (TLC), gas 
chromatography (GC), and High-performance liquid 
chromatography (HPLC). The few TLC methods had 
been used for screening and not for quantification (Abbas 
et al., 2004; Benedetti et al., 2006). GC with high-
resolution MS had also been used for analysis of some 
mycotoxins (Fernandez et al., 2007; Ikonomou et al., 
2008). However, a labour-intensive derivatization step 
was often indispensable prior to GC analysis. Therefore, 
HPLC–MS–MS had increasingly become the method of 
choice for mycotoxin analysis (Abbas et al., 2004; 
Benedetti et al., 2006; Fernandez et al., 2007).  

Mycotoxin losses and costs of mycotoxin management 
are overlapping areas of concern. Costs of mycotoxin 
management include research production practices, 
testing and research necessary to try to prevent the 
toxins from appearing in food and feed products of 
affected commodities (Robens and Cardwell, 2003). 
Mycotoxin losses result from lowered animal production 
(Robens and Cardwell, 2003) and any human toxicity 
attributable to the presence of the toxin (Council for 
Agricultural Science and Technology (CAST, 1989) in the 
affected commodity which lowers its market value, as 
well as secondary effects on agriculture production and 
agricultural communities (CAST, 1989). 

Due to the multiple possible origins of fungal infection, 
any prevention strategy for fungal and mycotoxin 
contamination must be carried out at an integrative level 
all along the food production chain (Robens and 
Cardwell, 2003). Three steps of intervention have been 
identified. The first step in prevention should occur before 
any fungal infestation; the second step is during the 
period of fungal invasion of plant material and mycotoxin 
production; the third step is initiated when the agricultural 
products have been identified as heavily contaminated. 
Such hazard analysis has some similarity with the 
HACCP management system of food safety 
(Degirmencioglu et al., 2005), mainly with the principles 2 
(Determination of critical control points) and 3 (Establish 
critical limits). Most of the efforts must be concentrated 
on the two first steps since, once mycotoxins are present, 
it is difficult to eliminate them in a practical way. 

http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Robens%2C+Jane)
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Cardwell%2C+Kitty)
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Robens%2C+Jane)
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Cardwell%2C+Kitty)
http://informahealthcare.com/action/showPopup?citid=citart1&id=b2&doi=10.1081/TXR-120024089
http://informahealthcare.com/action/showPopup?citid=citart1&id=b2&doi=10.1081/TXR-120024089
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Robens%2C+Jane)
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Cardwell%2C+Kitty)
http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Cardwell%2C+Kitty)
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Approaches to prevent mycotoxicoses include pre- and 

post-harvest strategies; the latter are often categorized 
into physical, chemical and biological methods (Jouany, 
2007). The best way would be the prevention of 
mycotoxin formation in the field of its first place, which is 
supported by proper crop rotation and fungicide 
administration at the right time. In case of toxin 
manifestation, measures are required that act specifically 
against certain types and groups of toxins. The most 
prevalent approach counteracting mycotoxins in the feed 
industry is to include sorbent materials into the feed, for 
more or less selective removal of toxins by means of 
adsorption within the route of the gastrointestinal tract, or 
to add enzymes or microbes capable of detoxifying 
certain mycotoxins or toxin groups (Leibetseder, 2005). 
 
 
FACTORS THAT PROMOTE FUNGAL GROWTH AND 
MYCOTOXIN PRODUCTION   
 
Besides the presence of nutrients, the most important 
factors for growth and mycotoxin production are 
temperature, water activity (aw) and oxygen. Often 
contamination of food by fungi may vary due to different 
origins of contamination, especially storage buildings, 
bins or underground pits (Christensen and Sauer, 1982). 
Often, fungi invade only a minor fraction of feed particles 
with appropriate condition for a growth such as enough 
water content, aeration, etc.  

Substrates differ in their ability to support fungal growth 
due to differences in their physical and chemical 
characteristics, which include water activity, oxygen 
availability and surface area, while chemical 
characteristic include carbohydrates, fat, protein, trace 
elements and amino acid composition (Russell et al., 
1991). While some substrates are susceptible to 
colonization, other environmental conditions increase the 
vulnerability of the fungi to the substrate. The conditions 
include temperature, water activity, pH and atmospheric 
air (oxygen) (Moss, 1991). 
 
 
Temperature 
 
It has been shown that Penicillium species have a lower 
minimum temperature range than Aspergillus species. 
The optimal temperature for Penicillium and Aspergillus is 
25 to 30°C and 30 to 40°C, respectively. The maximal 
temperature is 28 to 30°C for Penicillia and 37 to 47°C for 
most Aspergilli. Various Fusarium species can also be 
regarded as psychrophilic, because of their low optimal 
temperature of 8 to 15°C (Moss, 1991). 
 
