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Nadaraya-Watson (NW) kernel regression estimator is a widely used and flexible nonparametric 
estimator of a regression function, which is often obtained by using a fixed bandwidth. Several studies 
showed that the adaptive kernel estimators with varying bandwidths have better performance results. In 
this paper, a new improvement of the NW kernel regression estimator is proposed and the bandwidth of 
this new improvement is obtained depending on the range of the observations. Simulated example is 
presented, including comparisons with three others NW estimators. The performance of the proposed 
new estimator is evaluated via the MSE criterion. The results of the simulation study were very 
promising; it shows that our modified NW estimator performs well in all cases. 
 
Key words: Nonparametric estimation, smoothing parameter, local bandwidth factor, Nadaraya-Watson kernel 
regression estimator, modified Nadaraya-Watson (NW) estimator. 

 
 
INTRODUCTION 
 
In many statistical problems, nonparametric regression 
techniques are commonly used for describing the 
relationship between a response variable and some 

covariates. Let  be a random sample of 

bivariate data with size . The nonparametric regression 
model is defined as: 
 

,                                                        (1) 

 

where 

: is unknown regression function, and 

: are independent random errors with zero mean and 

variance ; . 

The nonparametric regression techniques are weighted 
 

averages of the response variable, where the weights 
depend on the technique and the distance between the 
observations of the explanatory variable scaled by a 
smoothing parameter. One of the nonparametric 
regression estimation techniques is the Nadaraya-
Watson (NW) kernel estimator. It is more flexible than the 
other nonparametric methods, and provides an accurate 
predictor of observations. The NW kernel estimator was 
first proposed by Nadaraya (1964) and Watson (1964). 
Nadaraya (1964) introduced the NW estimator as an 
approximation to the regression curve based on empirical 
data .He studied the properties of his suggested 
estimator when the sample size increases infinitely. 
Watson (1964) presented the NW estimator as a simple 
computer method for obtaining a "graph" from a large 
number of observations. 
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The NW kernel estimator depends on one parameter 
which is called the bandwidth; it controls the amount of 
curve smoothing where large h produces a smooth 
density estimate (Wand and Jones, 1995). The 
bandwidth of the NW kernel estimator can be fixed or 
variable; the choice of the optimal bandwidth is a critical 
issue. The optimal bandwidth is the value that minimized 
the mean integrated squared error (MISE) which can be 
obtained by integrating the mean squares of errors 
(MSE). Several methods of selecting h can be used, 
Silverman (1986), Wand and Jones (1995) and Härdle et 
al. (2004) expanded in the bandwidth selections 
methods. One of these methods is the least square 
cross-validation or also called unbiased cross-validation; 
Scott and Terrell (1987) discussed it and presented a 
relationship between the biased and unbiased cross-
validation. The variable bandwidth should be used rather 
than the fixed bandwidth in the case of long-tail or multi-
modal distributions. Abramson (1982) suggested the 
inverse- square-root rule for the bandwidth h of a 
variable-kernel density, which reduces the bias more than 
the fixed-bandwidth estimator, even when a nonnegative 
kernel is used. Silverman (1986) discussed the kernel 
density estimation exhaustively. He gave details about 
the assumptions of the kernel weight and the properties 
of the estimator such as bias and variance. In addition, 
he proposed an adaptation for the kernel estimator by 
varying the bandwidth as nonparametric density 
estimation. Demir and Toktamiş (2010) considered the 
adaptive Nadaraya-Watson (ANW) kernel regression 
estimators as a way to estimate the regression function. 
The results of their simulation study showed that the NW 
kernel estimator has a better performance when 
evaluating the local bandwidth factor based on the 
arithmetic mean instead of using the geometric mean. 
Also, their results did not oppose the previous studies in 
that the NW kernel estimator with the variable bandwidths 
is better than the fixed NW kernel estimator. 

The purpose of this paper is to propose a new 
modification of the NW kernel regression estimator. The 
bandwidth of our modification is obtained by using the 

range of the probability density function of . The idea 
behind our modification is that by increasing the local 
bandwidth factor and thus the bandwidth, better 
performance of the NW kernel estimator will be obtained. 
In more details, different selected types of the NW 
estimators, including our modified NW kernel estimator 
are presented in our study. Also, a brief description of the 
MSE criterion is given. Finally, a simulation study is 
conducted with useful concluding remarks given. 

 
 
METHODS 

 
An important factor that has a great impact on the smoothing 
results is the choice of the bandwidth or  the  smoothing  parameter 

Aljuhani and Al turk         967 
 
 
 
h. Here, different Nadaraya-Watson kernel estimators are 
presented according to the selected type of the bandwidth. 
 
