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The aim of the study is to develop a new methodology for the identification of urbanized and not 

urbanized areas using high spatial resolution remote sensing data and adapting a new digital 

classification algorithm based on the functionality of the human Neocortex. We used multispectral 

Quickbird images for the classification of different urban areas in the Province of Cordoba (Spain). The 

Memory-Prediction Theory, implemented in the form of a Hierarchical Temporal Memory (HTM), was 

applied by means of the Nupic software, in order to obtain the classification of urban land cover types. 

HTM is a new computing technology that replicates the structure and function of the human 

neocortex. The conclusion indicates that Hierarchical Temporal Memory has great potential for 

extracting urban areas information from high satellite imagery and the 93.8% of the parcels has been 

well classified. As conclusion, this methodology can improve the level of automatization of digital 

classifications using high remote sensing data. 

 

Key words: Hierarchical temporal memory, urban areas, memory-prediction theory, objects based 
classification, Neocortex. 

 

 

INTRODUCTION  
 
Nowadays very high resolution commercial satellite 
images from urban areas are now available for very 
important applications and they provide more detailed 
spatial information such as texture, shape size and 
context rather than spectral information. In contrast, the 
high resolution images from satellites, each pixel no 
longer refers to a complete object, character or area, but 
rather to a portion of the components of these, which 
means that classic techniques of classification based on 
pixels present some limitations (Wilkinson et al., 1991): 
(1) the spectral information contained in pixels is not 
sufficient in the majority of  cases,  such   as   to   identify 
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vegetation species or the types of surface cover; and (2) 
normally pixels include a radiometric mixture from their 
neighbors and consequently few zones have total 
homogeneity. In the area of the digital treatment of 
images, there is currently great interest in the 
development of new classification algorithms (Ayala and 
Menenti, 2002). The combination of spectral data with 
other sources of auxiliary data allows for the use of more 
information that can improve classifications (Abkar et al., 
2000). Although their spatial resolution enables the iden-
tification of urban and sub-urban objects, these images 
are difficult to classify on a pixel-by-pixel basis due to 
their high level of information (Van der Sande et al., 
2003). Consequently, classical algorithms of pixel based 
image analysis are becoming less important for high 
resolution classification (Antunes et al., 2003). 

An  alternative  to  a  pixel  based  classification  is  the 



                            

 

 

 
 
 
 
classification based on objects that takes into account 
other information, such as the shape, textures and 
spectral information.  

The detection of high vegetation in urban areas, such 
as parks and small forests next to residential areas, is 
needed for several applications and the urban develop-
ment is one of the key issues facing land-use planning 
departments today. The extraction of large scale 
geographical information from very high resolution 
satellite images is an important research topic in urban 
studies, especially in areas with an elevated rate of urban 
changes, as a way to update the geographical 
information (Dinis et al., 2010). Several studies estimate 
vegetation in urban areas from satellite images for 
different purposes, such as carbon storage modeling 
(Myeong et al., 2006) or the comparison of vegetation 
occurrence in different cities (Small, 2007). 

Matikainen et al. (2007) distinguished buildings, high 
vegetation and ground using a decision tree. A digital 
surface model (DSM) derived from last pulse laser 
scanner data was first segmented and segments were 
classified into classes ‘ground’ and ‘building or tree’. 
Compared with a building map, a mean accuracy of 
almost 90% was achieved. 

Hug (1996) identified and extracted surface objects 
from the data of imaging laser altimeters. Surface objects 
were detected by applying a morphology-based filter to 
the elevation data. Then, these surface objects were 
separated into artificial objects (buildings) and natural 
objects (vegetation) using surface reflectance data, 
and/or elevation ‘texture’ and surface orientation. The 
best classification error was 21% that was reached using 
reflectance data. 

Vosselman et al. (2004) first separated bare earth 
LIDAR points from object points and then further classi-
fied the object points as building points or vegetation 
points. The overall classification accuracy over the three 
classes; bare earth, buildings and vegetation was 90%. 

Rottensteiner et al. (2005) evaluated a method for 
building detection by the Dempster-Shafer fusion of 
LIDAR data and multispectral images. For that purpose, 
ground truth was digitised for two test sites with quite 
different characteristics. Using these data sets, the 
heuristic model for the probability mass assignments of 
the method and the contributions of the individual cues 
used in the classification process were evaluated. This 
investigation showed that the NDVI increases the 
correctness by up to 15% for smaller buildings. 