 
Water activity 
 
Water activity (aw) is a measure of unbound water  in  the  

 
 
 
 
food available for the growth of the mould. Values for 
water activity appreciation vary between 0.61 and 0.91. 
Most storage fungi grow at aw<0.75 (Moss, 1991). It is 
important to note that ambient conditions (temperature 
and humidity) do not only influence the rate at which 
chemical changes may take place, but also the growth of 
fungi and insect pests (Francis and Wood, 1982). This is 
because high temperatures and relative humidity provide 
ideal conditions for growth and development of moulds 
with possible production of mycotoxins (Pitt and Hocking, 
1997). 

Smith and moss (1985) reported that moisture 
determines whether microbes can colonize a substrate or 
not. These factors enable moulds to break down complex 
macromolecular compounds and utilize them for growth 
and metabolism. In the process, they produce and 
secrete toxic secondary metabolite, which are 
"mycotoxins" (Moss, 1996). Excessive moisture in the 
field and in storage, temperature extremes, humidity, 
drought, variations in harvesting practices and insect 
infestations are major environmental factors that 
determine the severity of mycotoxin contamination 
(Hussein and Brassel, 2001). 
 
 
pH 
 
At high water activities, fungi compete with bacteria as 
food spoilers (Wheeler et al., 1991). Most fungi are little 
affected by pH over a broad range, commonly 3 to 8 
(Wheeler et al., 1991), however, the pH of a medium may 
exercise important control over a given morphogenic 
event without remarkably influencing the overall growth of 
a fungus (Pitt and Hocking, 1997). 
 
 
Oxygen 
 
Oxygen is essential for the growth of fungi, but certain 
species can also grow under anaerobic conditions with 
the formation of ethanol and organic acids. Oxygen also 
influences production of mycotoxins. The production of 
patulin and penicillic acid decrease sharply at low oxygen 
concentrations, while fungal growth is not noticeably 
influenced (Northolt, 1979). Aspergillus growth is 
restricted at an oxygen concentration of less than 1% 
(Pitt and Hocking, 1997) (Tables 1 and 2). 
 
 
Aflatoxins  
 
Aflatoxins, a family of closely related, biologically active 
mycotoxins, have been known as a prominent cause of 
animal disease for many years. The toxins occur naturally 
on several key animal feeds, including corn, cottonseed, 
and peanuts. Occurrence of aflatoxins on some field 
crops tends to spike  in  years  when  drought  and  insect  



 
 
 
 
damage facilitate invasion by the causative organisms, 
Aspergillus flavus and Aspergillus parasiticus, which 
abound in the crop's environment. Aflatoxins B1 was 
present in contaminated peanut containing feed that 
caused a mass death of turkeys in England in 1960; an 
incidence that triggered much subsequent mycotoxin 
research.  

Acute aflatoxicosis causes a distinct overt clinical 
disease marked by hepatitis, icterus, hemorrhage, and 
death. More chronic aflatoxins poisoning produces very 
variable signs that may not be clinically obvious; reduced 
rate of gain in young animals is a sensitive clinical 
register of chronic aflatoxicosis. The immune system is 
also sensitive to aflatoxins, and suppression of cell-
mediated immune responsiveness, reduced 
phagocytosis, and depressed complement and interferon 
production are produced. Acquired immunity from 
vaccination programs may be substantially suppressed in 
some disease models. In such cases the signs of disease 
observed are those of the infectious process rather than 
those of the aflatoxins that predisposed the animal to 
infection. Of considerable potential economic 
consequence is the fact that aflatoxins can suppress the 
immune system of young animals by in utero-transfer 
across the placenta of the pregnant dam (Pier et al., 
1985). In these cases the affected newborn animals lack 
resistance to infection and cannot respond well to 
vaccines. These are reactions of considerable 
consequence in colonized animals in which we rely on 
elective vaccination procedures in disease prevention.  
 
 
Aflatoxins in feedstuffs 
 
Aflatoxins, primarily aflatoxin B1, occur in a number of 
important animal feeds. Growth of toxigenic strains of A. 
flavus and A. parasiticus on corn, cottonseed, and 
peanuts often results in injurious levels of aflatoxin B1, 
the most biologically active member of the aflatoxin family 
(Cheeke and Shull, 1985). These three feedstuffs are the 
most important sources of aflatoxin in animal feeds 
(Cheeke and Shull, 1985). The causative molds may 
occasionally colonize small cereal grains (barley, oats, 
and wheat) and produce low to moderate levels of 
aflatoxin. Soybeans do not support appreciable levels of 
aflatoxin B1 production (Lillehoj et al., 1991).  

