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An efficient and most famous tool to enhance damping of the power system low frequency oscillations 
is the conventional widely used lead-lag Power System Stabilizer (PSS). To achieve the desired level of 
robust performance under transient situation, selecting a suitable design method for optimal tuning of 
PSS parameters is very important in multi-machine power system. Because, it is a multimodal and 
difficult combinatorial optimization problem, this paper presents a novel parameter automation strategy 
for Particle Swarm Optimization (PSO) called PSO with Time-Varying Acceleration Coefficients (PSO-
TVAC). This optimization method has a strong ability to successfully control both global and local 
search in each iteration process for considerably increasing the probability of finding the global 
optimum solution. The PSO-TVAC algorithm is applied to optimal tuning PSS parameters problem in 
order to reduce the PSS design effort and find the best possible solution within a reasonable 
computation time. For this reason, the robustly selection of PSSs parameters is converted as an 
optimization problem based on the time domain-based objective function under different operating 
conditions. The robustness of the proposed method is demonstrated on a multi-machine power system 
in comparison with the classical PSO and conventional method based designed PSSs. It is shown 
through the nonlinear time domain simulation and some performance indices for a wide range of 
loading condition. The analysis of the results shows that the improved PSO-TVAC is not only very 
effective but also provides an excellent ability for damping low frequency oscillations and greatly 
enhance the dynamic stability of the power system. Moreover, the proposed PSO-TVAC algorithm is 
superior than that of the classical PSO one in terms of accuracy, convergence and computational effort.  
 
Key words: Power system stabilizer (PSS) design, particle swarm optimization, power system dynamics, time-
varying acceleration coefficients.  

 
 
INTRODUCTION 
 
Transient and dynamic stability considerations are the 
most important aspects in the reliable and secure efficient 
operation of power systems. This arises from the fact that 
the power system must maintain frequency and voltage 
switching out of a transmission line during a fault 
(Chompoobutrgool et al., 2011).  By  the  development  of 
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levels at the nominal values, under any disturbance, like 
a sudden increase in the load, loss of one generator or 
interconnection of large electric power systems, there 
have been spontaneous system oscillations at very low 
frequencies in order of 0.2 to 3.0 Hz. Once started, they 
would continue for a long period of time. In some cases, 
they continue to grow, causing system separation if no 
adequate damping is available. Moreover, low frequency 
oscillations present limitations on the power-transfer ca-
pability. To enhance system damping, the generators are 
equipped   with    Power    System   Stabilizer  (PSS)  that   



 

 
 
 
 
provides supplementary feedback stabilizing signals in 
the excitation system.  PSS augments the power system 
stability limit and extends the power-transfer capability by 
enhancing the system damping of low frequency 
oscillations associated with the electromechanical modes 
(Kundur, 1994). 

Valuable research contributions from time to time for 
the PSS design in the power systems like the adaptive 
control techniques (Chaturvedi and Malik, 2007; Fraile-
Ardanuy and Zufiria, 2007), robust control methodology 
(Hardiansyah et al., 2006; Segal et al., 2000; Segal et al, 
2004), neural networks (Rigatos and Siano, 2011; 
Werner et al., 2003) and fuzzy logic theory (El-Zonkoly et 
al., 2009; Hwang et al., 2008; Kvasov et al., 2008) have 
been represented in the literature. Regardless of the 
adequate results provided by adaptive controllers, the 
control strategies are needed on line system model 
identification and then they are complex for practical 
application. The gains of robust control techniques are 
considering physical understudying and uncertainties of 
the system in the synthesis procedure (Hardiansyah et 
al., 2006; Segal et al., 2000). However, the importance 
and difficulties in the choice of weighting functions have 
been reported. On the other hand, the order of the robust 
control based stabilizer is high which gives rise to 
complex structure of such stabilizers and reduces their 
applicability. It should be noted that, although the 
transient response of the power system is encouraged by 
the ANN based controller (Rigatos and Siano, 2011; 
Werner et al., 2003), but these controllers have the long 
training time and choosing the number of layers and 
number of neurons in each layers problem. Fuzzy logic 
based PSSs are model-free stabilizers; that is, they do 
not require an exact mathematical model of the controlled 
system (Hwang et al., 2008; Kvasov et al., 2008). 
Furthermore, effectiveness and speed are the most 
important properties than the other classical methods. 
However, it should be pointed out that the fuzzy 
controllers require two or three dimensional rule base. 
This problem makes the design synthesis is more 
difficult. 

