
  	
Vol. 7(10), pp. 317-327, October 2015  
DOI: 10.5897/JVMAH2015.	0410 
Article Number: 815E7CC55224 
ISSN 2141-2529 
Copyright © 2015 
Author(s) retain the copyright of this article 
http://www.academicjournals.org/JVMAH 

                       Journal of Veterinary Medicine and  
                                                        Animal Health 

 
 
 
 

Full Length Research Paper 
 

Bayesian estimation to test accuracy for influenza A 
infection via respiratory clinical signs in the absence of 

a gold standard 
 

Nitipong Homwong1,2*, Douglas Marthaler1,3, Matteo Convertino4,6,7, Montserrat Torremorell1, 
Meggan E. Craft1,6, Benjamin Hause5 and John Deen1 

 
1Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota,  

Saint Paul, Minnesota, USA. 
2Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand. 

3Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA. 
4Division of Environmental Health Sciences and Public Health Informatics Program, School of Public Health,  

University of Minnesota, Minneapolis, Minnesota, USA. 
5Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA. 

6Institute on the Environment, University of Minnesota, Saint Paul, Minnesota, USA. 
7Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA. 

 
Received 22 July 2015; Accepted 31 August 2015 

 

Influenza A virus (IAV) infection in pigs is a concern to producers, veterinarians and the general public. 
This study presents models to estimate the sensitivities (Se) and specificities (Sp) of respiratory clinical 
signs (RCS), and real-time reverse transcription polymerase chain reaction (RRT-PCR) resulted from 
oral fluid (OF) and nasal swab (NS) samples in the absence of a gold standard. In addition, the models 
estimated an average prevalence of IAV infection in the Midwestern United States (US) growing pig 
populations. Bayesian model provided estimates under scenarios where IAV vaccination reduced only 
clinical manifestations, but not infection (basic model), or where vaccination reduced both. By the basic 
model, the Se and Sp of RCS from posterior distributions were 0.38 (95%Cridible interval (CrI): 0.28, 
0.48) and 0.66 (95%CrI: 0.61, 0.71). The Se and Sp of of RRT-PCR were 0.84 (95%CrI: 0.87, 0.90) and 0.93 
(95%CrI: 0.82, 0.97), and those of NS RRT-PCR were 0.79 (95%CrI: 0.71, 0.89) and 0.97 (95%CrI: 0.90, 
0.99) respectively. The true prevalence estimate of IAV infection in the Midwestern US growing pig 
populations was 0.24 (95%CrI: 0.16, 0.30). In the second scenario, the Se and Sp of RCS were reduced 
by vaccination whereas those of NS and OF-RRT-PCR were not reduced by vaccination. Depending on 
the prior knowledge of vaccination, the model (in the second scenario) estimated that vaccination 
reduced the true prevalence of IAV in growing pigs, and thereby this has broader implications for the 
control and perhaps eradication of IAV in growing pigs. 
 
Key words: Bayesian estimation, test accuracy, prevalence, influenza A virus, swine. 

 
 
INTRODUCTION 
 
Influenza A virus (IAV) is an enveloped-segmented, 
negative single-stranded RNA virus belonging to the 

family Orthomyxoviridae, including genera A, B, C, 
Togoviruses and Isavirus (Vincent et al.,  2008).  Most  of  
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the United States (US) swine population is endemically 
infected with Influenza A virus (Allerson et al., 2013a; 
Romagosa et al., 2011; Torremorell et al., 2012). IAV is 
considered one of the top three respiratory diseases in 
growing pigs and causes productivity losses in sows 
(Holtkamp et al., 2007). IAV infection while coinfected 
with other respiratory pathogens can aggravate the 
porcine respiratory disease complex (PRDC) (Deblanc et 
al., 2012; Fablet et al., 2012; Rose et al., 2013; Vincent et 
al., 2008). Clinical signs of infection with IAV are 
characterized by fever, sneezing, coughing, rhinorrhea 
and lethargy, and sometimes, conjunctivitis and 
oculonasal discharge (Reeth et al., 2012). The estimated 
cost of disease for IAV infection in market pigs ranges 
from $3.23 to 10.31/head (Donovan, 2008; Dykhuis et al., 
2012). 

Important control measures for IAV in pigs include 
surveillance, monitoring, prevalence estimation, and risk 
factor studies (Greiner and Gardner, 2000). The test 
accuracy (sensitivity, Se and specificity, Sp) is commonly 
determined through a comparison with a “gold standard,” 
which refers to a reference test with 100% Se and 100% 
Sp (Black and Craig, 2002) or with a reference test of 
known fixed values of Se and Sp under specified 
circumstances (Enøe et al., 2000).  

However, a gold standard test is not always applicable, 
nor does it exist for all tests. In addition, for a diagnostic 
test to be considered accurate under the gold standard, 
its Se and Sp, along with the expected prevalence values 
must be fixed, which may be incorrect when the state of 
disease is dynamic, which can result in potential biases in 
the reported estimates (Enøe et al., 2000). Furthermore, 
in field settings, there is also the issue of uncertainty 
attributed to differences between sampling strategies and 
tested populations (Greiner and Gardner, 2000), which 
do not account for sampling methodology (Joseph et al., 
1995), and the variability within and between herds 
(Davies, 2006; Enøe et al., 2000; Greiner and Gardner, 
2000). Changes in Se and Sp estimates, as a result, may 
occur and should be taken into account by researchers.  

