Journal of
Yeast and Fungal Research

  • Abbreviation: J. Yeast Fungal Res.
  • Language: English
  • ISSN: 2141-2413
  • DOI: 10.5897/JYFR
  • Start Year: 2010
  • Published Articles: 131

Full Length Research Paper

Diversity of cellulase- and xylanase-producing filamentous fungi from termite mounds

Angela Sibanda
  • Angela Sibanda
  • Department of Applied Biology and Biochemistry, Faculty of Applied Sciences, National University of Science and Technology, Post Office Box AC939, Ascot, Bulawayo, Zimbabwe.
  • Google Scholar
Oziniel Ruzvidzo
  • Oziniel Ruzvidzo
  • Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
  • Google Scholar
Ignatious Ncube
  • Ignatious Ncube
  • Department of Biochemistry, Microbiology and Biotechnology, School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa.
  • Google Scholar
Thembekile Ncube
  • Thembekile Ncube
  • Department of Applied Biology and Biochemistry, Faculty of Applied Sciences, National University of Science and Technology, Post Office Box AC939, Ascot, Bulawayo, Zimbabwe.
  • Google Scholar


  •  Received: 16 May 2019
  •  Accepted: 12 June 2019
  •  Published: 31 July 2019

Abstract

Cellulases and xylanases are enzymes of industrial significance, particularly in the pulp, paper, textile, and animal feed industries. Moreover, their utilization in the food industry, among them, bakery, brewery, winery and fruit and vegetable juice production, cannot be underestimated. One of the potential sources of enzymes is the filamentous fungi, and hence bio-prospecting of this specific group of microorganisms with the highest levels of cellulase and xylanase secretions is being continuously undertaken. The specific aim of this study was to isolate and characterize cellulase- and xylanase-producing filamentous fungi from termite mounds. Termite mounds have long been established as very good sources of filamentous fungi with the ability to secrete high levels of lignocellulolytic enzymes, and hence an ideal target for the bio-prospecting of cellulases and xylanases. In this study, various groups of filamentous fungi were isolated through enrichment and repeated sub-culturing. This was followed by screening using the Congo red plate-based assay. Cellulase and xylanase activities during the solid-state fermentation of wheat bran were detected and analyzed through spectrophotometry via the 3,5-dinitrosalicylic acid detection system for reducing sugars. The obtained fungal isolates were then finally characterized through zymography, reaction kinetics and morphological studies. Overall, a total of eight different groups of fungi, capable of decomposing cellulose and hemicellulose, were isolated, and their tentative identities established as Fusarium, Didymostible, Penicillium, Phytophthora, Oedocephalum, Aspergillus, Monosporascus and Acremonium. Taken together, findings of this study conceivably showed that termite mounds are a good source of filamentous fungi that in turn are also a good source of cellulases and xylanases that arguably, can be recommended for use in industrial and commercial settings.

 

Key words: Filamentous fungi, lignocellulosic substrates, lignocellulolytic enzymes, cellulases, xylanases, termite mounds, termite nests, fungal combs.