The moisture content promotes the growth of the 
toxigenic molds and grinding of the kernel destroys the 
natural barrier to infestation. Moisture content of the feed 
must be ≥ 15% to support growth of the molds. The 
fungus must gain access to susceptible parts of the plant 
(e.g., the corn kernel, cotton seed, etc.) before it grows 
and elaborates aflatoxins. Seasonal peaks in aflatoxin 
content are seen in key years when drought-damaged 
plants or insect-damaged crops are rendered more 
susceptible to fungal invasion. Wet harvest seasons also 
may contribute to high levels of aflatoxin in certain crops.  
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Aflatoxin sometimes develops in crops stored at levels 

of moisture content > 15% or properly dried crops stored 
in leaky bins. Development of aflatoxin can be prevented 
in stored grains by good management practices 
(Christensen and Meronuck, 1986); the occurrence of 
aflatoxin in field crops, however, is largely a matter of 
uncontrollable natural events. In these events careful use 
of blending with clean crops or detoxification through 
ammonization, with close attention to existing rules and 
regulations, may be possible to reduce the toxin content 
in animal feeds to safe levels (Park et al., 1988; FDA, 
1989). Recent information suggests that binding agents 
fed with aflatoxins may reduce the availability of the 
toxins and thereby reduce their effects in some animal 
species (Harvey et al., 1989). In the absence of one of 
these control procedures the feed should be withheld 
from animal use. 
 
 
Zearalenone 
 
Zearalenone (previously known as F-2 toxin) was 
produced by some Fusarium species Fusarium 
graminearum (Gibberella zeae), Fusarium culmorum, 
Fusarium cerealis, Fusarium equiseti, Fusarium 
crookwellense and Fusarium semitectum. These fungi 
infected contaminants of cereal crops worldwide (Bennett 
and Klich, 2003). The concentration of accumulated 
Zearalenone (ZEA) in cereals depended on several 
factors such as the substrate, temperature, duration of 
Fusarium growth and strain of fungal species. Moreover, 
the humid tropical climate promoted microbial 
proliferation on food and feedstuffs and finally mycotoxin 
biosynthesis (Nuryono et al., 2005). 

Toxicity of ZEA and its metabolites was related to the 
chemical structure of the mycotoxins, similar to naturally 
occurring estrogens (Gromadzka et al., 2009). ZEA was 
heat-stable, which made it difficult to remove and/or 
decomposed from food (Kuiper-Goodman et al., 1987). 
Additionally, it was observed that during food and feed 
processing (e.g. milling, extrusion, storage and heating) 
ZEA was not decomposed (Yumbe-Guevara et al., 2003).  

Zearalenone imitates the effect of female hormone 
oestrogen and at low doses, increases the size or early 
maturity of mammary glands and reproductive organs. At 
higher doses, Zearalenone interferes with conception, 
ovulation, implantation, fetal development and the 
viability of new born animals (Zinedine et al., 2007). 
Zearalenone causes estrogenic responses in dairy cattle 
and large doses of this toxin are associated with 
abortions. Other responses of dairy animals to 
zearalenone are reduced in feed intake, decreased milk 
production, vaginitis, increase vaginal secretions, poor 
reproductive performance and mammary gland 
enlargement in heifers. It is recommended that 
zearalenone should not exceed 250 ppb in the total diet 
(Zinedine et al., 2007). 
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Ochratoxins 
 
The ochratoxins are metabolites produced by certains 
species of genera Aspergillus and penicillium (Wood, 
1992). Ochratoxins A was discovered in 1965 by South 
African Scientists as a toxic secondary metabolite of 
Aspergillus ochraceus (Van der Merwe et al., 1965). 
Other species of A. ochraceus group and several 
Penicillium species, including Penicillium viridicatum, 
have been shown to form ochratoxin A.  

 Ochratoxin A is the major metabolite of toxicological 
significance and it is mainly a contaminant of cereal 
grains (corn, barely, wheat and oats). It has also been 
found beans (soyabeans, coffee, cocoa) and peanuts and 
meat in some countries (Krogh, 1987). Ochratoxin A is 
teratogenic in rat, hamster and chick embryo and is an 
inhibitor of hepatic mitochondrial transport to cause 
damage to the liver, gut, lymphoid tissue and renal 
tubular damage (Krogh, 1987).  
 
 
Fumonisins 
 
The fumonisins are a group of compounds originally 
isolated from Fusarium moniliforme (Gelderblom et al., 
1988). Six different fumonisins (FA1, FA2, FB1, FB2, FB3 
and FB4) have been reported, the A series are amides 
and the B series have a free amine (Gelderblom et al., 
1991).  

In most animals tumonisin impairs immune function, 
causes liver and kidney damage, decreases weight 
gains, and increases mortality rates. The fumonosins 
(FB1 and FB2) were recently isolated from F. moniliforme 
cultures and found to promote cancer in rats (Gelderblom 
et al., 1988). These toxins occur naturally in corn and 
have been associated with equine 
leukoencephalomalacia (Ross et al., 1990).  

Fumonisins are stable during food processing: they are 
not degraded during corn fermentation (Scott and 
Lawrence, 1995); they are heat stable (Marasas, 1997) 
and resistant to canning and baking processes (Castelo 
et al., 1998), although in corn the nixtamalization process 
reduces fumonisin B1 levels, a five-fold more toxic 
product with respect to the original level (Bullerman and 
Bianchini, 2007; Hendrich et al., 1993; Voss et al., 1996). 

