

Vol. 8(16), pp. 640-648, 25 April, 2013

DOI 10.5897/SRE2013. 5373

ISSN 1992-2248 © 2013 Academic Journals

http://www.academicjournals.org/SRE

Scientific Research and Essays

Full Length Research Paper

A new search algorithm for documents using blocks
and words prefixes

Khalid Thabit and Sumaia M. AL-Ghuribi*

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

Accepted 5 April, 2013

Web has become the most enormous distributed databases on the Internet. The numbers of Web pages
are growing in an amazing way. This leads to expanding the content information on the Web. With the
rapid growing, it is easy to share information in web. At the same time, it is a hard task to search useful
information effectively and accurately from vast amounts. This leads to create search methods that are
more efficient. In this paper a new search algorithm for documents using blocks and words prefixes are
presented. An implementation of the proposed algorithm is given also to check our algorithm
performance and validity; we make a comparison between it and binary search. The experimental
results show that the proposed algorithm outperforms the binary search in execution time and number
of comparison parameters. Our algorithm using blocks and words prefixes is 66% faster than the binary
search.

Key words: Search methods, binary search, blocks, words prefixes, execution time.

INTRODUCTION

The Internet has become a key communication and
information medium for various organizations (Qingyu
and Richard, 2008). It is a medium for accessing a great
variety of information stored in different parts of the world.
In recent years the growth of the World Wide Web
exceeded all expectations. Today, there are several
billions of HTML documents, pictures and other
multimedia files available via Internet and the number is
still rising (Bharanipriy and Prasad, 2011). With the rapid
rising, it is very easy to publish and share information in
web. At the same time, it is a hard task to search useful
information effectively and accurately from vast amounts
of data (XiangFeng and Quan, 2007). As a result, there is
a need for efficient searching techniques to extract
appropriate information from the web, as the users
require correct and complex information from the web
(Raymond and Hendrik, 2000). Many techniques for

searching are available; a brief review of some related
works about text (document) search techniques has been
done.

XiangFeng and Quan (2007) suggested a semantic
parsing model constructed above a symbolic system of
concepts for understanding natural language. Based on
the model a sentence can be mapped into the
corresponding semantic category. A text search
prototype based on the semantic model represented
more accurate result by comparing the conceptual
structures between search condition and text.

Kulekci (2007) introduced a new multi-pattern matching
algorithm called Tara. It performs the searching process
of fixed-length strings on text files with having the benefit
of bit-parallelism which makes it works fast. Tara
supports bounded gaps and character classes. The
performance of Tara algorithm is compared with widely

*Corresponding author. E-mails: somaiya.ghoraibi@gmail.com, drthabit@gmail.com.

used GNU grep file search utility and also with 9 variants
of Aho&Corasick and Comentz&Walter algorithms on
natural language text. Tara algorithm outperforms them
and be the fastest of them.

Holger et al. (2008) presented a demo of ESTER, a
search engine that combines the ease of use, speed and
scalability of full-text search with the powerful semantic
capabilities of ontologies. They demonstrated the
capabilities of ESTER on a combination of the English
Wikipedia with the Yago ontology, with response times
below 100 milliseconds for most queries, and an index
size of about 4 GB. The system can be run both stand-
alone and as a Web application.

Bharat et al. (2009) proposed an efficient word
searching algorithm through splitting and hashing the
offline text. In this algorithm the offline text is splitting into
number of tables in the preprocessing phase. After
splitting the text into number of tables, they match the
hash value of the pattern P with the hash values of the
words of same length in the text T. This algorithm
reduces the search time of word searching algorithm
WSA which is suggested by (Ibrahiem and Mohammed,
2008) for solving the word matching problem by splitting
the offline text into number of tables in the preprocessing
phase. Ishadutta et al. (2009) proposed multi-patterns
word searching algorithm (MPWSA). This algorithm is
extended to WSA algorithm which is proposed by
(Ibrahiem and Mohammed, 2008) and made it for multi-
patterns word matching by using the technique of bit-
parallel proposed by (Baeza and Gonnet, 1992). In this
algorithm the shift-or algorithm is applied to find the
words with the same length in a text and by using the
concept of classes of characters the set of multiple
patterns is handled. Results show that MPWSA algorithm
is faster than the proposed WSA algorithm.