Forlani et al. (2006) presented a three-stage frame 
work for a robust automatic classification of raw LIDAR 
data as buildings, ground and vegetation. First the raw 
data was filtered and interpolated over a grid. In the 
second stage, double raw data segmentation was 
performed and then geometric  and  topological   relation- 
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ships among regions were taking into consideration. 
Finally, a rule-based scheme was applied for the 
classification of the regions. 

Zhang et al. (2006) presented a framework that applied 
a series of algorithms to automatically extract building 
footprints from airbone light detection and ranging 
(LIDAR) measurements. In the proposed framework, the 
ground and non-ground LIDAR measurements was first 
separated using a progressive morphological filter. To 
test the proposed framework urbanized areas were 
employed and the total of omission and commission 
errors for extracted footprints was about 12%. 

Vögtle and Steinle (2000) presented a methodology for 
recognition and 3D reconstruction of buildings in urban 
environment. Laser scanning data and spectral 
information were used. The main advantages of this 
method was that the method is not limited to predefined 
building types like gable or hip roofed ones and it is not 
necessary to use data sources like digital city maps or 
digital cadastral maps. 

On the other hand, new progresses in neuroscience 
have increased the knowledge about the organization 
and operation of the cerebral cortex. Therefore it’s 
possible to apply its operation algorithms to the software, 
which was simplistic and had limited results using 
neuronal networks up to now. 

For decades, most artificial intelligence researchers 
tried to build intelligent machines that did not closely 
model the actual architecture and processes of the 
human brain. One of the reasons was that neuroscience 
provided many details about the brain, but an overall 
theory of brain function that could be used for designing 
such models was conspicuously lacking. 

A new theory called memory-prediction theory offers a 
large-scale framework of the processes in the human 
brain and invites computer scientists to use it in their 
quest of machine intelligence (Hawkins and Blakeslee, 
2004). 

The memory-prediction theory is based on the 
functioning of the human neocortex. It has a hierarchical 
network structure where each region performs the same 
basic operation (Hawkins and Blakeslee, 2004). 

Hawkins and Blaskeslee (2004) focus their theory on a 
unified model of how the human neocortex works, but in 
truth you do not need to have deep interest in 
neurobiology to see the power of the model. The basic 
idea is as follow: the brain uses large amounts of 
memory to create a hierarchical model of the world and 
uses it to create, by analogy, continuous predictions 
about future events.  

A hierarchical network structure guides the functioning 
of each region in the cortex. All regions in the hierarchy 
perform the same basic operation. The inputs to the 
regions at the lowest  levels   of   the   cortical   hierarchy 
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come from our senses and are represented by spatial 
and temporal patterns. The neocortex learns sequences 
of patterns by storing them in an invariant form in a 
hierarchical neural network. It recalls the patterns auto-
associatively when given only partial or distorted inputs. 
The structure of stored invariant representations captures 
the important relationships in the world, independent of 
the details. The primary function of the neocortex is to 
make predictions by comparing the knowledge of the 
invariant structure with the most recent observed details. 

Parts of this theory, known as the Memory-Prediction 
Theory (MPT), are modeled in the Hierarchical Temporal 
Memory or HTM technology developed by a company 
called Numenta®. 

HTM in urban environments has a lot of direct 
applications in land management issues. And thanks to 
the development of a large number of platforms mapping 
and navigation tools on the Internet (such as Google 
Maps or Google Earth) is necessary to develop programs 
and applications oriented to recognition and automatic 
classification of satellite images. 

Taking advantage of this, they must integrate new 
technologies emerging in the process of classification 
and recognition in images. 

The new technology of hierarchical temporal memory is 
able to develop processes of recognition and pattern 
classification in images with good results for the 
requirements discussed. 

There are still few applications of the HTM algorithm to 
the analysis or classification of high spatial remote 
sensing data. Perea et al. (2009) carried out a land use 
classification of digital aerial photographs using a 
network based on the Hierarchical Temporal Memory. A 
photogram received by a photogrammetric UltracamD® 
sensor of Vexcel, and data on 1513 plots in Manzanilla 
(Huelva, Spain) were used to validate the classification, 
achieving an overall classification accuracy of 90.4%. 