The use of natural bioactive substances for control of 
postharvest fungal infections has gained attention due to 
problems associated with chemical agents. These include 
the development of fungal species resistant to chemical 
treatments, which increases food-borne pathogenic 
microorganisms, in addition to increasing the number of 
pesticides under observation or regulation (Rabea et al., 
2003). Also, essential oils of cinnamon (Cinnamomum 
zeylanicum Blume) and oregano have shown fungicidal 
activity in vitro against A. flavus Link: Fr. (García-
Camarillo et al., 2006). 

In addition, Sánchez et al. (2005) reported the inhibition 

 
 
 
 
of both growth and mycotoxin production by A. flavus and 
A. parasiticus Speare when exposed to ethanolic, 
methanolic, and aqueous extracts of Agave species. For 
that reason, it is possible that native plants such as 
Larrea tridentata, Baccharis glutinosa, Ambrosia 
confertiflora DC, and Azadirachta indica A. Juss. can be 
used as source of natural preservative compounds for the 
control of filamentous fungi like Fusarium verticillioides. 
 
 
T-2 toxin 
 
The T-2 toxin, produced mainly by Fusarium tricinctum, 
was the first trichothecene to be found as a naturally 
occurring grain contaminant in the United States (Hsu et 
al., 1972). It was associated with a lethal toxicosos in 
dairy cattle that had consumed moldy corn in Wisconsin. 
This mycotoxin rarely associated with disorders in 
animals or humans in other countries (Mroch et al., 
1983). Yoshizawa et al. (1981), stated that the chance of 
finding T-2 toxin as a residue in edible tissue is remote 
because it is rapidly metabolized in vivo.  

In dairy cattle T-2 toxin has been associated feed 
refusal, production losses, gastroenteritis, intestinal 
hemorrhages and death. T-2 has also been associated 
with reduced immune response in calves. In poultry, T-2 
toxin has been implicated to cause mouth and intestinal 
lesion as well impair the bird’s immune response, causing 
decreased in egg production, decreased feed 
consumption, weight loss and altered feather patterns 
(Mroch et al., 1983). 
 
 
Vomitoxin 
 
Vomitoxin also called deoxynivalenol is stable, survive 
processing, milling and does occur in food products and 
feeds prepared from contaminated corn and wheat. The 
most common producer of vomitoxin is F. graminearum 
(Marasas et al., 1984). Corn contaminated with F. 
graminearum was shown to contain the trichothecene 
vomitoxin (3, 7, 15-trihydroxy- 12, 13-epoxytrichothec-9-
en-8-one). Vomitoxin is perhaps, the most commonly 
detected Fusarium mycotoxin. Vomitoxin has been 
associated with reduced milk production in dairy cattle, 
vomiting by swine contaminated feed or their refusal to 
eat feed containing the toxin, and inhibiting reproductive 
performance and immune function in several animal 
species (Marasas et al., 1984). 
 
 
Toxicology and syndromes 
 
In common with other physiologically active compounds, 
the Fusarium mycotoxins are capable of inducing both 
acute and chronic effects. The effects observed are often 
related to dose levels and duration of exposure. Although  



 Zaki et al.          19 
 
 
 

Table 3. Mycotoxins and their effects on different species of livestock. 
 

Mycotoxins Species susceptability Effects 

Aflatoxins All domestic animals and poultry Hepatoxic, carcinogenic, immnosuppressive 

Zearalenone Mainly pigs and dairy animals Estrogenic and reproductive disorder 

Vomitoxin Mainly pigs and dairy animals Dermatotoxic, feed refusal 

Ochratoxin Mainly pigs and poultry Nephrotoxic, gout 

T-2 Toxin Mainly pigs and poultry Mouth lesions, loss of appetite 

Fumonisins Mainly pigs and horses Neurological disorders, liver damage. 
 

Source: Ratcliff, 2002. 

 
 
 
acute and chronic effects in farm livestock are readily 
demonstrated under experimental conditions, similar 
manifestations have been reported in natural outbreaks 
of Fusarium mycotoxicoses in Europe, Asia, New 
 Zealand and South America (Fazekas and Bajmocy, 
1996; Prathapkumar et al., 1997; Kramer et al., 1997; 
Galhardo et al., 1997). 

Chronic exposure of farm animals to DON is a 
continuing hazard in Canada, the USA and continental 
Europe. In Japan, several cases of mycotoxicoses in 
animals have been attributed to consumption o f cereals 
contaminated with DON and NIV (Yoshizawa, 1991). A 
number of specific syndromes in farm livestock have now 
been positively linked with exposure to certain 
trichothecenes, ZEN, and fumonisins. These include feed 
refusal, emesis and anorexia; oral and gastro-intestinal 
lesions; ill-thrift; reproductive dysfunction; equine 
leukoencephalomalacia; and porcine pulmonary edema. 
In addition, Duodenitis/ proximal jejunitis and acute 
mortality syndrome have tentatively been linked with 
particular Fusarium mycotoxins. 
 
