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Much research has been done in developing techniques for identifying the structural damping of 
physical systems. Such techniques are always accompanied by the development of an analytical model 
of the ideal system and its comparison with experimental data obtained in laboratory. Also, flexible 
systems are difficult to be modeled, but the authors can use an approximation, supposing that a flexible 
system, composed by a cantilever beam, can be similar to a massa-spring-damper system. In this work, 
are shown a recursive technique for identifying the structural damping of a physical system and its 
applications. The authors identified the structural damping of a system consisting of a flexible beam 
clamped where the authors use a mass-spring-damper model to represent it. The excitation of the 
system was carried out using an impact hammer in order to use such data at the input of the analytical 
model obtained for the system. For the flexible system, the authors implemented the methodology of 
recursive Kalman’s filter, in order to identify the flexibility and damping coefficients. The results show 
that the technique has been successfully applied once the error obtained by comparing the 
experimental and analytical data is quite small. 
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INTRODUCTION 
 
The area of identification of damping of physical systems 
still has several questions to be answered by the 
scientific community. The effects of damping are well 
known, but its precise characterization is still an unsolved 
problem. In Pilkey et al. (1997), the authors propose two 
methods for identification of damping, an  interactive  and 

another that uses the method of least squares. In 
Adhikari (2002), the author proposes a method, based on 
the poles and waste measurements of transfer functions 
associated with the method of Lancaster. In Pradhan and 
Modak (2012), the authors address the issue of 
identification of damping matrix of a structure by posing  it  
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as a finite element damping matrix updating problem. 
According to the authors, the formulation developed 
seeks to separate updating of the damping matrix from 
that of updating of the stiffness and the mass matrix, 
reducing the difference between the complex FRFs. In 
Andrianne and Dimitriadis (2012), the authors show a 
new technique to identify the damping of linear systems. 
The ability of such technique to estimate the mode 
shapes and the modal damping is demonstrated, by the 
authors, on a simulated mass–spring–damper system. In 
Arora (2014), the author proposes and tests a new 
structural damping identification method using normal 
frequency response functions which are obtained 
experimentally. According to the author, the test has the 
objective that the damped finite element model is able to 
predict the measured FRFs accurately.  

In Pan and Wang (2014), the authors outline a complex 
mode procedure for identifying the exponential damping 
model and discuss its applicability and limitations. Also a 
new iterative method for relaxation factor is proposed, 
without using the full set of modal data. The authors also 
state that the finite element model updated method for 
the systems with exponential damping can predict 
accurately not only the natural frequencies but also the 
FRFs of the systems. In Arora (2015), the author 
proposes a method, which is a FRF-based method and 
overcomes the problem of closely spaced modes for 
damping identification. The author also states that the 
accuracy of identified structural damping matrix depends 
upon the accuracy of finite element model. To address 
this issue, in this paper was set up a simple experiment in 
the Vibration Laboratory, Department of Mechanical 
Engineering at University of Taubaté (UNITAU). The 
experiment used as input an impulse from an impact 
hammer, whose calibration is performed in the laboratory. 
The experiment consists of a flexible beam instrumented 
with an accelerometer on its free tip and also excited by 
the impact hammer.  

This paper presents the analytical modeling of the 
physical system, together with studies to validate its 
models through experimental tests and studies of 
parametric identification of the parameters of the systems 
in the time domain. An impulse (applied by the impact 
hammer) excites the beam and the excitation of the tip of 
the beam, measured by an accelerometer, is acquired for 
further analysis. In order to do the system’s parameters 
identification, the authors implemented a recursive 
Kalman filter, using the Octave software. Preliminary 
results show a good agreement between experimental 
and analytical models, leading us to conclude that the 
computational procedure works quite satisfactory. 

 
 
CALIBRATION OF THE IMPACT HAMMER  

 
Aiming to increase the reliability of the experimental data, 
the authors chose to calibrate the  impact hammer  in  the 
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laboratory, setting up an experimental set-up consisting 
of a known mass and a capacitive accelerometer (model 
MMA1220D Micro machined Motorola), previously 
calibrated (the accelerometer sensibility was supplied by 
the manufacturer), as illustrated in Figure 1. 

