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Understanding the meteorological characteristics helps in predicting the weather conditions; for 
example, the open burning by local farmers in the South East Asia caused adverse weather conditions 
in which hazardous haze affect the health conditions of the population. By looking at the multivariate 
weather variables such as wind speed, relative humidity, pressure, temperature at dew, temperature at 
dry, geo-potential meter, height above mean sea level and location, the dimensionality of the data is 
reduced to give a simpler understanding of the data. A Matlab program is written to perform the 
principal component analysis. Using diagrammatical outputs from scree plot, biplot, three dimensional 
scatter plot and loading plot, it is found that six components are needed to represent about 83% of the 
total variance of all components in the multivariate datasets obtained at the Kuala Lumpur International 
Airport and Bayan Lepas Airport at three different pressures. For the Bayan Lepas Airport Station, we 
found some modest negative correlation between the geo-potential variables. The components can be 
described as the variation of geo-potential at all levels, relative humidity at all levels and variables at 
1000 level. 
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INTRODUCTION  
 
Demand for energy from renewable energy resources 
has become the popular approach in response to the 
growing concern of the impact to the global climate 
change.  Wind, for example, is a potential energy source 
as it does not exploit the earth’s natural resources and is 
an environmental friendly approach on harnessing 
energy.  Countries such as Denmark, Germany and 
United Kingdom have been successful in promoting 
innovation in wind energy with the use of wind turbine 
technology for electricity. In promoting the potential of 
wind energy, it is essential that in the research and 
development stage, statistical information of the existing 
wind characteristics is obtained. Such information is 
useful in evaluating the potential of source of energy.   

In Malaysia, wind energy is one of the many renewable 
energy sources considered (Ong et al., 2011; Sopian et 
al., 2005). In fact, studies on green power technology 
from wind started as early as the 1980s when a Solar 
Energy Research Group from University Kebangsaan 
Malaysia (UKM) collected wind data from ten stations 
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distributed all over Malaysia. The some success has 
been obtained with the use of a 150 kW wind turbine in 
an isolated coral reef island, northeast of Sabah’s capital, 
Kota Kinabalu. However, the potential of wind energy 
generation largely depends on the availability of wind 
resource. It has been reported that wind resource varies 
from one location to another (Ong et al., 2011; Sopian et 
al., 2005).  Therefore, as pointed out by Sopian et al. 
(1995), it is crucial to obtain a detailed knowledge nature 
of wind before embarking a wind energy project.  

Statistical studies on the behavior of wind in Malaysia 
include the second Markov chain model to produce time 
series wind speed using data at two meteorological 
stations (Shamshad et al.,2005) and identification of wind 
characteristics (Lee,1993). Zaharim et al. (2008, 2009a) 
consider Rayleigh, Gamma and Weibull distributions to 
describe wind data obtained at two locations in Malaysia. 
Additionally, Hassan et al. (2009) looked at the wind 
direction of Malaysian. Other statistical works include 
Zaharim et al. (2009b) and Kamisan et al. (2010). 

The data obtained from the Meteorological Services 
Department comprise of a large dataset where readings 
recorded over the years comprise of numerous variables 
related   to   the   wind   behavior.   One   of  the  common  



 

 
 
 
 
statistical approaches in analyzing the multivariate data is 
to obtain a simplified form of the data with few variables 
that captures the structure of the whole dataset. One 
classical approach in statistics is by using the principal 
component analysis method. These principal 
components, in turn, may be used in the subsequent 
statistical analyses. 

Principal component analysis (PCA), also known as 
empirical orthogonal function (EOF) analysis, essentially 
is used to reduce the dimensionality of large dataset 
which consists of a large number of interrelated variables 
to smaller components (Jolliffe,1986). In other words, 
PCA is a one of the statistical technique used on 
multivariate linear data whereby data transformation is 
applied in search of the relationships in multivariate data 
sets. Thus, the aim of PCA is to determine a few linear 
combinations of the original variables in order to 
summarize the data. Examples of the application of PCA 
include the classification of vegetable oils (Rusak et al., 
2003), identifying the sources of dimensional variation in 
the automotive body industry, modeling meteorological 
data (Mohanan, 2000), visualization of trace elemental 
pattern in vegetable after different cooking procedure 
(Pradova, 2001) and many more. 