The general goal of this paper is to propound a 
methodology based on the Hierarchical Temporal 
Memory model, proposed by Numenta®, to improve the 
methodologies used nowadays in the characterization of 
urban areas. To achieve this, QuickBird imagery is used 
to develop an algorithm based on the Hierarchical 
Temporal Memory of Numenta® to produce updated 
thematic cartography for municipal activities.   

 

 
MATERIALS AND METHODS 

 
Study area 

 
The area of study was located in Cordoba city, Spain (37º53’5’’ N; 
4º46’44’’ O). This is a rectangular area of 18 x 9 km and covers 16200 
ha (Figure 1). This area was selected for two reasons:  

 
 
 
 
(1) It is an area known by the authors, thus facilitates the search  

areas of each class. 
(2) To work with images of an urban area because the elements of the 
territory in this type of environments have geometric patterns, different 
between them (e.g. building rooftops patterns are very different from 
the shape of a tree). The aim is to study the processes of recognition 
and classification in this type of geometric patterns. 
 
 

QuickBird images and preprocessing 

 
One multispectral image was used (QuickBird, Ortho Ready Standard 
Imagery, Digital Globe, Longmont, Colorado, USA), in UTM 
coordinates (Universal Transverse Mercator) and georeferenced in the 
WGS84 system. This image was ortorrectified and referred to the 
European Datum 1950 of the International Ellipsoid. The image was 
codified in 16 bits with a resolution of 2.4 m and was composed of four 
bands (blue, green, red and near infrared). The image was taken on 

16 August 2007, beginning at 10:56, with a solar elevation angle of 
59.8°. The system was developed to distinguish the following land 
covers: Road, Building and Park (Figure 2). 

The process began with the radiometric correction of the images. 
Radiometric corrections modify the original digital levels to assimilate 
them to values that will present the image in the case of ideal 
reception. QuickBird images already have a series of radiometric 
corrections that the distributing company applies to its commercial 

products. The main corrections in the images are: restoration of lost 
pixels from the image or the possible loss or addition to the image. 

A transformation of the digital levels at radiance values in the 
atmospheric ceiling was made and a reflectivity image was obtained. 
The conversion to the spectral radiance of the atmospheric ceiling can 
be done simply in two steps: the value of the corrected pixels is 
multiplied by the appropriate absolute calibration factor and the result 
is divided by the effective bandwidth to obtain spectral radiance. The 
radiometric calibration factor is included in the metadata files of the 

image. 
 
 
HTM configuration 

 
Hierarchical Temporal Memory (HTM) is a machine learning 
technology that aims to capture the structural and algorithmic 
properties of the neocortex (Numenta Inc., 2010). 

HTMs can be considered a form of Bayesian network where the 
network consists of a collection of nodes arranged in a tree-shaped 
hierarchy (Hawkins and George, 2007). Each node in the hierarchy 
self-discovers a set of causes in its input through a process of finding 
common spatial patterns and then detecting common temporal 
patterns (Numenta Inc., 2010). Unlike many Bayesian networks, 
HTMs are self-training, have a well-defined parent/child relationship 
between each node, inherently handle time-varying data, and afford 
mechanisms for covert attention. Sensory data are presented at the 

“bottom” of the hierarchy. To train an HTM, it is necessary to present 
continuous, time varying, sensory inputs while the causes underlying 
the same sensory data persist in the environment. In other words, you 
either move the senses of the HTM through the world, or the objects in 
the world move relative to the HTM’s senses. Time is the fundamental 
component of an HTM, and can be thought of as a learning supervisor. 
HTM networks are made of nodes; each node receives as input a 
temporal sequence of patterns. The goal of each node is to group input 

patterns that are likely to have the same cause, thereby forming 
invariant representations of extrinsic causes. 

An HTM node uses two grouping  mechanisms  to  form  invariants.
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Figure 1. Investigated area and satellite imagery coverage. 

 
 
 

 
 

Figure 2. Classified categories. 
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Table 1. The number of training and test images. 

 

Category Training images Testing images 

Road 300 150 

Building 300 150 

Park 300 150 
 

 

 

The first one is called spatial pooling, which receive raw data from the 
sensor; spatial poolers of higher nodes receive the outputs from their 
child nodes. The input of the spatial pooler in higher layers is the fixed-
order concatenation of the output of its children. This input is 
represented by row vectors, and the role of the spatial pooler is to 
build a matrix (the coincidence matrix) from input vectors that occur 
frequently. There are multiple spatial pooler algorithms, e.g. Gaussian 

and ‘Product’. The Gaussian spatial pooler algorithm is used for nodes 
at the input layer, whereas the nodes higher up the hierarchy use the 
‘Product’ spatial pooler. The Gaussian spatial pooler algorithm 
compares the raw input vectors to the existing coincidences in the 
coincidence matrix. If the Euclidean distance between an input vector 
and an existing coincidence is small enough, the input is considered to 
be the same coincidence, and the count for that coincidence is 
incremented and stored in memory. 