This experiment is suggested by the equipment 
manufacturer (PCB Piezotronics) and involves the 
application of Newton’s 2nd law to the result of applying 
an impulse to a known mass: 
 

                            (1) 

 
Writing the equations in terms of the sensibility of the 
accelerometer and impact hammer, the authors have: 
 

                         (2) 

 
In Equations (1) and (2), a is the acceleration of gravity. F 
is force, m is the mass used in the experiment 
(m=200.23g), VF is the voltage peak value registered by 
the impact hammer, SF is the sensitivity of the impact 
hammer, Va is the voltage peak registered by 
accelerometer and Sa is the sensitivity of the 
accelerometer, supplied by the manufacturer 
(Sa=250mV/g). Figures 2 and 3 illustrate the temporal 
response of the impact hammer and the accelerometer, 
after the application of an impulse to the mass. 
Replacing numerical values in Equation (2), the authors 
obtain: 
 

 
 
Once given the sensitivity of the impact hammer, the 
experiment was assembled as described in this research. 
 
 
IDENTIFICATION OF A STRUCTURAL DAMPING OF A 
CANTILEVER BEAM 

 
Approximate mathematical model of a cantilever 
beam 
 
The simplified model of a simple cantilever beam, shown 
in Figure 4 can be obtained comparing it to a mass-
spring-damper system. Damping constant b is due to 
structural damping of the beam, and flexibility is given by 
k. Writing kinetic, potential and dissipation energy of the 
system, the authors have: 
 

                (3) 

 

                (4) 

 
                (5) 
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Figure 1. Scheme for the calibration of the impact 
hammer. 
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Figure 2. Output of the accelerometer after application of an impulse to the mass. 
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Figure 3. Output of impact hammer after applying an impulse to the mass. 

 
 
 

 
 

Figure 4. Schematic of the cantilever beam system and a mass-spring-damper 
system. 

 
 
 

Using Lagrange’s equations Wellstead (1979), one 
obtains the model described by the classical Equation 
(6). 
 

                          (6) 

 
Where f(t) is an external force applied to the system to 
excite him. In the Laboratory of Mechanical Vibrations, an 
experiment was set up with a cantilever beam, with the 
characteristics described in Table 1. 

The data acquisition equipment was composed by a 
capacitive accelerometer (model MMA1220D Micro 
machined  Motorola),  connected  to  a  signal  acquisition 

board (NI USB-6009 from National Instruments) 
connected to a USB port on a PC compatible. The 
experimental data acquisition program was developed 
using the graphical language LabView ®. The 
accelerometer was attached to the free tip of the beam 
and the system was excited with an impulse applied to 
the impact hammer (Figure 5). 
 
 
Digital filtering and numerical integration 
 
Accelerometers are sensors widely used in engineering 
applications. It can be helpful to  perform  modal  analysis  
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Table 1. Physical parameters of the cantilever beam. 
 

Aluminum density  2710 Kg/m³ 

Aluminum Young's modulus E 7.1E10 N/m² 

Beam’s width eb 31.7 E-3 m 

Beam’s height hb 3.3E-3 m 

Beam’s length Lb 0.7 m 

Beam’s cross-section area A 10.46E-5 m
2
 

Beam’s moment of inertia I 9.493E-11 m
4
 

 
 
 

 
 
Figure 5. Experiment mounted with a cantilever beam. 

 
 
 
and many others analysis in frequency domain. If the 
authors are not concerned with the signal amplitude, this 
analysis could be done without worries. In this case, the 
authors are interested to have a precisely measurement 
of a velocity and displacement at the position where the 
accelerometer was located. This will lead us to be sure 
that the signal amplitude is correct. Also, the authors 
need to perform a numerical integration of the signal 
twice. Figure 6 represents a scheme about what the 
authors implement at first. 

The filter that the authors choose was a high pass 
Butterworth with five terms and cutoff frequency in 5Hz. 
Those values were chosen empirically. To reach at the 
results, the authors used the routine available in Octave® 
software, called butter, which designs the filter by 
calculating its coefficients and the routine filter which 
applies the calculated coefficients to the signal. The 
numerical integrator used, implements the Trapezoidal 
Rule and the authors used the routine also available in 
Octave® software called trapz. Figure 7 and 8 illustrate 
the results of the application of an impulse to the 
cantilevered beam. 