Minnie and Srinivasan (2011) proposed intelligent
search engine algorithms on indexing and searching of
text documents using text representation. The indexing of
text documents is done by classifying a text document
based on its content and the presentation style of the
content of the text document. Seven indexing algorithms
and two searching algorithms are implemented.

Kwang et al. (2011) suggested an efficient string
searching algorithm depending on characteristics of
English alphabets combination in a pattern and a text like
frequency and position of vowels in a pattern and a text.
In this algorithm the pattern's length has no affect in the
algorithm's performance, while pattern's location in a text
influences on the algorithm's time. Using this algorithm
un-matching vowels in a text and useless comparison
between a pattern and a text can be avoided, which
makes this algorithm useful and effective one in
searching.

This paper gives a new search algorithm for documents
using blocks and words prefixes. By using this algorithm
in search engines the process of search will be more
accurate and faster.

Thabit and Al-Ghuribi 641

THE NEW SEARCH ALGORITHM FOR DOCUMENTS

Search algorithm using blocks and words prefixes

This algorithm depends on the concept of word prefix, the
letters at the beginning of the word. The first four letters
of the search word are used as indexes to determine
where the search starts.

The idea of this algorithm is that words with length
three or four are not stored in the search blocks and
words with length more than four are stored in blocks
ordered by alphabet. And when we made a search for a
word, we do not make the search from the beginning of
the block, we make it from the first word that has the
same prefix as the search word in the suitable block. Ex.
If we have in block < T> the following words “tabernacles,
table, tableau, tables, tablet,……., thanks, thawed,
theatre, their, theme, themselves, theory, there,
thereabouts, thereby”, etc. And we want to search for,
“there”, we will not search from the beginning of <T>
block, “tabernacles”, we will search from the word theatre
position which contains the first word with “the” prefix.
This will reduce the number of comparisons and speed
the process of searching.

The method of this algorithm is given below:

For any web text (document) you want to search from it,
“book, story, articles, novel or any other texts‟, the
following steps for preprocessing are done.

1. Tokenization where the input is taken as a plain text
document and a set of tokens are produced. White
space, punctuation marks and Full stops are used as
word separators.
2. Delete repeated word.
3. Delete Empty tokens, numbers and critics mark.
4. Sort tokens by alphabet and stored them in a main
array.
5. A 4 dimensional array is created, called prefix_array,
with Boolean value which considers their indexes as the
position of word prefix. Ex. for the word “the” the index of
the prefix_array will be [20, 8, 5, 0]. Where t=20; h=8;
e=5; the fourth dimension will be zero in case of words of
length 3; and for the word "they" the index of the
prefix_array will be [20, 8, 5, 25] Where y=25 and the
same for all the alphabets letters starting from a =1 and
ending with z = 26. The value of this array will be 1 or 0, if
there is a word with the determined word prefix, the value
for the array will be one otherwise zero. Ex. if the
document contains the following words the, there, these,
those; this will lead that the prefix_array in [20, 8, 5, 0]
will equal 1. We put zero value as an initial value for the
prefx_array. Also a 4 dimensional array is created, called
flag array with Boolean value which indicates that the
word in the determined indexing is full word (1) or prefix
(0). Ex. they , those are two words in the document the
flag array of they [20,8,5,25] =1 "complete word", while