The ‘Product’ spatial pooler is always part of a node higher up the 

hierarchy, and receives the concatenation of the outputs of its child 
nodes. This vector is divided up into N portions, which is the number 
of children of the node. The ‘Product’ spatial pooler sets the highest 
value in each of these N distributions to 1, while the other values are 
set to 0. These new vectors are stored in the coincidence matrix, and 
the counts of the coincidences that already exist are incremented.    

The second mechanism is called temporal pooling, which groups 
together patterns that are temporally close. This way, patterns that are 

very different, but that have a common cause, can be in the same 
group. 

Both the spatial and temporal poolers switch from learning to 
inference mode at some point. In the case of the spatial pooler, its 
output is a vector of length equal to the number of patterns pooled by 
the node, and the ith position in this vector corresponds to the ith 
pattern inside this spatial pooler. 

This output is a probability distribution of the similarity between the 
input pattern and the stored patterns, measured in terms of Euclidean 

distances. An assumption commonly made by the designers of HTM 
is that the probability that a pattern is closest to another pattern falls 
off as a Gaussian function of the Euclidean distance, therefore it can 

be calculated as proportional to  in a node, and the outputs of 

the spatial pooler are the inputs of the temporal pooler. As mentioned 
before, the temporal pooler forms groups of patterns that are likely to 
follow each other in time, since it would indicate that they are likely to 

have the same cause in the world. 
The designers of HTM used a time-adjacency matrix partitioned 

with a ‘greedy’ algorithm. This algorithm creates groups by finding the 
most-connected pattern that is not part of a group, and picking the N 
most-connected patterns to this pattern recursively (Hawkins and 
George, 2007). For every input from the spatial pooler, the temporal 
pooler outputs a probability distribution over its groups, propagating 
the uncertainties up in the hierarchy in a Bayesian Belief Propagation 

way. The ambiguous information propagated from the bottom of the 
hierarchy is resolved higher up in the hierarchy. 

We used Nupic® (Numenta Platform   for   Intelligent   Computing),  

software for implementing HTMs developed by Numenta to implement 
our HTM network. The company provides examples of how to create 
and use HTMs in various scenarios. One of these examples trains an 
HTM to recognize black and white pictures (one bit per pixel) with 
different levels of deformations. Another example uses an HTM to 
classify fruit images (grayscale, 8 bits per pixel). We adapted these 
examples to solve problems related to the classification of urban 

areas. The segmentation of images for the training and classification 
processes of the HTM network has been fixed at 200 x 200 pixels, 
which is a size large enough to recognize patterns but not excessive. 
Large images are slow down this process. This size has also been 
chosen to define classes clearly and crisp, without outside 
interference patterns for each class. 

To implement an HTM, two steps have to be taken: creating the 
architecture, and training it with a set of training patterns. After, we 
created architecture and trained the network on the remote sensing 

data train set and finally we tested the HTM with test set. Table 1 
shows the number of training and testing images for the experiment. 

HTM networks are built and configured by writing Python scripts. 
While the majority of the scripts follow a standard pattern, each 
network requires customization. One must leverage in-depth 
knowledge of data to design and configure the hierarchy of nodes. 
Each node algorithm needs to be customized based on the input 
values it is encountering. Owing to the large number of node 

parameters, node configuration values will most likely be ‘tweaked’ 
after each iteration in order to improve accuracy. The network 
structure usually remains the same, reducing the amount of code that 
must be changed.   