The meteorological data used in this study includes 
daily recordings of wind speed, relative humidity, 
temperature at dew and dry point and geo-potential 
readings collected at three different heights of the 
observatory stations located throughout the peninsular of 
Malaysia. In short, the data obtained are of multivariate in 
nature. The purpose of the study is to design a statistical 
analysis for the multivariate wind data using principal 
component analysis which focuses on the graphical plots 
that can be obtained from the analysis.  Using simple 
diagrammatical outputs written using Matlab, the study 
aims to describe the variations of the multivariate data by 
reducing the dimensionality of the principal components. 

In the study, the statistical model used in the PCA is 
described. Based on the eigenvalues obtained in the 
analysis, the significant components are identified. The 
numerical results obtained in the analysis are presented 
in graphical form in which meaningful interpretations can 
be made from the numerical outputs. 
 
 
MATERIALS AND METHODS 
 
Principle component analysis 
 

Principal component analysis is one of the methods that can be 
used to analyse multivariate dataset. It can reduce the 
dimensionality of large dataset which consists of a number of 
interrelated variables to smaller components. 

Essentially, the steps involved in the analysis of PCA include the 
method of getting the data, standardizing the data, calculating the 
covariance matrix, calculating the eigenvectors and eigenvalues of 
the covariance matrix and visualizing the results. 

Algebraically, principal components are particular linear 

combinations of the p random variables
pXXX ,...,, 21

.  
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Geometrically, these linear combinations represent the selection of 
a new coordinate system obtained by rotating the original system 

with 
pXXX ,...,, 21

as the coordinate axes. The new axes 

represent the directions with maximum variability and provide a 
simpler and more parsimonious description of the covariance 
structure. 

The principal components depend solely on the covariance 

matrix Σ (or correlation matrix ρ) of 
pXXX ,...,, 21

. Their 

development does not require a multivariate normal assumption. 
On the other hand, principal components derived for multivariate 
normal populations have useful interpretations in terms of the 
constant density ellipsoids. 

Further discussions of principal component technique can be 
found in Richard and Dean (2002). The following are the summary 
of the analysis performed using the Matlab: 
 
Step 1: Get the data 
 
Consider the linear combinations 
 

pp XaXaXaXaY
1212111

'

11
... +++==

 

pp XaXaXaXaY
2222121

'
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... +++==   

                       (1) 

M    M  

ppppppp XaXaXaXaY +++== ...2211

'

 
 
Step 2: Standardize the data 

 
Sometimes it makes sense to compute principal components for 
raw data. This is appropriate when all the variables are in the same 
units. Standardizing the data is often preferable when the variables 
are in different units or when the variance of the different columns is 
substantial. This can be done by subtracting the mean of each 
column and dividing by its standard deviation namely,  
 

pi
X

Z

ii

ii

i
K,3,2,1,

)(
=
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σ

µ . In matrix notation, it is  

 
given by: 
 

)()(
12/1 µ−= −

XVZ   (2)   

        

Where 
2/1V is the diagonal standard deviation matrix. From this, 

we obtain mean of Z equals to zero, 0)( =ZE . 

 
Step 3: Calculate the covariance matrix. 

 
Further, the covariance matrix of Z is calculated using the formula 
below 

 

ρ=Σ= −− 12/112/1
)()()( VVZCov  (3)  

    
Where ρ also known as correlation. 
 
Step 4: Calculate the eigenvectors and eigenvalues of the  

 

covariance matrix. The principal components of Z maybe obtained 
from eigenvectors of the correlation matrix ρ of X. The ith principal 
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component of the standardized variables ],...,,['
21 p

ZZZZ =  

with Cov(Z)= ρ, is given by: 
 

)()(
12/1'' µ−== − XVeZeY iii   (4) 
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The eigenvectors of correlation matrix ρ
 

are also known as 

principal components coefficient or principal component loadings. 
Moreover: 
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And 
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In this case, ),(),...,,(),,(
2211 pp

eee λλλ are the eigenvalue-

eigenvector pairs for ρ, with 0...
21

≥≥≥≥
p

λλλ . 