Bayesian modeling, on the other hand, can fulfill such 
deficiencies by incorporating prior knowledge of test Se, 
Sp and unknown disease status (Enøe et al., 2000; 
Johnson et al., 2001). In addition, simultaneous posterior 
inferences about prevalence as well as Se and Sp of 
each diagnostic test are possible (Joseph et al., 1995). In 
the field of veterinary medicine, Bayesian modeling has 
been a popular method for estimating test accuracy for 
over fifteen years (Enøe et al., 2000; Paul et al., 2013; 
Praud et al., 2012; Toft et al., 2007). Test accuracy 
estimation is very important for the work of veterinarians 
and diagnosticians for surveilling and monitoring animal 
diseases. Currently, there is not a gold standard test  with  

 
 
 
 
100% Se and 100% Sp (perfect test) to compare for 
estimating the test accuracy of influenza A virus (IAV) via 
respiratory clinical signs (RCS), and nasal swabs (NS) 
and oral fluid (OF) RRT-PCRs in growing pigs. 

In a context where a gold standard or a reference test 
is absent, as deemed in this case, the study thus focus 
on using full Bayesian model as the main analytic tool to 
estimate parameters of Se, Sp and true prevalence. 
Therefore, the objectives of this study were: in scenario 
1: to estimate Se and Sp of RCS, and NS and OF RRT-
PCRs; to estimate the true prevalence using both RCS 
and NS, and in scenario 2: to understand how 
vaccination affects estimates of the test accuracy and 
true prevalence. 
 
 
MATERIALS AND METHODS 
 
Data sets 
 
This study utilized published data from two studies: a field study on 
active surveillance of swine influenza infection in growing pig 
populations in the Midwestern United States (US) (Corzo et al., 
2013) and an experimental challenge study of IAV in swine 
(Romagosa et al., 2012) (Table 1).  

In the first study, 16,170 nasal swabs were collected from 540 
groups (30 nasal swabs per group), and RCS was observed in 
whole groups of growing pigs from 32 farms between 2009 and 
2011 as part of an active Midwestern US surveillance program for 
IAV. A group was considered positive if at least one of the 30 nasal 
samples tested positive by RRT-PCR (Corzo et al., 2013a). RCS 
was observed for 3 min after pigs had been forced to stand up for at 
least a minute. If at least one pig in the group exhibited coughing, 
sneezing or nasal discharge, “presence” of respiratory clinical signs 
was documented. If no clinical signs were notable, “absent” was 
noted (Corzo et al., 2013; Rose et al., 2013; Vincent et al., 2008). In 
the second study, 105 pen-based samples of oral fluids were 
collected. A group was considered positive when at least one of the 
10 nasal samples tested positive (Romagosa et al., 2012). 

For the purpose of this study, from here onwards, the word “herd” 
is used to refer to any group of 3 to 30 week-old pigs housed in 
finishing farms located in the Midwestern US during the time of the 
study conducted, and any room of three week-old pigs housed in 
the research animal units at the University of Minnesota. Growing 
pigs in the same farm but from different visits were considered a 
distinctive “herd.” 
 
 
Bayesian model 
 
Prior information  
 
Beta probability densities were used as prior distributions for 
parameters: Se and Sp of RCS, Se and Sp of OF and NS RRT-
PCR and the prevalence and the probability of a swine herd being 
endemic for IAV. Such beta prior distributions can be accomplished 
using past data, if available; by examining published values from 
previous studies; by drawing from expert opinion; alternatively, by 
combining all of these options (Joseph et al., 1995; Suess et al., 
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Table 1. Diagnostic test results from a field setting (RCS versus NS RRT-PCR) with unknown prevalence and from an 
experimental study (OF versus NS RRT-PCR) with known prevalence. 
 

NS RRT-PCR 

Result 

Field setting unknown 
prevalence 

 
Experimental setting known 

prevalence 
 

RCS 
Total 

OF RRT-PCR 
Total 

Present Absent Positive Negative 

Positive 43 74 117 37 9 46 
Negative 144 279 423 0 59 59 
Total 187 353 540 37 68 105 

 
 
 
2002) All beta priors were assumed to be independent (Cowling et 
al., 1999). 
 
1. The prior Se and Sp of RCS have not been published. Hence, 
the study employed non-informative priors.  
2. The prior Se and Sp of OF RRT-PCR results were illustrated at a 
group-based level while the NS RRT-PCR results were 
demonstrated at an individual level and were elicited elsewhere 
(Goodell et al., 2013). 
3. The prevalence of IAV infection in the US swine herd was 29% 
with a standard deviation of 13% (Choi et al., 2002; Olsen et al., 
2000). 
4. The probability of endemic IAV in a swine herd was based on 
past history, and was considered endemic throughout the year, 
implying that at least one swine herd is infected with IAV each 
month (Olsen et al., 2000).  
 
All prior distributions were implemented in scenario 1 (the basic 
model). To understand the effects of vaccination on the test 
accuracy and the true prevalence, the second scenario was 
modeled, where vaccination protects against infection, and the 
prevalence was proportional to vaccine effectiveness. Vaccine 
effectiveness and the prevalence proportional to vaccine 
effectiveness were estimated using the experimental study data 
(Romagosa et al., 2012). Vaccine effectiveness was estimated by 
one minus the odds ratio (OR), where % Effectiveness = (1-
OR)x100 (Weinberg and Szilagyi, 2010). The OR was estimated 
using a binomial regression model. 