Despite the potential of the modern control strategies, 
the Conventional lead-lag Power System Stabilizer 
(CPSS) structure has been widely used by power system 
utilities (Gibbard, 1991; Abdel-Magid et al., 2000). The 
reasons behind that might be the ease of online tuning 
and the lack of assurance of the stability related to some 
adaptive or variable structure techniques. On the other 
hand, Shayeghi et al. (2010) have revealed that the 
suitable choice of the CPSS parameters provided 
satisfactory damping performance over a wide range of 
system loading conditions during the system upsets. It 
should be noted that the problem of the PSS parameters 
tuning is a multimodal optimization problem (that is, there 
exists more than one local optimum). Hence, the 
conventional optimization methods and local optimization 
techniques,  which   are   well  elaborated  upon,  are  not 
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suitable for this kind of problem. Thus, it is desirable that 
a novel optimization strategy for optimal tuning of the 
PSS parameters be developed.  

In the recent years, global optimization techniques like 
Genetic Algorithms (GA) (Sundareswaran and Begum, 
2004; Wang et al., 2011), simulated annealing (Abido, 
2003), rule based bacteria foraging (Mishra et al., 2007) 
and strength pareto evolutionary algorithm (Yassami et 
al., 2010) have been reported for the PSS parameter 
optimization. These evolutionary based methods are 
heuristic population-based search procedures that 
incorporate random variation and selection operators. 
Although, these methods seem to be good quality 
solution for the PSS design problem, however, when the 
system has a extremely epistatic objective function (that 
is, where optimized parameters are very correlated), and 
number of parameters to be optimized is more, then they 
have degraded efficiency to find the global optimum 
solution and also simulation process takes a lot of 
computing time. Recently, the classical Particle Swarm 
Optimization (PSO) based method has been represented 
for the design of PSS parameters by Shayeghi et al. 
(2010) and Eslami et al. (2010a). The capability of this 
method was shown for PSS designing to improve low 
frequency oscillations damping at different operating 
conditions than the GA approach on a multi-machine 
power system. However, it should be noted that the 
performance of the classical PSO greatly depends on its 
parameters adjustments, and it often suffers the problem 
of being trapped in the local optima so as to be 
premature convergence. Thus, some modification has 
been proposed for the classical PSO algorithm to 
improve its performance. An Improved PSO with passive 
congregation (PSOPC) has been undertaken to solve the 
PSS design problem by Eslami et al. (2010b) to enrich 
the information sharing mechanism for effectively 
enhancement the convergence rate and the accuracy of 
the classical PSO. Using the numerical results it was 
shown that PSOPC method has better convergence 
property and can get better low frequency oscillations 
than the classical one.  

The PSO with time-varying acceleration coefficients 
(PSO-TVAC) represented by Ratnaweera et al. (2004) is 
one the best technique for effectively improvements of 
the classical PSO performance in terms of robustness to 
control parameters and computational effort. All algorithm 
parameters including inertia weight and acceleration 
coefficients are varied with time (iterations) to efficiently 
control the local search and convergence to the global 
optimum solution. This strategy is caused to improve the 
global search in the early stage of the optimization 
process and cheering the particles to converge toward 
the global optima at the end of it. Moreover, it was shown 
that the PSO-TVAC has very few parameters to adjust 
than other heuristic optimization methods and a higher 
success convergence rate since it does exploration and 
exploitation processes together  efficiently.  Thus,  in  this 
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paper, the PSO-TVAC optimizer is proposed to optimal 
tune of the PSSs gain and time constants. It is used to 
achieve desired level of low frequency oscillations 
damping and enhance dynamic stability of the multi 
machine power system. The PSSs parameters are 
automatically tuned with optimizing a time domain based 
objective function for a wide range of operation conditions 
by PSO-TVAC algorithm.  

The effectiveness of the proposed method is tested on 
a multi-machine power system under different operating 
conditions in comparison with the classical based PSSs 
(CPSS) and PSO based one through nonlinear time 
domain simulation and some performance indices. The 
simulation results demonstrate the robust performance of 
the proposed method for damping low frequency 
oscillations than the CPSO and classical method one. 
Using the proposed algorithm the relative stability is 
guaranteed and the time domain specifications 
concurrently secured. This provides a useful promising 
scheme to choose desirable PSS from a set of optimally 
tuned PSSs for the system operator, PSS manufacturer 
and customers. 
 