642 Sci. Res. Essays

the flag array of thos [20,8,15,19]= 0 "Just prefix".
6. A 4 dimensional array is created, called position_array,
with integer value. This array is responsible for storing
the index of the first occurrence of the prefix of the word if
only the prefix_array for the word is holding the value 1
and the indexes of this array as same as the prefix_array.
Ex. If we have in block <T> the following words tableau,
tables, table, thanks, thawed, theatre, their, theme,
themselves, theory, there, thereabouts, thereby, etc. The
prefix_array in [20, 8, 5, 0] will be 1 so position_array in
[20, 8, 5, 0] will be 6 which indicated to the index of the
first word which has the prefix “the” in it.
7. The process of storing words in the appropriate blocks
is as following:

7a. Words with length 3 and words with length 4 are not
inserted to the block and insert the value 1 for the
prefix_array in the correct index of the word. Also insert 1
to flag array to indicate that the word is complete and it is
not a prefix. Ex. If the word “fan” is in the document, we
will not insert it to the block and insert in prefix_array at
index [6, 1, 14, 0] the value 1.

Then check the next word in the main array if its prefix
is as same as the word which we add 1 for it in the
prefix_array we put it in the appropriate block and put its
index in the position array for the first occurrence of the
prefix only. The process of checking next word prefix is
continued, and each time the word is inserted to the
appropriate block with no inserting in prefix array if the
prefix as same as the word which we put its index in the
position array, until the prefix of the word is become
different.
7b. Words with length more than 4 are inserted to the
block with two additional steps. First insert the value 1 for
the prefix_array in the index of each word. Ex. If the word
“these” is in the document, we will insert it to the block
<T> and insert in prefix_array at index [20, 8, 5, 0] the
value 1. Second, insert the index of the word in the block,
where the first occurrence of the prefix of the word is
occurred, in the position_array if and only if the
prefix_array at that index is 1. Then as step 7a the
process of checking next word prefix is continued, and
each time the word is inserted to the appropriate block
with no inserting in prefix array if the prefix as same as
the word which we put its index in the position array, until
the prefix of the word is become different.

Figure 1 shows the steps of the preprocessing of the
algorithm. So when the user wants to search about any
word in the text (document) using this algorithm , first the
length of the word is taken ,if its three or four only one
step is made by searching in prefix_array and flag array
in the index of the word, otherwise if the length is more
than 4 the search will be made only from the index of the
word that has the first occurrence of the prefix of the
search word in the appropriate block, this leads to
enhance the performance of the search process and
make it faster as written in algorithm 1.

Figure 2 shows the mechanism of the algorithm in
details. For example suppose a book contains of 500000
words and does not contain any word starting with v
letter.

In the sequential search, the result “NOT FOUND” will
appear after 500000 comparisons. But, in this algorithm,
the prefix of the word is taken and search for it in
prefix_array in the appropriate index, the result of it will
be zero that means there is no word with this prefix. This
is done only in one step.

IMPLEMENTATION OF THE NEW SEARCH
ALGORITHM

The text search algorithm is implemented using Microsoft
visual studio 2010 using c sharp language. The interface
of the program is shown in Figure 3.

An English novel called MOBY DICK, which is available
at (http://www.gutenberg.org/files/2701/2701-h/2701-
h.htm), is copied into text file as Figure 4, the size of the
novel is 1340 KB and it contains of 192608 words with
16017 distinct words, 392 of them are with length 3 and
1261 of them are with length 4.

The novel is considered as an input to the program to
test the efficiency of our algorithms. By applying the first
3 steps of preprocessing, the number of the words is
minimized from 192608 to 16017 which is a great
difference. That is, 176591 words are deleted using our
algorithm; they are repeated words, empty tokens,
numbers, critics mark or words with length less than 3.

By applying the remaining steps, words will be
arranged in blocks as illustrated in “the new search
algorithm for documents” part of this work. Table 1 shows
the 26 blocks of our algorithm and how many words in
each block.

The total number of words in A-Z blocks is 14364
words. The 1653 words, which considered 13% of the
total distinct words, with length 3 and 4 are not inserted.