 
Effect of mycotoxins on animals 
 
Acute primary mycotoxicoses are produced if high to 
moderate amounts of mycotoxins are consumed. 
Specific, overt, acute episodes of disease ensue, which 
include hepatitis, hemorrhage, nephritis, necrosis of oral 
and enteric epithelium, and death. These effects 
belonged to the target organs usually affected by specific 
mycotoxins. Chronic primary mycotoxicoses, resulting 
from moderate to low levels of mycotoxin intake, often 
cause reduced productivity in the form of slower rate of 
growth, reduced production and inferior market quality. 
These effects often occur without the production of an 
overt, primary mycotoxicosis syndrome (Table 3). 

Consumption of low levels of mycotoxins through the 
feeds do not cause overt mycotoxicoses, but often 
predisposes to various infectious diseases and especially 
to secondary bacterial infections or to a heavy 
progression of some often encountered parasitic 
diseases (Stoev et al., 2000; Koynarski et al., 2007), 
because of  the  suppression  in  both  humoral  and  cell-

mediated immune response in such animals (Stoev et al., 
2000). Suppression of the cellular immune system is a 
known result after ingestion of several mycotoxins. 
Cheeke (1998) confirmed that in monogastrics, variable 
immune responses have been observed after ingestion of 
these mycotoxins. Various degrees of mycotoxicoses 
from natural sources occur in different animal species 
because of the wide range of feed ingredients used and 
the differences among and within species (Hussein and 
Brassel, 2001). 

Mycotoxins have several effects in poultry (Figure 1). 
Early investigations concerning the sudden death of 100, 
000 turkey poults consuming groundnuts in England 
linked A. flavus to acute hepatic necrosis and hyperplasia 
of the bile ducts of intoxicated birds (Newberne and 
Butler, 1969). High levels of aflatoxins (from 0.2 to 1 
mg/kg) in combination with other mycotoxins (OTA and / 
or trichothecenes) in poultry feed may cause diseases 
such as hepatitis and can lead to the development of 
salmonelosis, coccidiosis, and infectious bursal disease 
(Ratcliff, 2002). Chickens have been shown to bruise and 
haemorrhage from AF (Table 4 and Figures 2 to 4b). 
 
 
De-contamination and amelioration 
 
A number of de-contamination procedures have been 
investigated, broadly divisible into physical and chemical 
principles (Placinta et al., 1999). Physical methods 
include milling which has been shown to be highly 
effective for DON, and density segregation which has 
resulted in reduced levels of trichothecenes and ZEN. 
Super activated charcoalis partially effective at reducing 
the incidence of oral lesions in broilers fed T-2 toxin, but 
mortality remains unaffected (Edrington et al., 1997). 
Furthermore, amelioration of oral lesions was not 
consistent between experiments. Chemical methods 
tested include calcium hydroxide monomethylamine, 
sodium bisulphite and ammonia.  

The commercial potential of these de-contamination 
procedures, however, has yet to be determined. Anti-
oxidants such as vitamin E have been considered as 
dietary supplements to counteract the effect of T-2 toxin. 

A partial beneficial effect,  in  terms  of  reduced  in vivo 
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Figure 1. Mycotoxins effects on poultry (The poultrysite.com, mycotoxin.com). 

 
 
 

Table 4. Mycotoxins and their effects on different species of livestock. 
 

Mycotoxins Species susceptability Effects 

Aflatoxins All domestic animals and poultry Hepatoxic, carcinogenic, immnosuppressive 

Zearalenone Mainly pigs and dairy animals Estrogenic and reproductive disorder 

Vomitoxin Mainly pigs and dairy animals Dermatotoxic, feed refusal 

Ochratoxin Mainly pigs and poultry Nephrotoxic, gout 

T-2 Toxin Mainly pigs and poultry Mouth lesions, loss of appetite 

Fumonisins Mainly pigs and horses Neurological disorders, liver damage. 
 

Source: Ratcliff, 2002. 
 
 
 

 
 
Figure 2. Mycotoxins effects on pigs (en.engormix.com). 

 
 
 
lipid peroxidation, has been reported in one study with 
chickens (Hoehler and Marquardt, 1996). Vitamin C was 
ineffective in this respect.  

The general harmony now prevailing is that preventive 
measures offer greater potential than remedial 
procedures (Figure 5). With ZEN, a feeding strategy for 
breeding ewes has been suggested, based on the use of 
chicory pastures containing inherently low levels of the 
mycotoxin (Kramer et al., 1997). However, selection of 
cultivars of cereal and forage plants that are resistant to 

infection by toxigenic species of Fusarium pathogens is 
likely to be the long-term objective of any effort to control 
contamination with the associated mycotoxins. 

