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In this paper, an efficient modification of homotopy perturbation method, namely optimal homotopy 
perturbation method, is introduced for solving linear and nonlinear partial differential equations with 
large solution domain based on a new homotopy perturbation method and Padé approximation method. 
We compare the performance of the method with those of new homotopy perturbation and optimal 
variational iteration methods via three partial differential equations with large solution domain. 
Numerical results explicitly reveal that the suggested technique is highly capable to control the 
convergence region of approximate solution. 
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INTRODUCTION 
 
Approximate analytical schemes as the variational 
iteration method (VIM) (He, 1999) and homotopy 
perturbation method (HPM) (He, 1999) have been very 
widely used to solve partial differential equations (PDEs) 
for many applications in science and engineering 
(Abbasbandy, 2007; Biazar et al., 2007; Dehghan and 
Shakeri, 2008; Ganji, 2006, 2007; Jafari1 et al., 2011; 
Mohyud-Din and Noor, 2009; Mohyud-Din et al., 2009; 
Mohyud-Din, 2010, 2011; Hosseini et al., 2011; Hosseini 
et al., 2010; Yildirim, 2009; Abassy et al., 2007; 
Aminkhah and Biazar, 2010; He, 2004, 2005, 2006;  He 
and Wu, 2007; Biazar and Eslami, 2011; He, 2006; 
Abdou and Soliman, 2005; Rashidi et al., 2011; 
Shahmohamadi and Rashidi, 2010; Rashidi et al., 2011). 
There are also many modifications of these introduced 
techniques, among which Aminkhah and Biazar’s 
modification of HPM (a new homotopy perturbation 
method NHPM) (Aminkhah and Biazar, 2010) is much 
more attractive, where the homotopy perturbation method 
is coupled with the auxiliary parameters, and only one 
iteration leads to ideal results and (Hosseini et  al.,  2011)  
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modification of VIM (optimal variational iteration method 
(OVIM) has also been caught much attention, where an 
auxiliary constant was introduced to adjust the control the 
convergence region of approximate solution.  

In this paper, Aminkhah and Biazar’s modification of 
HPM (Aminkhah and Biazar, 2010) is further extended, 
and a convenient way is suggested how to obtain suitable 
approximate solution in large solution domain. This 
method is called optimal homotopy perturbation method 
(OHPM) which is capable very effective in solving PDEs 
with large solution domain. Three examples are given to 
elucidate the performance of this method. Comparison 
with the results obtained by the NHPM (Aminkhah and 
Biazar, 2010) and OVIM (Hosseini et al., 2010) shows 
that the OHPM have remarkable accuracy. It is to be 
highlighted that Rashidi et al. (Rashidi et al., 2011; 
Shahmohamadi and Rashidi, 2010; Rashidi et al., 2011) 
presented some very useful and highly efficient 
modifications in variational iteration method. It is to be 
highlighted that Homotopy Perturbation Method (HPM) 
was formulated by taking full advantage of the standard 
homotopy and perturbation methods. The homotopy 
perturbation method (HPM) has been applied to a wide 
class of functional equations (He, 2004, 2005, 2006; 
Biazar et al., 2007;  Dehghan  and  Shakeri,  2008;  Ganji,  
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2006, 2007; Jafari et al., 2011; Mohyud-Din and Noor, 
2009; Mohyud-Din et al., 2009; Mohyud-Din, 2010, 2011; 
Hosseini et al., 2011; Hosseini et al., 2010; Yildirim, 
2009; Abassy et al., 2007). It is worth mentioning that He 
(He, 2004) while comparing the homotopy analysis 
method (HAM) and homotopy perturbation method (HPM) 
clearly proved that HAM is a generalized Taylor series 
method which gives an infinite series solution and is 
coupled with all the deficiencies and limitations of this 
technique to have practical examples. Moreover, such 
schemes are not compatible to cope with the secular 
terms arising in the higher-order approximate solutions, 
whereas homotopy perturbation method (HPM) searches 
an asymptotic solution with few terms (mostly 2 to 4 
terms) and does not require any convergence theory. The 
subsequent work (He, 2004, 2005, 2006) has explicitly 
strengthened this claim.  
 
 

METHODOLOGY 
 

Optimal variational iteration method 
 

Consider the partial differential equations (PDEs), 
 

,                                                   (1) 

 

With the following initial condition: 
 

, 

 

Where N is a nonlinear operator and g is inhomogeneous term. An 
unknown auxiliary parameter h can be inserted into the variational 
iteration algorithm. For solving Equation (1) by OVIM (Hosseini et 
al., 2010) we consider the following algorithm, 
 

              (2)  

 

Where  is a Lagrange multiplier which can be identified optimally 

via variational theory (He, 2006). It should be emphasized that 

 can be computed by symbolic computation 

software such as Maple or Mathematica. The approximate solutions  

 contains the auxiliary parameter  . The 

validity of the method is based on such an assumption that the 

approximation converges to the exact solution. It is 

the auxiliary parameter  that ensures that the assumption can be 

satisfied. In general, by means of the so-called  -curve, it is 

straightforward to choose a proper value of   which ensures that 

the approximate solutions are convergent (Hosseini et al., 2011). It 
has been shown that the OVIM is capable to approximate the 
solution more accurately than VIM in a large solution domain 
(Hosseini et al., 2010; Hosseini et al., 2011). 
 