To convert the elicited prior values of Se and Sp (RCS, OR and 
NS RRT-PCR), and the prevalence to the prior Beta distributions, 
the Parameter Solver v3.01 was used by matching the closest fitting 
Beta probability distributions. Parameter Solver computed the Beta 
distribution parameters with 95% lower and upper percentiles of the 
distribution, and graphed the results of those Beta distributions 
(Table 2).  
 
 
Sensitivity analysis of the prior distribution 
 
Since the duration of infection affects the Se (Greiner and Gardner, 
2000), this study categorized the priors into three groups based 
upon this study initial assumptions: if samples were taken within 
one week of infection, if samples were taken within two weeks of 
infection and if samples were taken without any information on the 
course of infection. The prior distributions were that the prior Se OF 
and NS RRT-PCR were between 0.77 and 0.92, and between 0.75 
and 0.90, respectively. The prior Sp OF and NS RRT-PCR results 
were between 0.80 and 0.97, and between 0.80 and 0.99, 
respectively. The prior distribution were that the prior Se of OF and 
NS RRT-PCR results were between 0.08 and 1.00, and between 

                                                            
1 Available at http://biostatistics.mdanderson.org/SoftwareDownload/ 

0.00 and 1.00 (Goodell et al., 2013). The non-informative prior Beta 
Se of OF and NS RRT-PCR results were employed. Because of the 
lack of information regarding variability and point estimate of the 
test Sp of NS and OF RRT-PCR, non-informative priors were used 
instead. 
 
 
Assumptions 
 
Due to the absence of a gold standard, two populations were used 
to estimate test accuracies. In the first population, this study tested 
two approaches: RCS relying on visual observation of clinical 
outcomes, which is a subjective measure, while NS RRT-PCR and 
RNA-based technique is an objective measure. Given such 
conditions, the conditional independence assumption was used for 
this modeling. Alternatively, the conditional dependent assumption 
between RCS and NS RRT-PCR was modeled to compare the 
previous assumption. In the second population, the study compared 
the NS and OF RRT-PCR results, which are both a RNA-based 
technique and an objective measure. Conditional dependence 
assumption was used for modeling the second population 
(Branscum et al., 2005; Enøe et al., 2000; Gardner et al., 2000). 
Other two assumptions were included in order to jointly model 
accuracy of NS RRT-PCR between two populations (field versus 
experiment). First, the test accuracy of NS RRT-PCR was assumed 
to be equal and second, assumed to be unequal across field and 
experiment populations (Bouwknegt et al., 2008; Branscum et al., 
2005; Johnson et al., 2001). The 4 combined assumptions were 
made, and the models run to investigate a final model. The final 
model was selected using a deviance information criterion (DIC), 
which is described in the next section. 
 
 
Bayesian computation 
 
Bayesian Markov Chain Monte Carlo (MCMC) computation was 
performed using Gibbs sampler in JAGS 3.4.0 (Plummer, 2013) and 
constructed following previously described methods (Branscum et 
al., 2005; Geurden et al., 2008; Nérette et al., 2008; Toft et al., 
2005). The detailed model structure is included (Table 4, Appendix 
A) as well as a conceptual model with Directed acyclic graph 
(Figure 1). The JAGS model codes were written in R v3.2.0 (R Core 
Team, 2015) The “rjugs” and “R2 jags” packages were used as an 
add-on for calling JAGS from R to perform Gibbs sampling 
(Plummer, 2015; Su and Yajima, 2015). The analysis of MCMC 
chains and graphics was performed by using the “CODA," 
“ggmcmc” and “ggplots2”packages (Hadley, 2009; Marin, 2013; 
Plummer et al., 2006).  

In all analyses, 250,000 iterations with 3 chains of Gibbs 
samplers were run, where the first 5,000 iterations were discarded. 
Sampling thinning was applied by taking 5 samples from the 
posterior distribution of applicable parameters. The convergence of 
the   three   chains   was   assessed   by   visual   inspection    using  
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Table 2. Description of the prior distribution for Se and Sp of RCS, OF and NS RRT-PCR, and prevalence in field and experimental 
populations. 
  

Variable Parameters1 Median 95% CrI2 SD Distribution Reference 

RCS ηc 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
- θc 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
       
Time-of-sampling within 1 week of infection 
OF RRT-PCR ηo 0.83 0.75-0.99 0.03 Beta (77.85,15.75) Goodell et al.(2013) 
- ηo 0.95 0.80-0.97 0.03 Beta (39.97,4.34) Non-informative 
NS RRT-PCR ηn 0.88 0.77-0.92 0.03 Beta (71.23,12.28) Goodell et al. (2013) 
- θn 0.97 0.80-0.99 0.05 Beta (24.75,2.03) Goodell et al. (2013) 
       
Time-of-sampling within 2 weeks of infection 
OF RRT-PCR ηo 0.68 0.08-1.00 0.28 Beta (1.22,0.60) Goodell et al. (2013) 
- θo 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
NS RRT-PCR ηn 0.56 0.00-1.00 0.38 Beta (0.38,0.34) Goodell et al. (2013) 
- θn 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
       
Unknown course of infection 
OF RRT-PCR ηo 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
- θo 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
NS RRT-PCR ηn 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
- θn 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
       
Field 
prevalence 

πf 0.29 0.06-0.55 0.13 Beta (2.7,7.68) 
Choi et al. (2002) Olsen et 
al. (2000) 

Experimental 
prevalence 

πe 0.92 0.80-0.99 0.01 Beta (24.75,2.04) 
Romagosa et al. (2012) 

- - 0.17 0.14-0.12 0.01 Beta (100.9,496.4) 
 
1η denoted sensitivities of RCS c, of OF o and of NS n RRT-PCR, 1θ denoted specificities of RCS c, of OF o and of NS n RRT-PCR, 1π denoted the 
true prevalence of field setting, f and of experimental setting e, 2CrI denoted a credible interval. 
 
