Full Length Research Paper
ABSTRACT
Bovine tuberculosis (bTB) is a disease of cattle that presents risk to public health, causing severe economic losses to the livestock industry and difficulty in eradication because of its complex epidemiology. The aim of this study was to identify relationships between Mycobacterium bovis strains from cattle in the State of Jalisco, and those of other States of México. Molecular fingerprints of 337 M. bovis isolates from Jalisco, and 1152 from other States of México were included in the study. Isolates were obtained from tubercles between 1997 and 2015. Evolutionary relationship was determined throughout spoligoforest (www.emi.unsw.edu.au/spoltools/). From 337 isolates from Jalisco, 59 spoligotypes were obtained, ten of them included 48% of all isolates in the state. Five spoligotypes were common to beef and dairy cattle. The molecular analysis showed eight clusters in a philogenetic three: one with three subclusters of nine isolates each, all from dairy cattle; four with two isolates, including dairy and beef cattle. All spoligotypes from Jalisco have been reported in other states, four of the most frequent ones: SB0673, SB0971, SB0669 and SB0140, were the same as in other states. The most frequent spoligotypes of M. bovis found in Jalisco were also the most frequent ones in other parts of Mexico. However, there is no evidence to conclude that Jalisco is the source of infection to other states since no information on movement and destination of cattle could be documented.
Key words: Tuberculosis, Mycobacterium bovis, spoligotyping, cattle, Jalisco, molecular epidemiology.
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
CONCLUSION
CONFLICT OF INTERESTS
ACKNOWLEDGEMENTS
REFERENCES
Acosta-Salinas R, Estrada-Chávez C, Milián-Suazo F (2009). Tipificación de cepas de Mycobacterium bovis. Revista Técnica Pecuaria en México 47(4):389-412. |
|
Barandiaran S, Vivot MM, Moras EV, Meike V, Cataldi A, Zumárraga MJ (2011). Mycobacterium bovis in swine: Spoligotyping of isolates from Argentina. Vet. Med. Int. 2011:979647. |
|
Bawinek F, Taylor NM (2014). Assessment of bovine tuberculosis and its risk factors in cattle and humans, at and around Dilla Town, Southern Ethiopia. Anim. Vet. Sci. 2(4):94-100. |
|
Blischak JD, Tailleux L, Mitrano A, Barreiro LB, Gilad Y (2015). Mycobacterial infection induces a specific human innate immune response. Sci. Rep. 5:16882. |
|
Bobadilla-del Valle M, Torres-González P, Cervera-Hernández ME, Martínez-Gamboa A, Crabtree-Ramírez B, Chávez-Mazari B (2015). Trends of Mycobacterium bovis isolation and first-line anti-tuberculosis drug susceptibility profile: A fifteen-year laboratory-based surveillance. PLOS Neglected Trop. Dis. 9(9):e0004124. |
|
Boddinghaus B, Rogall T, Flohr T, Blocker H, Bottger EC (1990). Detection and identification of Mycobacteria by amplification of rRNA. J. Clin. Microbiol. 28(8):1751-1759. |
|
Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper s, van Soolingen D, Cole ST (2002). A new evolutionary scenario for Mycobacterium tuberculosis complex. Proceedings of the National Academy of Sciences of the United States of America 99(6):3684-3689. |
|
Cobos-Marín L, Montes-Vargas J, Zumárraga M, Cataldi A, Romano MI, Estrada-García I, Gonzalez-Merchand JA (2005). Spoligotype analysis of Mycobacterium bovis isolates from Northern Mexico. Can. J. Microbiol. 51(11):996-1000. |
|
de Almeida IN, Da Silva-Carvalho W, Rossetti ML, Costa ER, de Miranda SS (2013). Evaluation of six different DNA extraction methods for detection of Mycobacterium tuberculosis by means of PCR-IS6116: Preliminary Study BMC Research Notes 6:561. |
|