Our HTM consists of 7 levels, three levels each with two sub-levels 
(a level which analyzes the spatial component and other level which 
analyze the temporal component) and a final classifier. It is the final 
element of the hierarchy and classifies the image into common 
categories (Figure 3). Through the parameter outputElementCount, 

the number of categories can be defined, three in this case.  
MaxDistance on the first level defines the minimum value that the 

squares of the Euclidean distances between an input (x) and all the 
previously memorized inputs (yi) have to take in order for x to be 
considered novel. maxGroupSize sets an upper limit for the number of 
quantized inputs that can form a group in the temporal pooler. The 
pooler algorithm used by the spatial pooler of higher levels is ‘product’, 
which means that the belief that an input during inference is similar to 

a given vector (previously memorized by the spatial pooler) is 
calculated as follows: 

 

                            (1) 

 
where nchildren is the number of children the node has, x is the input 
vector, yi are the vectors previously stored by the spatial pooler, and 
a[childn] is the part of vector a that is received from the n

th
 child.
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Figure 3. HTM with three layers of nodes. 

 
 
 

Finally, the temporal pooler at each level uses the sumProp 
algorithm, which takes the highest belief from each group to generate 
a distribution of beliefs over temporal groups during inference. 

Other parameters related with the scale of the images are; scaleRF- 
An integer specifying the number of scales (resolutions) in the multi-
resolution topology from which each node should receive input. For 

example, a value of 2 means that each node should receive input from 
2 scales. Note that unless scaleRF is 1, the number of resolutions 
seen by the parent level will be lower than the number seen at the 
current level. scaleOverlap; an integer specifying how many scales 
neighboring nodes should share in common. For example, if scaleRF 
is 2, scaleOverlap is 1, and there are 3 resolutions in the level below, 
some nodes will see the smaller and middle resolutions, and some 
nodes will see the middle and larger resolutions. 

 
 
Training phase 
 
Once the network is built, defining the architecture through which 
information flows, we set up the training process and the information 
processing. Thus, the key parameter is the number of iterations 
performed using the training images. In this case we have performed 
2000 iterations in three levels. It has been shown experimentally that, 

if the iterations are increasing to the double value (4000), it is not 
observed a significant increase of accuracy in the analysis. NuPIC has 
a user  interface  that  allows  interacting  with  the  network  while  the 

analysis process is carried out. 
In Figures 4 and 5, the training of temporal pooler of level 1, sub-

level 2 is showed. Next to the training image, a representation of 
information received by the spatial node of the first spatial pooler: 
GaborNode is also presented (Numenta Inc., 2008). 

 
 
Inference phase 
 
Once the network has been trained with the database provided, 
stating the categories, the inference stage is starting, where unknown 
images are analyzed by the network, according to the learned and 
memorized in the previous stage. 

Figures 6 and 7 present the system working on the inference stage. 

Again, it shows the status of any of the nodes while the network is 
processing information. In Figure 6, the first sub-level of the node is 
shown, the GaborNode, which creates a representation according to 
the known patterns of similar shape and texture. After finishing the 
recognition and inference phases, the application shows the evaluation 

process. 
 
 
RESULTS  
 

We verified the capability of the model to learn  invariant
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Figure 4. Training stage of level 1, sub-level 2. 

 
 
 

 
 

Figure 5. Training stage of level 2, sub-level 2.  
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Figure 6. Example of inference stage. 

 
 
 
representations from visual patterns and to store these 
patterns in the hierarchy and recall them auto-
associatively. During the experimentation, we varied 
some internal parameters affecting the learning process, 
and also made modifications to the algorithms and data 
structures themselves. The most important parameters 
modified are (Numenta Inc., 2008): 

Sparsify: Specifies whether a stored pattern is 
sparsified or not. If sparsify is true, then some compo-
nents of the stored pattern are zeroed out. In domains 
like vision and speech, sparsifying the stored coincidence 
patterns increases the recognition and generalization 
performance. In this experiment the sparsify was true. 

Sigma: During a node’s inference stage, an input 
pattern is compared to the stored patterns assuming that 
the stored patterns are centres of radial basis functions 
with Gaussian tuning. The sigma parameter specifies the 
standard deviation of this Gaussian. The best value for 
this parameter and this type of images was 0.15. 

RequestedGroupCount: It is a parameter that 
determines the maximum number of temporal groups 
that will be formed. The best value for this parameter 
and this type of images was 24. 

TransitionMemory: This parameter determines how far 
back in time the temporal pooler node looks for temporal 
transitions. Having a high transition Memory has the 

effect of smoothing out the temporal transitions so that 
temporal jitter and repeated states in the input sequence 
do not produce undesired behaviour. Larger values of 
transitionMemory were used for the higher level nodes as 
the Numenta Node Algorithms Guide recommends. 