 
 
Traceplots, Gelman-Rubin R-hat (Potential Scale Reduction Factor) 
and diagnostic Geweke z-score plots (Gelman and Rubin, 1992; 
Geweke, 1991). The analysis was repeated, and the results were 
virtually identical, with relatively low Monte Carlo errors (<5%). In 
addition, autocorrelation monitoring was assessed by the draws of 
the corresponding Markov chains. MCMC sample median was 
presented as a point estimate while the 2.5 and 97.5 percentiles 
were presented as 95% credible intervals (CrI). 

Individual outliers and the reasonableness of the prior 
assumption were checked using Bayesian p-value (positive 
predictive check), which is the predictive probability of having an 
extreme value, and measure goodness of fit the model, which is 
close to 0.5 (0.06-0.94) as possible (Carlin and Louis, 2008; 
Geurden et al., 2008; Lunn et al., 2012). Model selection was based 
upon DIC, where the smaller DIC is preferred and a difference of 5 
is substantially better. A DIC difference exceeding 10 is considered 
to be an event more of a significant better fit (Carlin and Louis, 
2008; Spiegelhalter et al., 2002). 

Sensitivity analyses in the final model were investigated for the 
prior distributions introduced as a reflection of uncertainty about 
knowing time-of-sampling (Garthwaite et al., 2005), by changing the 
prior Beta distributions of time-of-sampling, within 1 or 2 weeks, or 
no information regarding the course of infection as mentioned in the 
previous session (Prior information) accompanied with scenario 1 
and 2 (Figure 2). In summary, after selecting the final model  (based 

on DIC), the models were run six times in total. 

 
 
RESULTS 
 
Diagnostic test results with two populations from the field 
setting (RCS versus NS RRT-PCR) with unknown 
prevalence, and from the experimental study (OF versus 
NS RRT-PCR) with known prevalence was shown as 2x2 
table. The vaccine effectiveness against infection was 
98.62% (95%CI: 92.96-99.73%), which was estimated 
from the experimental setting. NS RRT-PCR was tested 
in both populations and accuracy of that test assumed to 
be equal was held. The assumption of conditional 
independence between RCS and NS RRT-PCR was 
modeled. The final model was selected using DIC of 42.2 
(based on parsimony since it was the simplest model) 
(Table 3 and 4). Bayesian p-value of 0.88 for the final 
model supports the suitability of the assumptions.  

As a basic scenario model (scenario 1), posterior 
estimates were calculated (Table 5).  The  Se  and  Sp  of 
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Figure 1. A conceptual model representing scenarios of (a) a vaccination that prevents RCS (Basic scenario) or (b) a 
vaccination that prevents against infection. For each scenario, three priors were implemented with regard of prior 
information of time-of-sampling within 1 or 2 weeks, or no information concerning the course of infection. 

 
 
 

 
 
Figure 2. A probability distribution represents herd prevalence of IAV infection in the Midwestern US growing pig populations, the x-
axis representing herd-level prevalence. The probability distribution was generated from three MCMC chains with 250,000 with 
5000 discarded each chain. 
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Table 3. Deviance information criterions (DIC) for four assumptions. 
 

Assumptions 
DIC1 pD Deviance Conditional independent of RCS and 

NS RRT-PCR 
Accuracy of NS RRT-PCR was assumed to be equal 
across two populations 

Yes Yes 42.2 7.5 34.67 
No Yes 42.8 7.9 34.89 
Yes No 43.4 8.4 35.05 
No No 43.7 8.5 35.18 
 
1DIC= Deviance+ pD. 
 
 
 

Table 4. Final Bayesian model was selected by Deviance 
information criteria to estimate Se and Sp of RCS and OF as well as 
NS RRT-PCR and prevalence. The conditional independence 
assumption for accuracy of RCS and NS RRT-PCR was modeled 
and accuracy of RCS and NS RRT-PCR was assumed to be equal 
across two populations held. 
 