de la Rua-Domenech R, Goodchild AT, Vordermeier M, Hewinson RG, Christiansen KH, Clifton-Hadley RS (2006). Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin test, c-interferon assay and other ancillary diagnosis techniques. Res. Vet. Sci. J. Sci. 81(2):190-210. |
|
Duarte EL, Domingos M, Amado A, Cunha MV, Botello A (2010). MIRU-VNTR typing discrimination value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by Spoligotyping. Vet. Microbiol. J. 143(2-3):299-306. |
|
El-Sayed A, El-Shannat S, Kamel M, Casta-eda-Vázquez MA, Casta-eda-Vázquez H (2016). Molecular epidemiology of Mycobacterium bovis in humans and cattle. Zoonoses Public Health 63:251-264. |
|
Gibson AL, Hewinson G, Goodchild T, Watt B, Story A, Inwald J (2004). Molecular epidemiology of disease due to Mycobacterium bovis in humans in the United Kingdom. J. Clin. Microbiol. 42(1):431-4. |
|
Gutiérrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V (2005). Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathogens 1(1):0055-0061. |
|
Jagielski T, van Ingen J, Rastogi N, Dziadek J, Mazur PK, Bielecki J (2014). Current methods in the molecular typing of Mycobacterium tuberculosis and other Mycobacteria. BioMed. Res. Int. 2014: 645802. |
|
Kamerbeek J, Shouls L, Kolk A, van Agterveld M, van Soolingen D, Kujiper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35(4):907-914. |
|
Kim N, Jang y, Kyoung Kim J, Ryoo S, Hee Kwon K, Kim M, Seok Kang S, Seop H, Soo Lee H, Lim Y, Kim J (2017). Molecular and genomic features of Mycobacterium bovis strain 1595 isolated from Korean cattle. J. Vet. Sci. 18(S1):333-341. |
|
Luciani F, Francis AR, Tanaka MM (2008). Interpreting genotype cluster sizes of Mycobacterium tuberculosis isolates typed with IS6110 and Spoligotyping. Infect. Genet. Evol. 8(2):182-190. |
|
Maslow JN, Mullingan ME (1993). Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin. Infect. Dis. 17(2):153-164. |
|
McLernon J, Costello E, Flyn O, Madigan G, Ryan F (2010). An evaluation of MIRU-VNTR analysis and spoligotyping for genotyping of Mycobacterium bovis isolates and a comparison with RFLP typing. J. Clin. Microbiol. 48:4551-4545. |
|
Milián-Suazo F, García-Casanova L, Robbe-Austerman S, Canto-Alarcón GJ, Bárcenas-Reyes I, Stuber T, Rodríguez-Hernández E, Flores-Villalva S (2016). Molecular relationship between strains of Mycobacterium bovis from Mexico and those from countries with free trade of cattle with Mexico. PloS one 11(5):e0155207. |
|
Müller B, Dürr S, Alonso S, Hattendorf J, Laisse CJ, Parsons SD (2013). Zoonotic Mycobacterium bovis –induces tuberculosis in humans. Emerg. Infect. Dis. 19(6):899-908. |
|
Mwakapuja RS, Makondo ZE, Malakalinga J, Moser I, Kazwala RR, Tanner M (2013). Molecular characterization of Mycobacterium bovis isolates from pastoral livestock at Mikumi-Selous ecosystem in the eastern Tanzania. Tuberculosis 93(6):668-674. |
|
Norma Oficial Mexicana (NOM-031-ZOO-1995) Campa-a Nacional contra la Tuberculosis Bovina (Mycobacterium bovis) bovis). |
|
O'Reilly LM, Daborn CJ (1995). The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuberc. Lung Dis. J. 76(1):1-46. |
|
Olea-Popelka F, Muwonge A, Perera A, Dean AS, Mumford E, Erlacher-Vindel E (2017). Zoonotic tuberculosis in human beings caused by Mycobacterium bovis – a call for action. Lancet Infect. Dis. 17:e21-e25. |
|
Parra A, Larrasa J, García A, Alonso JM, de Mendoza JH (2005). Molecular epidemiology of bovine tuberculosis in wild animals in Spain: a first approach to risk factor analysis. Vet. Microbiol. J. 110(3-4):293-300. |
|
Perea-Razo CA, Milián-Suazo F, Bárcenas-Reyes I, Sosa-Gallegos S, Rodríguez-Hernández E, Flores-Villalba S, Canto-Alarcón GJ (2017). Whole genome sequencing for detection of zoonotic tuberculosis in Querétaro, Mexico. J. Infect. Dis. Prev. Med. 5:158. |
|