 

Optimal homotopy perturbation method 
 

For solving Equation (1) by the optimal homotopy perturbation 
method, at the first we solve this equation by NHPM (Aminkhah and  

 
 
 
 
Biazar, 2010) and for this reason we construct the following 
homotopy: 

 

    (3) 

 
or equivalently, 
 

                    (4) 

 

Applying the inverse operator,  to both sides of 

Equation (4), we obtain: 
 

      (5) 

 

Where  is the initial condition for Equation 

(1). 
Suppose the solution of Equation (5) has the following form: 
 

 ,                                            (6) 

 

Where  are functions which should be 

determined. Now suppose that the initial approximation of the 

solutions  has the form:       

 

                                              (7) 

 

Where  are unknown coefficients and 

 are specific functions. Substituting (6) 

into (5) and equating the coefficients of p with same power leads to  
 

  

 

  

 

                          (8) 

  

 

  

 

Now if we solve the equation in such a way that =0, then 

Equation (8) result in   ; 

therefore, the solution can be obtained by using 

 

         (9) 

 

It is worthwhile to note that if  be analytic at , then 

its Taylor series:                  
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Table 1. Comparison maximum absolute error for Example1. 
 

N (OHPM) Time (S)  NHPM Time (S)  OVIM Optimal h Time (S) 

10  0.65   0.26   -0.07 0.73 

20  0.95   0.63   -0.13 2.65 

30  1.26   0.93   -0.25 6.24 

40  1.98   1.22   -0.36 10.81 

50  2.56   1.88   -0.54 18.65 

60  3.41   2.13   -0.59 29.39 

70  4.12   2.65   -0.61 53.30 

80  5.09   3.23   -0.67 93.16 

90  6.35   4.01   -0.71 109.23 

100  7.68   4.76   -0.75 126.36 

 
 
 

 
 

Figure 1. Absolute error of OHPM with N=50, L=M=25, for 
example 2. 

 
 
 

 can be used in 

Equation(8) where  are known coefficients.  

Now we apply t-pade approximation technique on the obtained 

solution (9). Note that t-Pade approximation  is a 

rational approximation to  where  is a polynomial 

of t of degree at most L and   is a polynomial of t of 

degree at most M such as: 
 

,                                    (10) 

 

For a fixed value of  the error is smallest when   

and    have  the  same  degree  or  when    has  

degree one higher than  , with respect to t. In this paper 

we assume that N is even and . In fact, the proposed 

technology is very simple, easier to implement and is capable to 
approximate the solution more accurately in a large solution 
domain. 
 
 

RESULTS  
 

To demonstrate the effectiveness of the OHPM and to 
compare this method with the NHPM (Aminkhah and 
Biazar, 2010), and OVIM (Hosseini et al., 2010; Hosseini 
et al., 2011), we considered three PDEs with large 
solution domain. The computations associated the 
examples are performed using Maple 12. 
 
 

Example 1 
 

Consider the following evolution equation: 
 

      (11) 

 

with the exact solution .  

We take the solution domain as 

, the absolute error of OHPM, 

NHPM and OVIM and their computational times are given 
with different N in Table 1. 
 
 

Example 2 
 

Consider the following evolution equation: 

            (12) 

with the exact solution . 

Figures 1, 2 and 3 show the absolute  error  of    
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Figure 2. Absolute error of NHPM with N=50, for example 
2. 

 
 
 

 
 

Figure 3. Absolute error of OVIM with N=50, h=0.05 
for example 2. 

 
 
 

 
 

Figure 4. Absolute error of OVIM with N=5, h=0.43 
for example 3. 

 
 
 
 

on , for OHPM, NHPM and 

OVIM, respectively. 
 
 
Example 3 
 
Consider the following evolution equation: 
 

  (13) 

 

with the exact solution . 

Solving this problem via NHPM, we find 

, and then applying OHPM 

with L=M=1, we have  which is the exact 

solution. Also the absolute error of OVIM for  on 

 is shown in Figure 4. 

 
 
Conclusion 
 
The present technology provides a simple way to adjust 
and control the convergence region of approximate 
solution for any values of t and x. Numerical results 
explicitly reveal the complete reliability, efficiency and 
accuracy of the suggested technique. It needs to be 
highlighted that the optimal homotopy perturbation 
algorithm is capable to reduce computational time and 
obtaining suitable approximate solution of PDEs in large 
solution domain.  
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