Population i Probability1 Structure of the model2

1 

Conditionally independent3 
p111 π1η1η2+(1-π1)(1-θ1)(1-θ2) 
p112 π1η1(1-η2)+(1-π1)(1-θ1)θ2 
p121 π1(1-η1)η2+(1-π1)θ1(1-θ2) 
p122 π1(1-η1)(1-η2)+(1-π1)θ1θ2 

   

2 

Conditionally dependent 
p211 π2[η1η3+γη]+(1-π1)[(1-θ1)(1-θ3)+γθ] 
p212 π2[η1(1-η3)-γη]+(1-π2)[(1-θ1)θ3-γθ] 
p221 π2[(1-η1)η3-γη]+(1-π2)[θ1(1-θ3)-γθ] 
p222 π2[(1-η1)(1-η3)+γη]+(1-π2)[θ1θ3+γθ] 

 
1pi11 is the probability of both tests 1and 2 positive in population I, 1pi12 is 
the probability of test 1 positive with test 2 negative in population I, 1pi21 
is the probability of test 1 negative with test 2 positive in population I, 
1pi22 is the probability of both test 1 and 2 negative in population I, 2π1 is 
the true prevalence of influenza infection in field setting (unknown), 2π2 

is the prevalence of influenza infection in experimental study (known), 
2η1 and θ1 represents the Se and Sp of NS RRT-PCR test, 2η2 and θ2 
represents the Se and Sp of RCS, 2η3 and θ3 represents the Se and Sp 
of OF RRT-PCR test, 2γη is the covariance (conditional covariance 
positive) between two sensitivity of the test (NS RRT-PCR versus OF 
RRT-PCR), 2γθ is the covariance (conditional covariance negative) 
between two specificity of the test (NS RRT-PCR versus OF RRT-
PCR),3Conditional covariance assumptions of the tests given the latent 
true disease status. 

 
 
 
RCS were 0.38 and 0.66. The Se and Sp of OF RRT-
PCR results were 0.84 and 0.93 while Se and Sp for the 
NS RRT-PCR results were 0.79 and 0.97. A posterior 
median estimate of the true IAV prevalence was 0.24 in 
the Midwest US growing pig populations (based on 
16,170 of NS RRT-PCR and 540 groups of RCS for the 
filed setting data) and the true prevalence estimate was 
not influenced by the prior information (Figure 2). The Se 
posterior correlation medians between OF and NS RRT-
PCR were 0.68, assuming conditional dependence. The 
Sp posterior correlation median between OF and NS 
RRT-PCT was 0.70, assuming conditional dependence. 
The posterior positive predictive kappa estimates of the 

OF and NS RRT-PCR tests were approximately 0.72, 
which indicated high agreement between the OF and NS 
RRT-PCR (Table 5).  

To estimate the effects of vaccination on the test 
accuracy and the true prevalence, scenario 2 was 
constructed assuming vaccination prevents IAV infection, 
and sequentially both prior prevalence and RCS 
characteristics would be reduced. Posterior estimates 
were computed, and the Se of RCS was 0.3 (Table 6). 
The Sp accuracy estimate was not improved among time-
of-sampling. The Se of NS RRT-PCR test was 
moderately decreased by time-of-sampling (0.97, 0.95, 
and 0.81). Similarly,  the  Sp  of  NS  RRT-PCR  test  was  
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Table 5. Description of the first sceincario3 of the posterior distributions for the test sensitivity, specificity, prevalence, correlation and 
kappa. 
  

Variable Parameters1 

Sensitivity analysis (Time-of-sampling) 

Within 1 week of infection  Within 2 week of infection  Unknown course of infection 

Median SD 95% CrI  Median SD 95% CrI  Median SD 95% CrI 

RCS ηc 0.38 0.05 0.28, 0.48  0.36 0.24 0.03, 0.93  0.36 0.24 0.04, 0.93 
- θc 0.66 0.03 0.61, 0.71  0.82 0.07 0.69, 0.97  0.82 0.07 0.70, 0.97 
             
OF RRT-PCR ηo 0.84 0.03 0.78, 0.90  0.37 0.05 0.27, 0.48  0.37 0.05 0.28, 0.47 
- θo 0.93 0.04 0.82, 0.97  0.81 0.22 0.16, 0.99  0.80 0.22 0.15, 0.99 
             
NS RRT-PCR ηn 0.79 0.04 0.71, 0.89  0.44 0.05 0.35, 0.58  0.44 0.05 0.35, 0.54 
- θn 0.97 0.03 0.90, 0.99  0.68 0.04 0.61, 0.78  0.68 0.04 0.62, 0.78 
             
Prevalence πf 0.24 0.04 0.16, 0.30  0.25 0.12 0.06, 0.54  0.23 0.13 0.57, 0.54 
Correlations2 ρη 0.68 0.15 0.34, 0.93  0.18 0.50 -0.73, 0.84  0.18 0.73 -0.75, 0.83 
- ρθ 0.70 0.15 0.33, 0.93  0.82 0.06 0.70, 0.93  0.82 0.06 0.70, 0.93 
             
Kappa2 κη 0.72 0.20 0.35, 0.92  0.81 0.07 0.67, 0.93  0.81 0.06 0.67, 0.93 
- κθ 0.41 0.23 -0.20, 0.83  0.13 0.33 -0.51, 0.83  0.13 0.33 -0.51, 0.83 

 
1η denoted sensitivities of RCS c, of OF o and of NS n RRT-PCR, 1θ denoted specificities of RCS c, of OF o and of NS n RRT-PCR,1πf denoted the 
true prevalence in a field setting, 1ρ denoted correlations of sensitivity η and specificity θ between OF and NS RRT-PCR tests, 1κ denoted kappa 
statistics for sensitivity η and specificity θ, 2Calculated from tests between OF and NS RRT-PCR tests in population 2 with conditionally dependent 
model, 3Model was run under the scenario that vaccination protects RCS but does not protect against infection, 3The prior prevalence distribution of 
the experimental study was followed πe~Beta(24.75, 2.04). 