For the identification of damping parameter (b) and 
flexibility parameter (k) of the cantilever beam, the 
authors used the technique of recursive Kalman filter 
(Bierman, 1977). For the assembly process, Equation (6) 
should be rewritten as: 
 

               (7) 

 

In Equation (7), the values of  and f(t) are the output of 

the accelerometer and impact hammer respectively and 

the values  and x were obtained by integrating twice the 

signal from the accelerometer, like previously mentioned. 
The system was therefore placed in the form: 
 

                                                                    (8) 

 
Comparing Equation (7) and (8) the authors can do the 
following assignments: 
 

                  (9) 

 

              (10) 
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Figure 6. Scheme to obtain the velocity and displacement of the free tip of the beam. 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 7. Impact Hammer output after applying an impulse to the cantilever beam. 
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Figure 7. Impact Hammer output after applying an impulse to the cantilever beam. 

 
 
 

 

 

 

  

 

 

 

 

 
Figure 7. Impact Hammer output after applying an impulse to the cantilever beam. 
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Figure 8. Acceleration of the free tip of the beam after application of the pulse. 
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Figure 9. Results of the recursive Kalman filter in the calculation of b and k. 

 
 
 

     (11) 

 

And  is the error associated with the observations. 

The recursive Kalman filter algorithm (Appendix A), 
implemented in Octave software version 3.0.0, has 
calculated the following values for k and b, respectively: 

216.29  and 0.99693 . The graph (Figure 9) 

shows the robustness of the method, which converge 
shortly after the sample number 200of 1000 samples 
considered. 

With the parameters identified, the authors compare 
the analytical model, given by Equation (6) and the 
experimental model in the graphic illustrated in Figures 
10 and 11. 

Figure 11 also shows the comparison of the results but 
with a more favorable range, in order to highlight the 
agreement between the experimental and analytical 
results. 
 
 
DISCUSSION 
 
The identification of the damping in flexible systems is 
still a challenge to be overcome. The use  of  a  recursive 

technique shows that it is possible to reach a reasonable 
estimation with a reliable method, the recursive Kalman 
filter. The technique is very simple to implement and 
show a very nice convergence using only a few samples.  

 
 
CONCLUSIONS AND FURTHER WORK 
 
This paper presents the identification of the damping and 
flexibility parameters of a physical system composed by a 
cantilever beam. To validate the identified parameters a 
representative experiment were assembled in laboratory. 
The experiment was monitored using the LabVIEW 
software and a data acquisition board (NI USB -6009 
manufactured by National Instruments). The authors 
implemented the method of recursive Kalman filter to 
identify the damping parameters (b) and flexibility (k) of 
the system. Results obtained show (Figures 10 and 11) 
good agreement between the analytical model and 
experimental, suggesting success in the identification. 
The work is in progress and proposals for its continuation 
are: (a) work with an even simpler system with 
concentrated parameters, but with more degrees of 
freedom   and   (b)   using   the   full   model    (distributed  
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Figure 10. Comparison between analytical and experimental models. 
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Figure 11. New comparison between the analytical and experimental models. 
 
 
 

parameter) of the cantilever considering their flexibility 
and degrees of freedom and carrying out the 
identification of the structural damping matrix.  
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APPENDIX  
 
A – Recursive Kalman filter routine 
 
function [x,P] = kalman(x,A,z,N,P); 
 
sigma = 1; 
delta = z; 
for i=1:N, 
    v(i) = 0.0; 
    for j=1:N, v(i) = v(i) + P(i,j)*A(j); end; 
    delta = delta - A(i) * x(i); 
    sigma = sigma + A(i) * v(i); 
end; 
 
%                             t                         t 
%Comment : v = PA  , sigma = APA  + 1, and 
%          delta = z - Ax have been computed 
% 
 
 
 
 

 
 
 
 
sigma = 1.0/sigma; 
for i=1:N, 
   K(i) = v(i) * sigma;  % Kalman gain  
   x(i) = x(i) + K(i) * delta; 
   for j=1:N, P(i,j) = P(i,j) - K(i)*v(j); end; 
   P(j,i) = P(i,j);   % utilized simmetry  
end; 
 
% Comment : Kalman gain, updated estimate and  
% optimal covariance have been computed 
%    
 
for i = 1:N, 
   v(i) = 0.0; 
   for j=1:N, v(i) = v(i)+P(i,j) * A(j); end; 
end; 
 
for j=1:N, 
    for i=1:j, 
       s = 0.5 * (P(i,j) - v(i) * K(j) + P(i,j) - v(j) * K(i)); 
       P(i,j) = s + K(i) * K(j);  % stabilized update 
       P(j,i) = P(i,j); 
     end; 
end; 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 