Finally the user can insert the number of words that
he/she wants to search for, in the text box, and then by
pressing Load words from file button, all the search
words are loaded to the program. Note, you must have all
the search words in a txt file so the program can load
them. Finally he/she presses applying text search
algorithm button, the result will print in a text box
containing the number of comparison that are made and
the time that is taken to execute the searching process as
Figure 5 shows.

COMPARISON BETWEEN OUR ALGORITHM AND
BINARY SEARCH

In order to check the validity and the performance of our
algorithm we compare the output results of the proposed
algorithm (as explained in “the new search algorithm for
documents” part of this work) with the binary search.

Thabit and Al-Ghuribi 643

Figure 1. Preprocessing steps for algorithm.

start

Insert document

Tokenization

Delete repeated words,Empty

tokens,Critic Marks

End

Calculate

Word length

Insert 1 in Prefix_array

and insert 1 in flag array

in the correct position

Equal 3 or

Equal 4

Sort words alphabetically &

store them in main array

Take word from main

array

 Check prefix

next words in the

main array

Same as the word

of length 3 or 4

Insert the word to the

appropriate block , put the

index of word into position

array in the correct

position and insert 1 to

insert flag

differ from the word

of length 3 or 4

 Check Insert flag

Equal 0

Equal 1

Insert the word to

the appropriate

block

Take the four letters as

prefix , Insert 1 in

Prefix_array in the

correct index

Insert the word into the

appropriate block put

the index of word into

index array in the

correct position and

insert 1 to insert flag

Greater than 4

Main array

Empty

NO

YES

644 Sci. Res. Essays

Figure 2. Search algorithm using blocks and words prefixes.

Start

Insert Word for

searching

Calculate

Word length

Take the start index for

searching from

Prefix_position

Equal 3 or Equal 4

Greater than 4

 Check value

 of Prefix_array

and flag array in the

correct index

Check value

 of Prefix_array in

its correct index

 Check If word

Found in block

End

 Is next Word Prefix

in block same as the

prefix of search

word

Display Word Not Found

Search next word

in the block

NO

NO

Yes

Yes

Display Word Found

 Both Equal 1

One or both of

them Equal 0

Equal 1

Equal 0

Thabit and Al-Ghuribi 645

Figure 3. The interface of the implementation of the suggested algorithm.

Figure 4. The Moby Dick novel for testing.

646 Sci. Res. Essays

Table 1. Showing A-Z blocks in the two suggested algorithms.

Block name # of words in our algorithm Block name # of words in our algorithm

A 829 N 210

B 863 O 307

C 1428 P 1137

D 823 Q 74

E 620 R 710

F 666 S 1844

G 424 T 686

H 527 U 465

I 669 V 236

J 121 W 476

K 83 X 1

L 431 Y 37

M 688 Z 9

Figure 5. The Interface of the program showing the result of searching for 1000 words.

Thabit and Al-Ghuribi 647

Figure 6. Execution time of sequential search and the proposed algorithms.

Table 2. Number of comparisons of binary and the proposed algorithm.

Number of word No. of comparisons our algorithm No. of comparisons binary search

50 77 697

100 162 1397

500 856 6987

1000 1705 13977

1500 2563 20968

2000 3420 27950

2500 4253 34936

3000 5073 41926

3500 5900 48917

4000 6721 55909

4500 7553 62892

5000 8385 69880

5500 9212 76872

6000 10060 83853

Binary Search algorithm is one of the best algorithms for
searching. We use execution time and number of
comparisons as performance parameters to compare
between the performances of them.

We make the test for the previous novel, Moby Nick,
which is shown in Figure 4 and download the most 6000
frequency words (http://www.wordfrequency.info/). We
put the 6000 words in a text file to be called from our
program. The search starts from 50 words until 6000
words.