 
 
 
Table 6. Description of the second sceincario3of the posterior distributions for the test sensitivity, specificity, prevalence, correlation and 
kappa. 
  

Variable Parameters1 

Sensitivity analysis (Time-of-sampling) 

Within 1 week of infection  Within 2 week of infection  Unknown course of infection 

Median SD 95% CrI  Median SD 95% CrI  Median SD 95% CrI 

RCS ηc 0.30 0.18 0.05, 0.80  0.30 0.19 0.05, 0.83  0.31 0.21 0.03, 0.88 
- θc 0.79 0.02 0.75, 0.83  0.79 0.02 0.75, 0.84  0.79 0.05 0.71, 0.91 
             
OF RRT-PCR ηo 0.95 0.09 0.65, 0.99  0.83 0.19 0.32, 0.99  0.57 0.27 0.05, 0.96 
- θo 0.79 0.05 0.70, 0.89  0.77 0.05 0.67, 0.87  0.67 0.06 0.61, 0.85 
             
NS RRT-PCR ηn 0.97 0.04 0.79, 0.99  0.95 0.12 0.60, 0.99  0.81 0.25 0.18, 0.99 
- θn 0.71 0.04 0.65, 0.80  0.70 0.04 0.64, 0.79  0.68 0.05 0.55, 0.77 
             
Prevalence π 0.09 0.05 0.02, 0.21  0.09 0.05 0.02, 0.22  0.11 0.11 0.02, 0.44 
Correlations2 ρη 0.74 0.10 0.53, 0.91  0.79 0.10 0.57, 0.97  0.83 0.09 0.63, 0.97 
- ρθ 0.20 0.24 -0.02, 0.82  0.18 0.26 -0.11, 0.82  0.31 0.61 -0.40, 0.89 
             
Kappa2 κη 0.14 0.24 -0.02, 0.82  0.12 0.25 -0.06, 0.82  0.25 0.37 -0.25, 0.89 
- κθ 0.73 0.11 0.48, 0.91  0.78 0.12 0.52, 0.96  0.83 0.10 0.60, 0.98 

 
1η denoted Se of RCS c, of OF o and of NS n RRT-PCR, 1θ denoted specificities of RCS c, of OF o and of NS n RRT-PCR,1πf denoted the true 
prevalence in a field setting, 1ρ denoted correlations of sensitivity η and specificity θ between OF and NS RRT-PCR tests, 1κ denoted kappa 
statistics for sensitivity η and specificity θ, 2Calculated from tests between OF and NS RRT-PCR tests in population 2 with conditionally dependent 
model, 3Model was run under the scenario that vaccination protects against an infection for IAV, 3The prior prevalence distribution of the 
experimental study was followed πe~Beta (100.9, 496.4). 

 
 
 
delicately decreased (0.71, 0.70, and 0.68). Posterior 
median estimates of the true prevalence were 

approximately at 0.10 and strongly influenced by the level 
of   infection   changed   by    vaccination.  The   posterior  



324          J. Vet. Med. Anim. Health 
 
 
 
correlation of the test Se of OF and NS RRT-PCR was 
0.80. The posterior correlation of the test Sp of OF and 
NS RRT-PCR was 0.20. The posterior predictive kappa 
estimates between the OF and NS RRT-PCR tests were 
incongruous (0.14, 0.12 and 0.25). The posterior 
predictive kappa estimates were substantial (0.73, 0.78) 
and uncovered a high level of agreement (0.83), which 
indicated high agreement between the OF and NS-RRT-
PCR (Table 6). 

With sensitivity analysis, the priors of the test accuracy 
(varied by time-of-sampling) were reviewed from Goodell 
et al. (2013), and used for non-informative priors. The 
accuracy of RCS and the prevalence, correlation, and 
kappa, were not changed by time-of-sampling 
assumption. The accuracy of OF and NS-RRT-PCR was 
slightly reduced from one week to two weeks, but two 
weeks was similar to no information. Thus, any 
imprecision arising in the prior distributions associated 
with fitting parametric distribution was not a major 
concern. 
 
 
DISCUSSION 
 
IAV infection in pigs is a major concern to producers, 
veterinarian and general public. Especially, IAV infection 
by other pathogens in growing pigs plays a crucial role in 
the porcine respiratory complex. Having accurate, rapid, 
easy, and practical on-farm tests is necessary for 
epidemiological and monitoring purposes. To the best of 
this study knowledge, this is the first report that estimates 
the Se and Sp of RCS associated with IAV infection in 
growing pigs using Bayesian model. The current Se and 
Sp estimates of RCS were 0.38 (95% CrI: 0.28, 0.48) and 
0.66 (95% CrI: 0.61, 0.71), indicating RCS is not a 
reliable test for detecting IAV infections.  

These results are consistent with a previous study by 
Allerson et al. (2013b), which found that influenza virus 
can be detected in pigs without having RCS. In this case, 
RCS creates false-negative results (Se=0.38). The 
absence of RCS at the individual level cannot rule out 
IAV infection. However, at the population level, Se may 
be improved, but may still provide false-negative results. 
In addition, infection with other non-influenza respiratory 
pathogens could generate false-positive RCS results 
(Sp=0.66). Being a subjective observation, the accuracy 
of RCS may differ between observers, but this could be 
minimized by training (Baadsgaard and Jørgensen, 
2003). 