As seen from Equation 5, the total (standardized variables) 
population variance is simply q, the sum of the diagonal elements of 
the matrix ρ. Then, the proportion of the total variance explained by 
the kth principal component of Z is: 
 

,
q

kλ
  pk ,...,2,1=               (7) 

 

Where the kλ ’s are the eigenvalues of ρ.  

In short, PCA consists of finding linear transformations 

p
YYY ,...,,

21
 of the original variables

p
XXX ,...,,

21
, that have 

the property of being uncorrelated. The y variables are chosen in 
such a way that y1 has maximum variance, y2 has maximum 
variance to being uncorrelated with y1, and so on. The 
transformation is obtained by finding the latent roots and vector of 
the correlation matrix. The latent roots, arranged in descending 
order of magnitude, are equal to the variances of the corresponding 
y-variates, these being principal components. It is also quite often 
that the first few components account for a large proportion of the 
total variance of the x-variates and may therefore be used to 
summarize the original data. 
 
 
Graphical plots of PCA 

 
As mentioned earlier, the utilization of graphical plots in presenting 
the results of the analysis is described. In this paper, three plots are 
described in which meaningful interpretation and conclusion can be 
obtained from such plots. In the study, the principal components 
coefficient can be visualized using scree plot, biplot and loading 
plot. 

 
 
Scree plot 
 
Scree plot is one of the suitable tools for visualizing the percentage 

 
 
 
 
of variance represented by every component in analysis using the 
principal components method. From Equation 6 one could plot the 
proportion of the total variance explained by the k-th principal 
component of Z. From this plot, one can analyse how many 
components explain a certain percentage of variation. Normally, the 
main components are represented by components that give an 
approximation of two-third of the total variability in the standardized 
ratings. 
 
 
Biplot 
 
The principal components loading can be visualized by two 
dimensional biplot or three dimensional scatter plot. The two 
dimensional biplot shows the diagrammatical representation of the 
first two components and three dimensional scatter plot visualise 
the first three components. 
 
 
Loading plot 
 
Loading plot is useful in identifying what variables are represented 
in each component. In other words, loading plot provide a 
histogram for loading value for each of the component in the 
analysis. 
 
 
The development of principle component in matlab  

 
A program called “principal_components_analysis 
(data_pca,column_label)” was developed in MATLAB environment 
to analyse multivariate data using principal component methods 
and the details of this program is available at the following URL: 
http://asasi.um.edu.my/download/PCA_program.doc . 

The data called “(data_pca,column_label)” have two types of 
data where “data_pca” is numerical type of data and “column_label”  
is string type of data. Using the steps mentioned earlier, the 
numerical data will be standardized as mentioned by Equations 2 
and 3 using the following call functions: 

 
“stdr = std(data_pca); 
sr = data_pca./repmat(stdr,length(data_pca),1);” 
 
The  instructions produce a standardised data called “sr”. The data 
can be analysed using the principal components method using the 
call function “[coefs,scores,variances,t2] = princomp(sr);” that 
produces four numerical outputs, namely “coefs”, “scores”, 
“variances” and “t2” respectively. The output “coefs” refers to the 
principal components coefficients and “scores” refers to the original 
data mapped into the new coordinate system defined by principal 
components. The components variance is a vector containing 
variance explained by the corresponding principal components and 
‘t2’ is Hotelling, a statistical measure of the multivariate distance of 
each observation from the center of the dataset. Three of these four 
numerical outputs namely, “coefs”, “scores” and “variances” are 
used in the graphical visualizations which produce several plots 
namely scree plot, biplot, three dimensional scatter plots and 
loading plot respectively. 