 
MATERIALS AND METHODS 
 
PSO review 
 
Kennedy et al. (2001) developed a PSO algorithm based on the 
behavior of particles or agents of a swarm. Its roots are in 
zoologist’s modeling of the movement of individuals (for example, 
fishes, birds, or insects) within a group. The PSO algorithm 
searches in parallel using a group of individuals similar to other AI-
based heuristic optimization techniques. A particle in a swarm 
approaches to the optimum or a quasi optimum through its present 
velocity, previous experience and the experience of its neighbors 
(Lin et al., 2010). 

In a physical-dimensional search space, the position and velocity 

of individual i  are represented as the vectors  inii x,...,xX 1  and 

 inii v.,..,vV 1  in the PSO algorithm, respectively. Let 

 Pbest

n

Pbest

1Pbest iii x,...,x
 and 

 Gbest

n

Gbest

1Gbest iii x,..,x
 be the best 

position of particle i  and its neighbors’ best position so far. Using 
this information, the updated velocity of particle is given by: 
 

(1)                      
                                                                           

Where, 
k

iV
is velocity of particle at iteration k; ω is inertia weight 

parameter; c1 and c2 are acceleration coefficients factors; 
k

iX
is 

position of particle at iteration k; 
k

iPbest
 is the best position of 

particle until iteration k and
k

iGbest
 is the best position of the group 

until iteration k.  
In Equation 1, the first term shows the current velocity of the 

particle, second term presents the cognitive part of PSO where the 
particle changes its velocity is based on its own thinking and 
memory. The third term corresponds to the social part of PSO 
where the particle changes its velocity based on the social-
psychological adaptation of knowledge. Each  particle  moves  from  

 
 
 
 
the current position to the next one by the updated velocity in 
Equation 1 as follows: 
 

                                               (2)     
 
Suitable chosen of the inertia weight provides a balance between 
global and local exploration and exploitation, and results in less 
iteration on average to find a suitably optimal solution. Usually, the 
linearly decreasing inertia weight factor is used as follows: 
 

                                                 (3)      
                    
Where, ωmax and ωmin are both random numbers called initial weight 
and final weight, respectively; Kmax is the maximum iteration number 
and k is the current iteration number. 
 
 
PSO-TVAC concept  
 
In the PSO, proper control of the two stochastic acceleration 
components: the cognitive component (c1) which corresponds to the 
personal thinking of each particle and the social component (c2) 
which describes the collaborative effect of the particles, to obtain 
the global optimal solution is very important accurately and 
successfully. It should be noted that it is desirable that for cheering 
the particles to wander through the entire search space, without 
clustering around local optima during the early stages of the swarm-
based optimization (Kuo et al., 2010). On the other hand, in order to 
find the optimal solution effectively it is very important to 
enhancement convergence toward the global optima during the 
latter processes (Boonyaritdachochai et al., 2010). Thus, a novel 
parameter automation strategy for the PSO concept called PSO 
with time varying acceleration coefficients is proposed, in this study. 
The motivation for using this method is enhancement the global 
search in the early stage of the optimization stages and cheering 
the particles to converge toward the global optima at the end of it. 
All parameters including inertia weight and acceleration coefficients 
are varied with time (iterations) in Equation 1. Thus, in the PSO-
TVAC the velocity is updated as follows: 
 

   (4)   
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Where, C is constriction factor, c1i, c1f and c2i, c2f are initial and final 
values of c1 and c2, respectively. Under this situation, the inertia 
weight, ω, is linearly decreasing as time grows based on the 
equation as given in (5) and by changing the acceleration 
coefficients with time the cognitive component is reduced and the 
social component is increased (Ratnaweera et al. 2004). The large 
and small value for cognitive and social component at the 
optimization process starting is permitted the particles to move 
around the search space, instead of moving toward the population 
best. In contrast, using a small and large cognitive and social 
component, respectively the particles are permitted to converge 
toward the global optima in the latter part of the optimization. Thus, 
PSO-TVAC is easier to understand and implement and its 
parameters have more straight forward  effects on  the  optimization 
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performance in comparison with classic PSO. 