ALawadi and AL-Jedabi (2000) proved an inhibitory 
and antibiotic activity of camel urine against the growth of 
Candida albicans (yeast), Aspergillus niger, Fusarium 
oxysporum even after it is boil to 100°C. The effect of 
camel urine and milk on the growth properties of such 
fungi or on the efficiency of aflatoxins as inhibitors to 
Bacillus subtilus growth is seen as a  primary  step  fined  
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 Figure 3. Mycotoxin effects in Equine (en.engormix.com). 

 
 
 

 
 

Figure 4a. Mycotoxins effects on ruminants (en.engormix.com). 

 
 
 
away to get rid of fungal toxins. The chemical and organic 
constituents of urine proved to have inhibitory properties 
against fungal and bacterial growth (Ghosal et al., 1974; 
Varley et al., 1980; Mura et al., 1987; Amer and Hendi, 
1996). 

 When Amer and Al-hendi (1996) analyzed urine of 
mature camels of between 5 to 10 years old, they found 
that its relative density ranged from 1.022 to 1.07, while 
pH values varied to be either acidic or alkaline. Urea level 
ranged from 18 to 36 g/dl. Keratin recorded 0.2 to 0.5 g/L. 
Microscopical analysis proved the presence of 
phosphorus and calcium oxalate and ammonium urate; 
some epithelial and granular cells appeared. Al-Attas 

(2008), using neutron activation analysis, estimated some 
essential elements within milk and urine of camels, and 
discovered that it contains large amount of Na and K 
substituting the loss of such elements in the case of 
diarrhea. Also it contains large amount of Zn which 
assists in the cure of the infection due to diarrhea.  
 
 
Prevention and management of mycotoxins in food 
and feed 
 
When contamination cannot be prevented at pre-harvest 
or   during   the   post-harvest   stage,    decontamination/  
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Figure 4b. Mycotoxins effects on ruminants (en.engormix.com). 

 
 
 

 
 

Figure 5. Farm management for prevention and control of mycotoxin (en.engormix.com). 

 
 
 
detoxification procedures played an important role in 
helping prevent exposure to the toxic and carcinogenic 

effect of mycotoxins through the physical separation and 
physical,  chemical   and   biological   inactivation   and/or 



 
 
 
 
removal of the toxin (Kabak et al., 2006). Any 
detoxification procedure to reduce the toxic  
and economic impact of mycotoxins needs the following 
basic criteria (Jemmali, 1979):  
 
1) It must destroy, inactivate or remove the mycotoxins in 
foods and feeds. 
2) It must not produce or leave toxic and/or carcinogenic 
residues in the final products. 
3) It should not alter significantly the nutritional and 
technological properties of the product. 
4) It must be capable of destroying fungal spores and 
mycelia in order to avoiding new toxin forming under 
favourable conditions. 
5) It had to be technically and economically feasible.  
 

 

REMOVAL OF MYCOTOXINS FROM CONTAMINATED 
COMMODITIES 
 
Several methods were reported for the removal of 
mycotoxins from contaminated commodities, including 
physical separation, extraction with solvents and 
adsorption. 
 
 
Physical separation 
 
Since detoxification of mycotoxins by chemical 
applications was not an acceptable practice in some 
regions, physical separation of contaminated crops was a 
very important option for the producer (Kabak et al., 
2006). Cleaning grains removed kernels with extensive 
mold growth, broken kernels and fine materials, which 
reduced mycotoxin concentration (Bullerman and 
Bianchini, 2007). Cleaning of the maize removed 26.6 to 
69.4% of the fumonisins (Sydenham et al., 2004), while a 
40 to 80% reduction in aflatoxin levels were reported after 
physical cleaning and separation of mould-damaged 
kernels and seeds (Park, 2002). However, cleaning was 
not effective in removing DON; only 6 to 19% reduction 
was achieved in wheat by cleaning (Abbas et al., 1985).  

Washing procedures, using distilled water, resulted in 
65 to 69% reductions of DON and 2 to 61% reductions of 
ZEA in barley and maize, whereas using 1 M sodium 
carbonate solution for the first wash reduced DON by 72 
to 74% and ZEA by 80 to 87% (Trenholm et al., 1992). 
This process might be a useful treatment before wet 
milling and brewing; otherwise, the cost of seed drying 
would be prohibitive. Such approaches are also capable 
of reducing patulin levels in the final juiced products (Acar 
et al., 1998). 
 
 
Extraction with solvents 
 
Extraction with a variety of solvents including ethanol, 
aqueous  isopropanol,  methanol–water,  and  acetonitril– 
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water removed aflatoxins from contaminated 
commodities such as cottonseed and peanuts. On the  
other hand, high cost and problems related to disposal of 
the toxic extracts restrict its use for large scale 
application (Rustom, 1997).  
 