 

Fixed Nadaraya-Watson kernel estimator 
 

The bandwidth can be selected to be a constant over all the range 
of x; this choice is suitable when the unknown regression function 
behaves the same over all the estimation range. The NW kernel 
estimator is often obtained with a fixed bandwidth which can be 
defined as: 

 

  

                                                                     

(2) 

 
where 

: is the fixed bandwidth, , and  

: is the kernel function which satisfying the following conditions 

(Silverman, 1986): 
 

i)  

ii)  

iii)  

iv)  

 
Several kernel functions are proposed in the literature. Gaussian 
kernel function is one of the most commonly used in practice 
(Härdle, 1990; Silverman, 1986); the Gaussian kernel function is 
defined as 

 

                                                               (3) 

 
The fixed bandwidth can be selected depending on various 
methods such as; Silverman’s rule of thumb and cross-validation. In 
this paper, the least square cross-validation (LSCV) will be used 
according to its simple evaluation and its ability to be applied in any 
regression model. The LSCV minimizes the integrated squared 
error (ISE) rather than the MISE (Scott and Terrell, 1987), where 
MISE is the average of the ISE, and ISE is a distance measured 

between the fitted density and the true density which is 

defined as 

 

                                              (4) 

 
and 
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The is the bandwidth that minimize the LSCV which is 

defined as 
 

 
                                      (5)

 
 
where 

: is the leave-one-out kernel density estimator, which is 

obtained among the remaining observations and can be 

defined by the following equation 
 

        

                                (6) 

 
 
Variable Nadaraya-Watson kernel estimator 

 
The fixed NW kernel estimator is not a good choice for the cases of 
multivariate, long-tailed, and the multi-modal distributions. The 
multivariate problem can be handled by increasing the sample size, 
but for the cases of the long-tail and the multi-modal distributions, 
varying the bandwidth is recommended. The estimator which is 
based on varying the bandwidth is called the variable NW kernel 
estimator, and has the following form: 
 

        

                                         (7) 

 
where 

: is the variable bandwidth. 

Abramson (1982) gave the following formula to compute  : 

 

 

 
where 

: is the probability density function of  which can be 

estimated by the kernel density estimator. 

The variable bandwidth  can be obtained by the Silverman 

algorithm which is presented in Silverman (1986). He presented in 
his paper, an algorithm for the Abramson style estimator, and 
referred to it as an adaptive kernel estimator. In the first step, he 

obtained the prior kernel estimator with fixed bandwidth  which is 

denoted by . Then, he defined the local bandwidth factor , 

as: 

 

          

                                                                (8) 

 
where 

 
 
 
 

: is the geometric mean of , , and  

: is the sensitivity parameter, which satisfies .  

 
At the last step, his suggested adaptive bandwidth is defined as: 
 

                    
                                                       (9) 

 
In (1982), Abramson gave the sensitivity parameter the value 0.5 
since this value leads to good prediction results. Then, the variable 
NW kernel estimator can be written as follow: 
 

        

                                         (10) 

 
 
Adaptive Nadaraya-Watson kernel estimator 
 
Demir and Toktamiş (2010) modified the NW kernel estimator, their 
modification based on using the arithmetic mean instead of the 
geometric mean when computing the local bandwidth factor which 
is given as 

 

                           

                                         (11) 

 
where 

: is the arithmetic mean of .  

Then, the ANW kernel estimator is defined by Equation 10 with 

replacing  by . The authors used the arithmetic mean since its 

value is greater than or equal to the geometric mean (Lidstone, 

1932), and that has made the value of the greater than . By 

maximizing the value of the local bandwidth factor, the value of the 
bandwidth will increase too, and this will enhance the performance 
of the NW estimator. According to their simulation study and real 
data application, they showed that the performance of the ANW 
kernel estimator is better than the performance of the NW kernel 
estimator. 

 
 
Modified Nadaraya-Watson kernel estimator 

 
This part of the paper is dedicated to our modification which aims to 
enhance the predictive ability of the NW kernel estimator through 
increasing the value of the bandwidth. In our proposed NW kernel 
estimator we suggest to evaluate the local bandwidth factor based 
on the range of the observations instead of using the geometric or 
the arithmetic mean. Most of the times, the range will have a larger 
value, particularly if the phenomenon being studied has outliers. 
Thus, the local bandwidth factor and the value of the bandwidth 

will be increased. The modified local bandwidth factor is given as: 

 

                               

                                         (12) 



  
 
 
 
 

 
 

Figure 1. The real regression function and the NW kernel 
estimators of the regression function using sample size 50 and 
h=0.16. 
 