Using the above concepts, the whole PSO-TVAC algorithm can 
be described as follows: 
 
1. For each particle, the position and velocity vectors will be 
randomly initialized with the same size as the problem dimension 
within their allowable ranges. 
2. Evaluate the fitness of each particle (Pbest) and store the particle 
with the best fitness (Gbest) value. 
3. Update velocity and position vectors according to (4) and (2) for 
each particle. 
 Repeat steps 2 and 3 until a termination criterion is satisfied. 
 
Compared the classic PSO, PSO-TVAC has faster convergence 
and computational efforts. Because can get the quality results in 
significantly fewer fitness evaluations and constraint evaluations.  

The main features of the PSO-TVAC algorithm are robustness to 
control parameters, easy implementation and high quality solutions. 
Also, it conducts both global search and local search in each 
iteration process, and as a result the probability of finding the 
optimal global solution is significantly increased. Thus, it has a 
flexible and well-balanced mechanism to enhance the global and 
local exploration abilities than the classical PSO one and other 
heuristic techniques. 
 
 
Problem statement 
 
Power system model 
 
For the stability analysis of power system a sufficient mathematical 
models involving a set of nonlinear differential-algebraic equations 
by assembling the models for each generator, load and other 
devices such as controls in the system is required. The two-axis 
model (fourth order) (Padiyar, 2008) given in Appendix A is used for 
the time domain simulations study for each machine.  
 
 

PSS structure 
 

In this study, a widely used stabilizer with the lead-lag structure 
based on the speed deviation of the generator is considered for the 
PSS scheme as follows (Shayeghi et al., 2010; Eslami et al., 2010):   
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Where, Δωi is the speed deviation of the ith generator and Ui is the 
output signal fed as a supplementary input signal to the regulator of 
the excitation system. This type of PSS consists of a washout filter 
and a dynamic compensator. The washout filter, which really is a 
high pass filter, is considered to reset the steady-state offset in the 
output of the stabilizer. The value of the time constant Tw is usually 
not critical and it can range from 0.5 to 20 s. Here, it is sited to 10 s. 
The optimized parameters of PSS are: 

 
Ki Gain of PSS  
 
T1i-T4i lead-lag block time constants 
 
 
PSS design using PSO-TVAC 
 
In this study, the PSS design problem is formulated as an 
optimization problem and solved by PSO-TVAC method to improve 
optimization synthesis  and  find  the  global  optimum  value  of  the  
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fitness function. Selection of a desirable fitness function is very 
important to optimize PSS parameters. Because, different fitness 
functions promote different PSO-TVAC behaviors. For our 
optimization problem, an Integral of Squared Time multiplied value 
of the Squared Error (ISTSE) based objective function for multiple 
operation conditions is considered as follows: 
 

2 2

,
0

1 1

( )
NP NG tsim

i j

j i

F t dt
 

                                               (7) 

 
Where, tsim is the time range of simulation, NG is the number of 
machines and NP is the total number of operating points 
considered for optimization process. The salient feature of this 
objective function is that it needs the minimal dynamic plant 
information. It is aimed to minimize this objective function in order to 
improve the system response in terms of the settling time and 
overshoots. The design problem can be formulated as the following 
constrained optimization problem, where the constraints are the 
PSS parameters bounds: 
 

min max

min max

1 1 1

min max

2 2 2

min max

3 3 3

min max

4 4 4

i i i

i i i

i i i

i i i

i i i

Minimize F subject to

K K K

T T T

T T T

T T T

T T T

 
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 

 

 

                                                   (8) 

 
The proposed approach employs PSO-TVAC to solve this 
optimization problem and search for the optimal set of PSSs 
parameters. Robustness is verified by considering numerous 
operating conditions and the system configurations, simultaneously. 

 
 
RESULTS 
 
The IEEE three-machine nine-bus power system shown 
in Figure 1 is considered as a test system in this work. 
The required system data are given in (Anderson and 
Fouad, 1979). To evaluate the efficacy and robustness of 
the proposed optimization technique over a wide range of 
loading conditions, four different cases designated as 
nominal, lightly, heavily and other loading conditions are 
considered, where the generator and system loading 
levels at these cases are given in Tables 1 and 2.  