 
Adsorption  
 
Two of the most potent adsorbents for removal of 
mycotoxins were activated carbon (AC) and bentonite. 
When phosphate-buffered saline (PBS) and wine 
samples contaminated with 5 ng/ ml OTA were treated 
with 1 mg/ ml AC, 100 and 87% of the available toxin 
were absorbed by the sorbent respectively (Var et al., 
2008). In relation to other mycotoxins, AC was shown to 
considerably decrease patulin levels in apple juice (Artuk 
et al., 1995). Bentonite, which had a negative charged 
surface, for its part showed a very poor affinity for OTA 
(Var et al. ,2008), DON and NIV (Avantaggiato et al. 
,2004), while Diaz et al. (2002) observed that bentonite 
was effective in removing AFB1 in the range 95 to 98.1%. 
Yeasts were focused on the removal of mycotoxins in 
liquids in recent years. 

Cecchini et al. (2006) demonstrated that the 
percentage of OTA removal during fermentation was 
between 46.83 and 52.16% in white wine and between 
53.21 and 70.13% in red wine, depending on the yeast 
strain used. Similarly, Caridi et al. (2006) reported that 
the removal of OTA in wines by 20 different 
Saccharomyces sensu stricto strains, using a naturally 
and spiked OTA-containing grape must (1.58 and 7.63 
ng/ ml respectively), after 90 days of fermentation was 
between 39.9 and 92.1% and between 67.9 and 83.4% 
respectively.  

 
 
INACTIVATION OF MYCOTOXINS IN CONTAMINATED 
COMMODITIES 

 
Physical methods 

 
Physical strategies including thermal processing 
(cooking, boiling, baking, frying, roasting, microwave 
heating, extrusion) and irradiation were applied for 
inactivation of the toxin or to reduce its content in foods 
and feeds.  

 
 
Thermal treatment 

 
Most mycotoxins were heat-resistant within the range of 
conventional food processing temperatures (80 to 
121°C), so little or no reduction in overall toxin levels 
occurred as a result of normal cooking conditions such as 
boiling and frying, or even following pasteurization. The 
initial level of  contamination,  type  of  mycotoxin  and  its  
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concentration, heating temperature and time, and the 
degree of heat penetration, as well as the moisture  
content, pH and ionic strength of food, among other 
factors, played a significant role in the achievement of 
toxin degradation (Samarajeewa et al., 1990; Rustom, 
1997).  
 
 
Chemical methods 
 
A variety of chemicals, including acids, bases, oxidizing 
reagents, reducing agents, chlorinating agents, and 
miscellaneous reagents were tested to detoxify 
mycotoxins. The success of detoxification process by 
chemical treatments highly depends on the type of food 
and/or feed. The use of chemicals in combination with 
physical treatments such as thermal processing for the 
detoxification of food products contaminated with 
mycotoxins increased the efficacy of mycotoxins 
degradation.  
 
 
 Acid treatment 
 
It was clear from the accumulated evidence that 
treatment of aflatoxins with strong acids destroyed the 
biological activity of AFB1 and AFG1 by converting them 
to the hemiacetal forms AFB2a and AFG2a respectively, 
due to acid-catalysed addition of water across the double 
bond in the furan ring (Heathcote and Hibbert, 1978). 
Treatment with HCl (pH 2) reduced AFB1 levels by 
19.3% within 24 h (Doyle et al., 1982). 

 
 
Treatment with bases  
 
Among bases and other chemicals, ammoniation was 
proved to be an effective method for detoxifying aflatoxin-
contaminated agricultural products and animal feeds. The 
ammoniation process, using either ammonium 
hydrochloride or gaseous ammonia (NH3), was equally 
effective in the detoxification of aflatoxins in maize, and 
was shown in some cases to decrease aflatoxin levels by 
more than 75% (Burgos-Herna´ndez et al., 2002). 
Ammoniation caused a 79% reduction of FB1 in 
contaminated maize (Park et al., 1992). It was reported 
that ammoniation almost completely decomposed OTA in 
maize, wheat and barley (Scott, 1996).  

The ammoniation process did not leave toxic 
metabolites of mycotoxins in feed (Scott, 1998), but the 
relatively long period of aeration and its cost, which 
increased the price of the product by 5 to 20%, restricted 
its use in animal feeds (Peraica et al., 2002). In addition, 
some undesirable effects in the sensory and nutritional 
quality of the feed, such as brown colour of the treated 
feed, a decrease in lysine and sulphur-containing amino 
acids,  cannot  be  overlooked  (Piva  et al.,  1995;  Scott,  

 
 
 
 
1998). 
 