 
 

 
 

Figure 1. The real regression function and the NW kernel 
estimators of the regression function using sample size 100 and 
h=0.08. 
 
 
 
where 

: is the range of , which is the difference between the 

largest and smallest values. 
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Therefore, the modified Nadaraya-Watson (MNW) kernel 

estimator can be obtained by substituting   instead of  in 

Equation (10). 
 
 
Evaluation criteria 
 
For the selection of the best performance NW kernel estimators, 
several criteria can be used. In general, the evaluation criteria are 

based on computing the distance between the observed values  

and the predicted values  which are obtained by using the 
estimated models. Here, the mean squared error (MSE) will be 
used. The best estimator is the one with the smallest MSE value. 
The MSE can be computed mathematically by using the following 
formula: 
 

          

                                          (13) 

 
n: is the number of observations. 
 
 
Simulation study 
 
Here, the performance of the new proposed MNW kernel estimator 
is examined over three different selected NW kernel estimators; the 
fixed NW, the variable NW, and the ANW through a simulation 
study. The explanatory variables are generated from the uniform 
distribution based on the interval [0,1] with six different sample 
sizes 25, 50, 100, 250, 300 and 600. The regression function is 
given by Hardle (1990) as: 

 
                               (14) 

 

Where the random errors  have normal distribution with 0 mean 

and 0.1 variance. The fixed bandwidth  is obtained by using the 

unbiased cross-validation method. To evaluate the NW kernel 
estimators, the Gaussian kernel function is used. A 1000 simulation 
repetition for each sample size is used to compute the MSE 
criterion. 

The graphs of the real regression function and the estimated 
regression functions which are computed based on the sample of 
sizes 50, 100, 250 are presented in Figures 1, 2, and 3. While the 
performance of the MNW kernel estimator comparable with the 
three selected NW kernel estimators is considered objectively, our 
comparable study is based on the MSE criterion. For each sample 
size, the MSE value of the fixed NW, variable NW, ANW and MNW 
kernel estimators which is based on Gaussian kernel function are 
computed. The results of the MSE criterion is presented in Table 1. 

 
 
RESULTS 
 
From the figures, it is clear that the performance of the 
MNW is superior to the fixed NW, the variable NW and 
the ANW kernel estimators. Also, the figures show that 
generally the performance of all the studied NW kernel 
estimators becomes better by increasing the sample size.  
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Figure 3. The real regression function and the NW kernel estimators of 
the regression function using sample size 250 and h=0.06. 

 
 
 

Table 1. The MSE values of the NW kernel estimators. 
 

Kernel 
functions 

Sample 
size 

Fixed NW kernel 
estimator 

Variable NW kernel 
estimator 

ANW kernel estimator MNW kernel estimator 

Gaussian 

25 6.6588 4.1133 3.9618 3.8548 

50 3.5671 2.1655 2.0818 2.0120 

100 1.8340 1.1040 1.0570 1.0221 

250 0.7573 0.4685 0.4457 0.4265 

300 0.6325 0.3959 0.3764 0.3593 

600 0.3205 0.2120 0.2021 0.1920 
 
 
 

And according to the simulation results in Table 1 we can 
conclude that: 
 

1) The variable NW estimator gives noticeably better 
prediction results than the fixed NW estimator. 
2) The ANW estimator has better performance than the 
variable NW estimator; same results were obtained by 
Demir and Toktamiş in (2010). 
3) Our suggested estimator gives better predictive 
capability in all cases. 
4) All the estimators are enhanced by increasing the 
sample size.  
 

Generally and according to our study and the study of 
Demir and Toktamiş in (2010), we can conclude that any 
modification that aims to increase the local bandwidth 
factor will give an improved prediction results. 

DISCUSSION 

 
The Nadaraya-Watson (NW) kernel estimator is a non-
parametric method that can be used for regression 
estimation, it is an easy and flexible method and has 
previously been shown to provide an accurate prediction 
results. In this paper we have proposed a new NW kernel 
regression estimator as a modification to the adaptive 
Nadaraya-Watson kernel estimator. Our suggestion 
based on enhancing the predictive ability of the ANW 
kernel estimator through increasing the value of the Local 
bandwidth factor by using the range instead of the 
arithmetic mean when calculating the bandwidths.  By 
conducting a simulation study with different sample sizes, 
various NW kernel regression estimators have been 
compared with our new suggested kernel  estimator.  The 



  
 
 
 
 
MNW kernel estimator seems to be superior to the other 
three NW kernel estimators in all cases. This estimator 
was more stable in comparison with the other kernel 
estimators; so according to our study when aiming to 
estimate the regression function the MNW kernel 
estimator is recommended. 
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