Times of IAV infection and sampling are major factors 
affecting the test accuracy. To assess such accuracy, the 
sensitivity analysis of the prior distributions was 
conducted to investigate deviations of the test accuracy. 
This reflects the assumptions of time-of-sampling 
affecting the test accuracy but not in other estimates such 
as the prevalence, correlation, and kappa. For example, 
the Se  of  OF  RRT-PCR  test  largely  decreased  (0.84, 

 
 
 
 
0.37 and 0.37) while the Sp was slightly lower (0.93, 0.81 
and 0.80). This finding indicates that the Se decreased 
dramatically, while the Sp decreased slightly in relation to 
time-of-samples (within 1 and 2 weeks of infection, and 
unknown course of infection, respectively). The 
determination of appropriate sampling time (providing the 
highest accuracy) may be difficult in practice. Regardless 
of test limitations, sampling at several sites during the 
same period of time should be performed to increase Se. 
As sampling variability may occur, different sampling 
methods may affect the test accuracy and the prevalence 
estimate.  

Therefore, the IAV prevalence estimates may be 
inconsistent during a period of sampling. Likewise, with a 
method of sampling, Allerson et al. (2013a) indicated that 
the prevalence estimated by targeted sampling of pigs 
displaying RCS may be slightly overestimated compared 
to simple random sampling (Allerson et al., 2013b). One 
benefit of targeted sampling includes being able to 
conduct a herd diagnosis with fewer samples, making it a 
more cost-effective way to improve Se without 
decreasing the Sp (Christensen and Gardner, 2000). 

In veterinary medicine, the conditionally dependent 
model should be considered first when modeling, and 
failing to allow models to be conditionally dependent will 
introduce bias in the estimate should be considered first 
when conducting analysis (Gardner et al., 2000; Toft et 
al., 2005). Based on those researches, the study four 
model assumptions were followed. For example, the 
conditional independence and dependence between RCS 
and NS RRT-PCR were modeled. The test accuracy of 
NS RRT-PCR was assumed to be equal across two 
populations (field and experiment settings). By using a 
DIC selection criterion, the study modeled the two tests 
as conditionally independent (RCS versus NS RRT-PCR) 
and conditionally dependent (OF versus NS RRT-PCR). 
The models allow correlations between OF and NS RRT-
PCR tests to be positive or negative. In addition, the test 
accuracy of NS RRT-PCR was equal across field and 
experiment settings.  

The current Se and Sp estimates of NS RRT-PCR were 
0.79 (95%CrI: 0.71, 0.89) and 0.97 (95%CrI: 0.90, 0.99), 
respectively within the first week of infection. However, 
after one week of infection, the accuracy of NS RRT-PCR 
dropped to 0.44, which is quite low. This result could 
have happened because of a reduction in transmission of 
nose-to-nose contact after one week of infection. Even 
though IAV virus can be found in nasal secretion of 
positive pigs (Corzo et al., 2013b), a previous report 
showed that pigs can shed virus thought nasal secretion 
for 5 to 7 days (Mohan et al., 1981),  which can be 
resulted in reducing the accuracy of NS RRT-PCR. The 
Se and Sp estimates of NS RRT-PCR may be lower than 
expected because the estimates obtained from 
experimental studies may overestimate the particular test 
performance compared with the field setting (Davies, 
2006).  



 
 
 
 

On the other hand, the test accuracy obtained from a 
field setting may underestimate the test performance 
since some of the variables cannot be controlled. For 
instance, viral titers in samples can affect the estimates 
differently. The test accuracy should not be extrapolated 
only from the experimental setting and then applied in the 
field settings. Since both experimental and field setting 
data was used, the study current estimates were 
strengthened, which result in more accurate estimates. 

In the field setting, the status of IAV infection in 
Midwestern US growing pig populations was unknown. 
The true prevalence of IAV infection was estimated at 
0.24 (95%CrI: 0.16, 0.30) using Bayesian model, which 
incorporated prior knowledge regarding the prevalence of 
IAV infection (Choi et al., 2002; Olsen et al., 2000; Poljak 
et al., 2008).This estimate was consistent regardless of 
sampling time and consistent with previous research, 
which reported that the sero-prevalence of IAV in HI test 
was 0.22 (Choi et al., 2002). This study contained a large 
sample size, consisting of 111,418 samples submitted to 
the University of Minnesota Veterinary Diagnostic 
Laboratory.  

However, the study prevalence estimate was based on 
16,170 of NS-RRT-PCR and 540 groups of RCS. In 
Canada, the IAV prevalence was reported as 0.47 in 
finishing pigs in the province of Ontario (Poljak et al., 
2008). A similar study conducted in the same province 
reported that in 2004 the prevalence for H1N1 and H3N2 
was 0.13 and 0.27 respectively. The following year, the 
prevalence for H1N1 increased to 0.15. The increase for 
H3N2, on the other hand, was more dramatic since the 
estimate was 0.26 (Poljak et al., 2008). The prevalence of 
IAV infection in the Midwestern US growing pig 
populations seems to be similar to findings from Choi and 
colleagues’ study in 2002 and ours in 2011, where a year 
of samples was taken. 