Pérez-Guerrero L, Milián-Suazo F, Arriaga-Díaz C, Romero-Torres C, Escartín-Chávez M (2008). Epidemiología molecular de las tuberculosis bovina y humana en una zona endémica de Querétaro, México. Salud Pública de México 50(4):286-291. |
|
Plan Estratégico de la Campa-a Nacional de la Tuberculosis Bovina en México, 2008-2012. Dirección general de Salud Animal. Campa-a Nacional Contra la Tuberculosis Bovina. Available at: http://www.senasica.gob.mx/?id=801. |
|
Reyes JF, Francis AR, Tanaka MM (2008). Models of deletion for visualizing bacterial variation: an application to tuberculosis spoligotypes. BMC Bioinformatics 9(1):496. |
|
Rodríguez S, Romero B, Bezos J, de Juan L, Álvarez J, Castellanos E, Moya N, Lozano F, González S (2010). High spoligotype diversity within a Mycobacterium bovis population: clues to understanding the demography of the pathogen in Europe. Vet. Microbiol. J. 141(1-2):89-95. |
|
Rodríguez-Campos S, Aranaz A, de Juan L, Sáez-Llorente JL, Romero B, Bezos J, Jiménez A, Mateos A, Domínguez L (2011). Limitations of Spoligotyping and variable-number tandem-repeat typing for molecular tracing of Mycobacterium bovis in high diversity setting. J. Clin. Microbiol. 49(9):3361-3364. |
|
Rodwell TC, Moore M, Moser KS, Brodine SK, Strathdee SA (2008).Tuberculosis from Mycobacterium bovis in binational communities, United States. Emerg. Infect. Dis. J. 14(6):909-916. |
|
Ruettger A, Nieter j, Skrypnyk A, Engelmann I, Ziegler A, moser I, Monecke S, Ehricht R, Sachse K (2012). Rapid spoligoryping of Mycobacterium tuberculosis complex bacteria by use of a microarray system with automatic data processing and Assignment. J. Clin. Microbiol. 50(7):2492-2495. |
|
Sandoval-Azuara S, Mu-iz-Salazar R, Perea-Jacobo R, Robbe-Austerman S, Perera-Ortiz A, López-Valencia G, Bravo DM, Sánchez-Flores A (2017). Whole genome sequencing of Mycobacterium bovis to obtain molecular fingerprints in human and cattle isolates from Baja California, Mexico. Int. J. Infect. Dis. 63(2017):48-56. |
|
Santillán-Flores MA, Flores J, Arriaga-Díaz C, Romero-Torres C, Suarez-Guemez F, Espitia C (2006). Polymorphism in the PE domain of PE/PE_PGRS sequences in clinical isolates of Mycobacterium bovis in Mexico. Vet. Microbiol. 115(4):364-369. |
|
Skuce RA, Mallon TR, McCormick CM, McBride SH, Clarke G, Thompson A (2010). Mycobacterium bovis genotypes in Northern Ireland: herd-level surveillance (2003-2008). Vet. Rec. 1(1):112-112. |
|
Smith NH, Dale J, Inwald J, Palmer S, Gordon SV, Hewinson RG, Smith JM (2003). The population structure of Mycobacterium bovis in Great Britain: clonal expansion. Proceed. Natl. Acad. Sci. 100(25):15271-15275. |
|
Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG (2006). Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat. Rev. Microbiol. 4(9):670-681. |
|
Sreevatsan S, Pan X, Stockbauer KE, Connel ND, Kreiswirth BN, Whittman TS, Musser JM (1997). Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proceed. Natl. Acad. Sci. 94:9869-9874. |
|
Supply P, Warren RM, Banuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C (2006). Linkage disequilibrium between minisatelite loci support clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol. Microbiol. 47(2):529-538. |
|
Tanaka MM, Francis AR (2005). Methods for quantifying and visualizing outbreaks of tuberculosis using genotypic information. Infect. Genet. Evol. 5:35-43. |
|
Zhou A, Nawaz M, Xue X, Karakousis PC, Yao Y, Xu j (2011). Molecular genotyping of Mycobacterium tuberculosis in Xi’an, china, using MIRU-VNTR typing. Int. J. Tuberc. Lung Dis. 15(4):517-22. |
|
Zumárraga MJ, Vivot MM, Marticorena D, Bernardelli A, Fasán R, Lachini R, Cataldi AA (2009). Mycobacterium bovis in Argentina: isolates from cats typified by spoligotyping. Revista Argentina de Microbiología 41(4):215-217. |
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0