In the test system, G2 and G3 machines are equipped 
to the PSS. In the proposed control scheme, we must 
tune the parameters of the PSSs, optimally to enhance 
the overall system dynamic stability, in a robust way 
under several operating conditions and disturbances. The 
optimal tuning of the PSS parameters is carried out by 
evaluating the fitness function as given in Equation 8 for 
four operating conditions as given in Table 2 by applying 
a 6-cycle three-phase fault at t=1 s, at bus 7 at the end of 
line 5-7. The fault is cleared by stable tripping of the 
faulted line. In this study, the PSO module works offline. 
For the each PSS, the optimal setting of five parameters 
is determined by the PSO-TVAC, that  is,  10  parameters
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Figure 1. Three-machine nine-bus power system. 

 
 
 

Table 1. Generator operating conditions (in pu). 
 

Gen 
Nominal  Heavy  Light  Other load 

Vt (pu) 
P(pu) Q(pu)  P(pu) Q(pu)  P(pu) Q(pu)  P(pu) Q(pu) 

G1 0.72 0.27  2.21 1.09  0.36 0.16  0.33 1.12 1.040 

G2 1.63 0.07  1.92 0.56  0.80 -0.11  2.00 0.57 1.025 

G3 0.85 -0.11  1.28 0.36  0.45 -0.20  1.50 0.38 1.025 

 
 
 

Table 2. Loading conditions (in Pu). 
 

Bus 
Nominal  Heavy  Light  Other load 

P(pu) Q(pu)  P(pu) Q(pu)  P(pu) Q(pu)  P(pu) Q(pu) 

5 1.25 0.5  2.0 0.80  0.65 0.55  1.50 0.90 

6 0.90 0.30  1.80 0.60  0.45 0.35  1.20 0.80 

8 1.0 0.35  1.50 0.60  0.50 0.25  1.00 0.50 

 
 
 

Table 3. PSO-TVAC and PSO parameters for optimization. 
 

PSO-TVAC PSO 

C1f 0.2 C1 2.1 

C1i 2.5 C2 2.1 

C2f 2.5 ωmin 0.4 

C2i 0.2 ωmax 0.9 

φ 4.1 Population 40 

ωmin 0.4 Iteration 100 

ωmax 0.9 - - 

Population 40 - - 

Iteration 100 - - 

to be optimized, namely Ki, T1i-T4i for i= 2, 3. In order to 
facilitate comparison with the classical PSO and 
conventional approaches, the design and tuning of the 
PSS parameters for this multi-machine power system, the 
phase compensation (Larsen and Swann, 1981) and 
PSO methods (Shayeghi et al., 2010) were used. In order 
to acquire better performance, the control parameters of 
the proposed PSO-TVAC and classical PSO algorithm is 
given in Table 3. Optimized PSSs parameter set values 
according to the objective function as given in Equation 8 
using the above methods are listed in Table 4. Figure 2 
shows the minimum fitness functions evaluating process.  

 

 

Load C

Load A Load B

1

2 3

4

5 6

7 8 9

G1

G2 G3
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Table 4. Optimal PSSs parameters. 
 

Method Gen Kpss T1 T2 T3 T4 

CPSS 
G2 2.4172 0.2709 0.0483 0.2709 0.0483 

G3 1.7344 0.1910 0.0340 0.1910 0.0340 

       

CPSO 
G2 13.4300 0.2521 0.0570 0.4633 0.0538 

G3 3.7400 0.6135 0.0311 0.4249 0.0964 

       

PSO-TVAC 
G2 17.6750 0.8201 0.0478 0.1101 0.0667 

G3 7.9800 0.9002 0.0403 0.1204 0.0663 

 
 
 

 
 

Figure 2. System response under nominal loading in scenario 1; Solid (PSO-TVAC), Dashed (PSO) and Dotted (CPSS). 

 
 
 

 
 

Figure 3. System response under lightly loading in scenario 1; Solid (PSO-TVAC), Dashed (PSO) and Dotted (CPSS). 

 
 
 
Nonlinear time-domain simulation 
 
The effectiveness and robustness of the proposed PSO- 
TVAC based designed PSS for different operating 
conditions as given in Table 2 and fault disturbances is 
demonstrated through the nonlinear time simulation and 
some performance indices in comparison to that of the 
PSSs tuned using the PSO and CPSS (Larsen and 
Swann, 1981) methods for two scenarios.  