Based upon this study estimates, the study speculate 
that inspection of RCS would have lower utility compared 
to pen-based oral fluid testing within first week of 
infection. However, in the second week of infection, the 
Se of OF RRT-PCR decreased to 0.37 while the Sp of 
RCS increased to 0.82 (Table 5), which seems 
comparable to weeks 2 and 3. A similar characteristic 
was also found in scenario 2 (Table 6). If RCS is used for 
monitoring IAV infection in swine herds, it will create 
more false-negative results in an endemic herd. As et al. 
(2013) reported, positive growing pigs may not exhibit 
RCS (Allerson et al., 2013b). To implement RCS as a 
monitoring system in a swine herd, more studies are 
needed to evaluate the frequency of this observation, 
including a minimum number of pigs observed, and the 
economic costs associated with testing to justify having 
RCS observations and to obtain the precise and 
improved estimates of Se and Sp. The advantages of 
RCS as a monitoring system, along with other diagnostic 
tests for a group-based population, are low-cost and can 
be easily used on a farm.  

However, RCS    may   be   less   accurate   in  vaccinated 
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herds as sick pigs might endure illness, leading to 
“hidden” respiratory subclinical signs. In the cases of an 
acute infection, a change in the behavior because of 
fever or lethargy can reduce their likelihood to exhibit 
RCS and may increase Se. Such behavior needs to be 
further investigated to improve the precise estimate. 
 
 
Conclusion 
 
Bayesian model was employed to estimate the Se and 
Sp of IAV infection using RCS and NS and OF RRT-PCR 
applied to the Midwestern US growing pig populations. 
Observation of RCS is easy, affordable and safer for 
personnel as compared with the collection of NS and OF. 
However, the accuracy of RCS in the first week was 
lower than OF and NS RRT-PCR, but in the second 
week, the accuracy of RCS increased and was 
comparable to OR and NS RRT-PCR.  RCS may 
potentially be used as measurement to estimate true 
prevalence of IAV infection (given its imperfect accuracy 
test) but may not be sufficient to be used as a diagnostic 
tool. The accuracy of RCS was reduced by vaccination 
but the accuracy of NS and OF-RRT-PCR was 
insignificantly reduced by vaccination. 
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Appendix A 
 
Bayesian model, namely yijk~ multinomial(ni, (pi11, pi12, pi21, pi22)), was constructed to estimate Se and Sp of RCS, NS 
and OF RRT-PCR tests with a sample size of ni in population i for i=1, 2. The conditional independent model was 
constructed for RCS versus NS RRT-PCR tests. The NS versus OF RRT-PCR tests comparison was modeled as 
conditionally dependent. With the conditionally dependent model, the conditional covariance between the two (NS 
versus OF RRT-PCR tests) test Se, γη, and Sp, γθ, were modeled as descripted elsewhere (Dendukuri and Joseph, 
2001). The corresponding correlations, ρη, ρθ, were calculated. The unobserved stochastic nodes are referred to as the 
parameters of the model. Furthermore, we modeled the kappa statistic by using equations from elsewhere which are 

represented by:  ,  (Gardner et al., 2000), where ,  , were 

predictors for infected and non-infected populations respectively. 
 
 
Appendix B 
 
A conceptual model with directed acyclic graph (Figure 1) represents Bayesian model. The model estimates Se (eta) 
and Sp (theta) of RCS, NS and OF RRT-PCR tests. Ellipses are stochastic nodes. Grey and white nodes are observed 
variables and model parameters respectively. Rectangles are constant process of the experimental design. Dark and 
light arrows present deterministic and stochastic dependencies, respectively. There were 2 populations (i=1, 2) that are 
the populations in the field study and in the experimental study. The Y[i,j,k] are realizations of observed positive/negative 
counts in population i for test 1(j=1:positive, 2:negative) and test 2 (k=1:positive, 2:negative). p[i,j,k] represents the 
probability of a test positive/negative in population i where p[i,1,1] is the probability of both tests 1 and 2 positive. p[i,1,2] 
is the probability of test 1 positive with test 2 negative. p[i,2,1] is the probability of test 1 negative with test 2 positive. 
p[i,2,2] is the probability of both test 1 and 2 negative in population i. The pi[1] is the prior prevalence of infection in the 
field study population. The pi[2] is the prior prevalence of infection in the experimental study population. The eta[] and 
theta[] are Se and Sp. The gamma[eta] is the correlation between Se of NS versus OF RRT-PCR tests and 
gamma[theta] and the correlation between Sp of NS versus OF RRT-PCR tests. The kappa[eta] is the kappa statistic 
between Se of NS versus OF RRT-PCR tests and kappa[theta] is the kappa statistic between Sp of NS versus OF RRT-
PCR tests. Psi (ψ) is the probability of influenza A being endemic (Figure 1).  
 
 
Appendix C 
 
With conditional dependent assumption, Se of the OF and NS RRT-PCR are conditionally dependent with γη (conditional 
covariance positive) and Sp of those are conditionally dependent with γθ (conditional covariance negative). In the Table 
4, γη and γθ must be range between zero and one since it is elements of the probability. It can be expressed as: 
 
max[-(1- η1)(1- η3), - η1η3] ≤ γη ≤ min [η1(1- η3), η1(1- η3)] and, max[-(1- θ1)(1- θ3), - θ1θ3] ≤ γθ ≤ min [θ1(1- θ3), θ1(1- θ3)]. 
 
Where η1 and θ1 represents the Se and Sp of NS RRT-PCR test and η3 and θ3 represents the Se and Sp of OF RRT-
PCR test. 
 
 