Figure 6 shows the comparison between our algorithm
and binary search in the execution time (in millisecond)
parameter. From this Figure, we can see that our
algorithm takes less time compared to binary search. Our
algorithm is 66% faster than binary search.

Also the comparison parameter proves the great
performance of our algorithm as Table 2 shows.

Table 2 presents the number of comparisons for words
when the search is made for the previous novel. The very
big difference between our algorithm and binary search
concludes that our algorithm works efficiently.

CONCLUSION AND FUTURE WORK

With the rapid increasing of the document in World Wide
Web and everywhere, a need for search algorithm
becomes an important issue. In this paper a new search
algorithm for documents using blocks and word prefixes
is presented. An implementation for the proposed
algorithm is given. Finally to find that our algorithm works
well and to prove the benefit of our new algorithm we
made a comparison between it and binary search
algorithm. Our algorithm outperforms binary algorithm in

http://www.wordfrequency.info/

648 Sci. Res. Essays

the execution time and number of comparisons
parameters, which prove its efficiency. For the future
work, we plan to make this algorithm applicable for Arabic
language. We also plan to develop the program to be
extracting text from web page instead of copying the web
text into a text file.

REFERENCES

 Baeza R, Gonnet G (1992). A new approach to text searching.

Commun. ACM, pp. 74-82.
Bharanipriy V, Prasad V (2011). Web Content Mining Tools: A

Comparative Study. Int. J. Inf. Technol. Knowl. Manage. 4(1):211-
215.

Bharat S, Ishadutta Y, Suneeta A, Rajesh P (2009). An Efficient Word
Searching Algorithm through Splitting and Hashing the Offline
Text. Recent Technologies in Communication and Computing, 2009.
ARTCom '09. International Conference 27-28 Oct. 2009, pp. 387-389.

Holger B, Fabian S, Ingmar W (2008). Semantic Full-Text Search with
ESTER: Scalable, Easy, Fast. Data Mining Workshops, 2008.
ICDMW '08. IEEE International Conference 15-19 Dec. 2008, pp.
959-962.

Ibrahiem E, Mohammed J (2008). A New Approach for Solving String
Matching Problem through Splitting the Unchangeable Text. World.
Appl. Sci. J., pp. 626-633.

Ishadutta Y, Bharat S, Suneeta A, Rajesh P (2009). An Efficient Bit-

Parallel Multi-Patterns Word Searching Algorithm through Splitting
the Text . Recent Technologies in Communication and Computing.
ARTCom '09. International Conference 27-28 Oct. 2009, pp. 406-410.

Kulekci M (2007). Tara: An algorithm for fast searching of multiple
patterns on text files. Comput. Information Sciences (ISCIS) 2007.
22nd International Symposium, pp. 1-6.

Kwang C, Heon Y, Sung J (2011). An Efficient String Searching
Algorithm Based on Vowel Occurrence Pattern. Commun. Comput.
Inf. Sci. 185:379-386.

Minnie D, Srinivasan S (2011). Intelligent Search Engine algorithms on
indexing and searching of text documents using text representation.
Information Systems (ReTIS), 2011 International Conference, pp.
121-125.

Qingyu Z, Richard S (2008). Web mining: A survey of current research,
Techniques, and software. Int. J. Inf. Technol. Decis. Making
7(4):683-720.

Raymond K, Hendrik B (2000). Web Mining Research: A Survey.
SIGKDD Explor. 2(1):1-15.

XiangFeng W, Quan Z (2007). Approach of Text Search Based on
Semantic Parsing Model. Fuzzy Systems and Knowledge Discovery
(FSKD) 2007. Fourth International Conference, pp. 355-359.

http://link.springer.com/search?facet-author=%22Kwang+Sik+Chung%22
http://link.springer.com/search?facet-author=%22Heon-Chang+Yu%22
http://link.springer.com/search?facet-author=%22Sung+Ho+Jin%22
http://link.springer.com/bookseries/7899
http://link.springer.com/bookseries/7899