 
Oxidizing agents  
 
It was well-known that aflatoxins such as AFB1, AFG1 
and AFM1 which had a terminal double bond in the 
dihydrofuran ring were more susceptible to attack by 
Ozone (O3) and other oxidizing agents than AFB2, AFG2 
and AFM2, which lack this double bond (McKenzie et al., 
1997). Ozone was reported to reduce AFB1 and AFG1 
levels by 77 and 80% respectively in peanuts after 
treatment at 75°C for 10 min, while the maximum 
degradation was 51%, occurring for AFB2 and AFG2 in 
peanuts, regardless of the exposure times (Proctor et al. , 
2004). In another study, the reductions of AFB1 in 
paprika were 80 and 93% after exposures to 33 mg/L O3 
and 66 mg/L O3 for 60 min respectively (Inan et al., 
2007).  

However, limited experiments with other mycotoxins 
showed that patulin, CPA, OA, FB1 and ZEA were effect-
tively degraded after treatment with O3 at 10% for 15 s 
(McKenzie et al., 1997). H2O2, one of the oxidizing 
agents, was used on a commercial scale to detoxify 
aflatoxin. Treatment of figs with H2O2 at 0.2% caused a 
65.5% reduction in AFB1 levels following 72 h storage 
(Altug˘ et al., 1990). Additionally, citrinin can be 
completely detoxified by H2O2 at 0.05% for 30 min at 
room temperature, whereas OTA was not detoxified by 
treatment with 0.05 to 0.1% H2O2 (Fouler et al., 1994). 
Abd Alla (1997) revealed that ZEA was degraded by 
83.9% when using 10% H2O2 at 80°C for 16 h.  
 
 
Reducing agents  
 
Sodium bisulfite (NaHSO3) was shown to destroy 
mycotoxins, primarily AFB1 in maize (Doyle et al., 1982) 
and dried figs (Altug˘ et al., 1990). Additionally, NaHSO3 
solutions reduced DON level (85%) in contaminated 
maize (4.4 mg/ kg) and form a DON-sulfonate conjugate 
when the treatment was performed at 80°C for 18 h 
(Young et al., 1987). Also, sodium metabisulfite at 10 g/ 
kg was reported to be an effective tool for overcoming the 
depressing effects of DON on feed-intake in piglets 
(Da¨nicke et al., 2005). Alternatively, the reaction of FB1 
with reducing sugars such as D-glucose, D-fructose at 
65°C for 48 h blocked the primary amino group of FB1, 
and prevented FB1-induced toxicity on cell tissue cultures 
on rats and swine (Fernandez-Surumay et al., 2005).  

 
 
Biological methods  
 
An alternative approach to remove the toxic and 
carcinogenic potential of mycotoxins was the biological 
detoxification,  intended  as   enzymatic   degradation   or  



 
 
 
 
modifying of toxins that led to less toxic products. Studies 
in this area were dramatically increased with the recent 
advances in molecular biology, genetic engineering and 
microbial genomics, coupled with the discovery of the 
catabolic capabilities of microbial populations. 
Detoxification of mycotoxins by microorganisms was 
reviewed extensively by Bata and La´sztity (1999) and 
Karlovsky (1999).  

Many species of bacteria were reported to degrade 
mycotoxins. Earlier work by Ciegler et al. (1966) identified 
Flavobacterium aurantiacum NRRL B-184, which could 
irreversibly remove AFB1 from a variety of food products 
including milk, oil, peanut butter, peanuts and maize 
without leaving toxic by-products. On the other hand, the 
bright orange pigmentation associated with F. 
aurantiacum restricted its use in food and feed 
fermentations (Line et al., 1994). Apart from F. 
aurantiacum, a variety of lactic acid bacteria originating 
from fermented products were reported to inhibit 
mutagenic activity of AFB1 (Park and Rhee, 2001). 
Earlier work demonstrated that more than 99% of patulin 
(50 mg/L) removed during alcoholic fermentation of apple 
juice, while only 10% decrease was observed in the 
control sample (Stinson et al., 1978). Later, three 
commercial cider strains of S. cerevisiae degraded 
patulin during active fermentative growth (Moss and 
Long, 2002).  

With respect to other mycotoxins, fermentation by S. 
cerevisiae of wort containing ZEA resulted in conversion 
of 69% of the toxin to b-zearalenol and 8.1% to a-
zearalenol (Scott et al., 1992). Similarly, cultures of 
Candida tropicalis, Torulaspora delbrucki, 
Zygosaccharomyces rouxii, and seven Saccharomyces 
strains were able to convert ZEA to a- and b-zearalenol 
(Boswald et al., 1995). In another study, OTA, FB1 and 
FB2 at the levels of 0.19, 0.95 and 0.95 mg/ ml 
respectively were degraded in the range of 87 to 91% by 
three strains of S. cerevisiae during fermentation of worth 
at 25°C for 8 days (Scott et al., 1995). Additionally, some 
losses (<40%) of OTA occurred during fermentation 
(Baxter et al. 2001), while alcoholic fermentation of malt 
by S. cerevisiae resulted in an average of 53% decrease 
in the initial contamination level of DON and T-2 toxin 
(Garda et al., 2005).  
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