Scenario 1 
 
In this scenario, the effectiveness of the proposed 
stabilizer under transient conditions is verified by applying 
a six-cycle three-phase fault at t=1 s, at bus 7 at the end 
of line 5-7. The fault is cleared without line tripping and 
the original system is restored upon the clearance of the 
fault. The speed deviations of generators G2 and G3 
under different loading conditions are shown in Figures 2 
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Figure 4. System response under heavily loading in scenario 1; Solid (PSO-TVAC), Dashed (PSO) and Dotted (CPSS). 

 
 
 

 
 

Figure 5. Stabilizing signals at generators G2 and G3 under nominal loading; Solid (PSO-TVAC), Dashed (PSO) and Dotted (CPSS). 

 
 
 

 
 

Figure 6. Stabilizing signals at generators G2 and G3 under heavy loading; Solid (PSO-TVAC), Dashed (PSO) and Dotted (CPSS). 

 
 
 
and 4. It can be seen that the proposed stabilizer 
achieves good robust performance and provides superior 
damping in comparison with the conventional and PSO 
methods. For completeness, the stabilizing signals for the 
stabilizers of generators G2 and G3 are shown in Figures 
5 and 6. It can be concluded that the optimized stabilizer 
using PSO-TVAC technique provides much proper 
control signals than the PSO and classical methods 
based designed PSSs. 

Scenario 2 
 
In this scenario, another hybrid severe disturbance is 
considered for different loading conditions; that is, a 0.1 
p.u. step increase in mechanical torque of all generators 
was applied at t=0.5 s and after a few seconds a 6-cycle 
three-phase fault at t=5 s, on bus 7 at the end of line 5-7 
for the system will be applied. The fault is cleared by 
stable tripping of the faulted line. The speed deviations of  
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Figure 7. System response under nominal loading in scenario 2; Solid (PSO-TVAC), Dashed (PSO) and Dotted (CPSS). 
 
 
 

 
 

Figure 8. System response under heavily loading in scenario 2; Solid (PSO-TVAC), Dashed (PSO) and Dotted (CPSS). 
 
 
 

all generators under the nominal and heavily loading 
conditions are shown in Figures 7 and 8. Using the 
proposed method, the speed deviation of both generators 
is quickly driven back to zero and have small settling 
time. Moreover, it can be seen that the proposed 
ABCPSS achieves good robust performance and 
provides superior damping in comparison with other 
PSSs.  
 
 
DISCUSSION 
 
In order to have a fair comparison in terms of solution 
quality and computation efficacy among the CPSO, and 
PSO-TVAC methods, each algorithm is run for 10 trials 
and the best fitness value is shown in Figure 9. It is 
evident that using PSO-TVAC for optimal tuning of PSSs 
has faster convergence rate compared to CPSO one.To 
illustrate robustness of the proposed method, two 
performance indices: the Figure of Demerit (FD) and 
Integral of the Time multiplied Absolute value of the Error 
(ITAE) based on the system performance characteristics 
are defined as: 
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Where, OSi, USi and Tsi are overshoot, undershoot and 
settling time of rotor angle deviation of ith machine is 
considered. It is merit mentioning that the lower the value 
of these indices is, the better the system response in 
terms of the time-domain characteristics. The values of 
the above performance indices are calculated under the 
two above scenarios, whereas the system load are varied 
from -25 to 25% of the nominal loading condition. 
Numerical results are shown the in Tables 5 to 6 for 
different operation conditions with three stabilizers under 
scenarios 1 and 2. Assessment of these Tables reveals 
that the using the proposed PSO-TVAC the speed 
deviations of all machines are greatly reduced, has small 
overshoot,  undershoot   and  settling  time.  Moreover,  it  
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Table 5. Values of the performance indices under scenario 1. 
 

Load 
change 

percentage 

PSO-TVAC  CPSO  CPSS 

ITAE FD IAE ISE  ITAE FD IAE ISE  ITAE FD IAE ISE 

25 24.5029 40.132 12.9076 0.5017  36.0923 47.378 16.6556 0.6152  143.3280 86.265 47.4541 2.4495 

20 24.7673 42.172 13.0413 0.5138  37.1454 49.261 17.0570 0.6399  153.3448 89.019 49.6985 2.5951 

15 25.0319 43.254 13.1673 0.5257  37.9202 51.763 17.3095 0.6535  164.9099 91.276 52.2103 2.7562 

10 25.2866 46.234 13.2926 0.5368  39.1475 54.829 17.7587 0.6798  178.3591 93.827 55.0673 2.9433 