We also investigated the effect of the parameters 
Maxdistance, scaleRF, scaleOverlap and the number of 
iterations on overall accuracy, the average number of 
coincidences and temporal groups learned in the bottom-
level nodes.  

The scaleRF and scaleOverlap parameters have been 
modified to obtain more accuracy results. These 
parameters are related to the image scale during the 
training phase, where the node receives the same 
information. The higher accuracy was obtained for a 
value of 3 for scaleRF and 2 for scaleOverlap. The 
maximum value obtained was 93.78%.  

However, increasing the maximum distance to 
consider a new similar pattern to one already stored on 
the network, disparate patterns, unrelated to space, can 
be more easily classified as patterns that do not belong 
to the same class. The results obtained in this case show 
a decreasing of accuracy to 68.45%. 

 By modifying the training process, significantly 
increasing the number of iterations (up to 4000 by level 
of    nodes),   no    change   is   observed   with   minimal
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Figure 7. Classification errors during the inference stage. 

 
 
 
representative. 
 
 
DISCUSSION 
 

Three parameters have been modified during the 
classification; MaxDistance parameter, which defines the 
minimum Euclidean distance between a known pattern 
and a new one, is critical in the pattern classification and 
recognition. In the original configuration, it is based on an 
intermediate parameter (0.2) and we studied the 
variation of this parameter between values. By reducing 
the parameter is expected to get a tighter result in the 
classification rate as we are telling the network that is 
stricter when classifying a pattern as known. 

The other two parameters changed (scaleRF and 
ScaleOverlap) are related to the scale or resolution of 
the images presented to the network, so that changing 
these parameters we can modify the number of different 
scales which are presented and the overlap between 
them. This change is critical as the changes of the same 

image resolution allow the network to extract patterns of 
the same image at different levels so as to create better 
invariant representations (or models of memorized 
patterns) used to classify new images. 

The basic network, as the original method, starts from 
intermediate values for ScaleOverlap and ScaleRF (2 
and 1 respectively). They have been reduced to a 
minimum (a single resolution) and increased. Table 2 
shows that the best overall accuracy is related to the 
increasing of the values for these parameters. 

Overall, changing the minimum distance of pattern 
recognition and the patterns related to the number of 
resolutions, the network has the ability to extract patterns 
from an image at different resolutions. 

Overall classification accuracy is 98% for parks, while 
for roads its value is lower, only 87%. It is confused 
mostly with building but also with parks. Finally, good 
results of the classification can be observed, obtaining an 
overall accuracy of 93.8% and problems associated to 
the use of high spatial resolution images have been 
resolved to a large extent, as in the case of the  salt  and
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Table 2. Overall accuracy for different values of scaleRF and ScaleOverlap. 

 

scaleRF scaleOverlap Overall accuracy 

1 1 78.94 

2 1 81.3 % 

3 2 93.78 % 

 
 
 

 
 

Figure 8. Example of classified image as building land use. 
 

 

 

pepper effect (Figures 8 and 9). 
The accuracy values obtained with the algorithm based 

on the Hierarchical Temporal Memory were similar to 
and/or higher than the values obtained by other authors, 
which shows that the methodology is adequate for 
detecting urban areas. 
In the city of Nanjing, eastern China, new method based 
on Normalized Difference Built-up index to automate the 
process of mapping built-up area was proposed. The 
overall accuracy was 92.6% (Zha et al., 2003). 

Mathieu et al. (2007) applied the oriented based 
classification to very high resolution multispectral Ikonos 

images to produce vegetation community maps in 
Dunedin City, New Zealand. The overall classification 
accuracy from the simplified classification was 77% with 
a κ value close to the excellent range (κ = 0.74). 
 
 
Conclusions  
 

This experiment analysis and classification of images of 
urban environments has been developed using the new 
technology of Hierarchical Temporal Memory algorithm 
(HTM).   Several  repetitions  of  the  analysis  of  sample 
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Figure 9. Recognition on the test images. 
 

 

 

images have been carried out modifying various 
parameters of both architecture and inner workings of the 
network during the learning and analysis process. 

This is a versatile tool in image analysis and in 
recognition-oriented classification that allows us to easily 
modify, without strong technical and programming 
requirements, the architecture of the network and to 
optimize its internal operations according to the 
information used. 

The best result was obtained with the optimization of 
the parameters related with the image scale during the 
training phase, achieving a global classification accuracy 
of 93.8%. 
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