5 25.5536 48.524 13.4252 0.5484  40.3253 57.982 18.1660 0.7021  194.1621 95.209 58.3237 3.1579 

Nominal 25.9648 49.321 13.6223 0.5648  41.5147 61.001 18.5678 0.7234  212.5771 97.389 61.9803 3.3984 

-5 26.2690 52.817 13.7871 0.5765  42.7899 63.726 18.9900 0.7427  234.8882 99.245 66.3703 3.7004 

-10 26.6858 55.387 13.9766 0.5928  44.6139 65.721 19.6061 0.7774  261.4396 101.99 71.3548 4.0477 

-15 27.1446 59.276 14.1814 0.6096  46.3975 67.905 20.1638 0.8061  293.3224 106.27 77.1769 4.4683 

-20 27.6007 62.716 14.3795 0.6258  48.3569 69.162 20.7736 0.8370  332.0873 109.24 84.0432 4.9886 

-25 27.8685 65.817 14.4801 0.6342  50.2616 70.451 21.3077 0.8598  379.2600 113.27 92.1666 5.6431 

 
 
 

Table 6. Values of the performance indices under scenario 2. 
 

Load 
change 

percentage 

PSO-TVAC  CPSO  Classic 

ITAE FD IAE ISE  ITAE FD IAE ISE  ITAE FD IAE ISE 

25 113.4688 71.928 29.4275 1.2150  152.4141 97.356 35.4404 1.4785  389.9191 130.278 83.6959 5.0739 

20 115.0055 75.273 29.8950 1.2468  155.5674 99.167 36.1104 1.5159  409.4241 135.722 87.0249 5.3575 

15 116.7365 78.265 30.4129 1.2818  161.4932 102.18 37.1869 1.5696  431.4883 139.672 90.7793 5.6884 

10 118.9032 79.287 31.0005 1.3176  169.8427 105.28 38.6024 1.6339  456.5247 142.019 95.0214 6.0764 

5 123.5589 81.203 31.9580 1.3657  180.4081 109.56 40.3273 1.7138  485.0056 144.266 99.8213 6.5342 

Nominal 130.2484 83.387 33.2257 1.4231  200.2210 112.81 43.2169 1.8223  518.1693 147.256 105.437 7.0985 

-5 146.0400 87.256 35.5720 1.4933  234.9517 115.37 47.8688 2.0049  555.5162 150.245 111.659 7.7538 

-10 167.4788 90.178 38.7365 1.6236  274.0150 117.98 53.0097 2.2363  598.0119 153.090 118.647 8.5297 

-15 184.8617 93.109 41.3652 1.7668  313.0262 119.65 58.4584 2.6056  647.4693 159.162 126.771 9.4924 

-20 206.2730 95.387 44.9148 1.9236  337.1773 121.26 61.9475 2.8257  705.6064 164.156 136.325 10.706 

-25 230.8144 97.283 48.9843 2.1596  377.4379 127.61 67.5835 3.2822  771.5131 166.928 146.959 12.158 

 
 
 

 
 

Figure 9. Convergence of fitness functions; Dashed (PSO) and Solid (PSO-TVAC). 
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achieves good robust performance compared to that of 
PSO and classical methods designed PSSs. 
 
 
Conclusions 
 
In this paper, the improved PSO with time-varying 
acceleration coefficients algorithm has been proposed to 
optimal tune of the PSS parameters to enhance the 
relative stability and secure operation of the multi 
machine power systems. To optimize the parameters of 
the stabilizers a time domain-based objective for a wide 
range of operation conditions is introduced and solved by 
PSO-TVAC. It performs both global and local search at 
each iteration process for significant increasing the 
probability of finding the optimal solution. Hence, the 
convergence precision and speed are remarkably 
improved and then the high precision and efficiency are 
achieved. 

The effectiveness of the proposed PSO-TVAC based 
tuned PSSs is shown on a multi-machine power system 
in comparison with the classical PSO and conventional 
method based designed PSSs through the nonlinear time 
domain simulation and some performance indices for a 
wide range of loading condition. The non-linear time 
domain simulation results show the improved PSO-TVAC 
algorithm provides good ability for effectively damping 
low frequency oscillations.  

Moreover, the system characteristics analysis using 
different introduced performance indices reveal that the 
proposed PSO-TVAC algorithm is superior that of the 
classical PSO one in terms of accuracy, convergence 
and computational effort. 
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