From variable “variances”, the percentages of variance can be 
calculated using the instruction “percent_explained = 
100*variances/sum(variances)”. The “percent_explained” is sorted 
in descreasing order and be plotted as histogram using the call 
function “pareto (percent_explained)” to produce a plot called scree 
plot. To view the principal components coefficients and principal 
components scores, two dimensional and three dimensional biplot 
can be used using call functions as follows: 

 
“biplot(coefs(:,1:2),'scores',scores(:,1:2),'varlabels',column_label); 



 

 
 
 
 
biplot(coefs(:,1:3),'scores',scores(:,1:3),'varlabels',column_label);” 
 
Furthermore, loading plot can provide a better visualisation for the 
user to determine which variables belong to which components. 
The program below can create eight main variables for the first five 
main components: 
 
“for baris = 1:5 
    subplot(5,1, baris); 
    loadingplot (coefs(:,baris),column_label); 
    baris = baris + 1; 
end” 
 
However, the number of component to be displayed can be altered 
in accordance to the needs of the user. In this illustration, the 
variables of the five principal components are displayed. 
 
 

RESULTS AND DISCUSSION 
 
As mentioned earlier, the PCA is applied to the wind data 
obtained from the Malaysian Meteorological Services 
Department.  The data comprise of wind speed, relative 
humidity, temperature at dew, dry temperature and  geo-
potential meter which are recorded at three different  
levels namely at 500, 850 and 1000 hpa respectively.The 
wind data are obtained for 121 days in Bayan Lepas 
Airport (January, February, July and August 2005, Time = 
1200) and in Kuala Lumpur International Airport (January, 
February, July and August 2005, Time = 0000). The 
results of the analyses are given in the form of principal 
components coefficient, scree plot, biplot, three 
dimensional scatter plot and loading plot. 
 
 
Principal components coefficient 
 
The principal components coefficient is the main 
numerical result of the principal component analysis. It is 
the eigenvectors of correlation matrix ρ and also known 

as principal component loadings. Table 1 shows the 
principal components coefficient value as shown by every 
column for every component. Each of the fifteen variables 
produces principal components coefficient values. The 
first column displays first component followed by the 
second column for the second component and so on.  
The principal components coefficient is the main result of 
the principal component analysis, which gives 
eigenvectors. It is possible to look at the eigenvectors 
directly but most researchers would rather analyse the 
output based on correlation between components, 
variance and percentage of variance explained.   

 
 
Scree plot 
 
As mentioned before from Table 1, each column 
represents the principal components coefficients for each 
of the fifteen variables used in the analysis. From each 
column,   the  variance  and  percentages  of  variance  of  
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each component can be calculated and is shown in Table 
2. In the first column of Table 2, a list of the fifteen 
components for the fifteen variables is given. The second 
column gives the variance in the correlation matrix in 
which it is expressed into fifteen eigenvalues.  Each 
eigenvalue represents the amount of variance that has 
been captured by one component. From the output, 
component one gives the highest variance explained 
followed by component two which gives the second 
highest variance explained and so on. The second 
component is formed from the variance remaining after 
those associated with the first component has been 
extracted, thus it accounts for the second largest amount 
of variance.  It is worthwhile to note that the principal 
components coefficient which gives the variance 
explained for each component gives a value of less than 
30% of the variance explained. Therefore, more than one 
component is needed to describe the variability of the 
data. In order to obtain a meaningful interpretation of the 
principal component analysis, we need to reduce to fewer 
than 15 components. Several approaches can be applied 
to determine the number of components to retain (Jolliffe, 
1986; Jackson, 1993).   In this study, we use the common 
approach in which we retain only the components with 
eigenvalues of one or more.  Therefore, from Column 2, 
we observed that six components are retained and in 
Column 3, the percentage of variance explained by each 
component is given. The cumulative variance as given in 
column 4 shows that the first six components account for 
about 83.36% of the total variability in the data. 

To provide a better understanding of the results, a 
scree plot given in Figure 1 shows a histogram of the 
variance explained for each component and the 
increasing curve in the diagram represents the 
cumulative percentage variance of the component. The 
number of component to be retained can be determined 
by looking at the point whereby the rate of change in the 
slope of the polygon drawn by joining the top of the 
histogram begins to decrease. Alternatively, one can 
observe the point where the slope of the increasing curve 
begins to be small.  In Figure 1, we noted that the point is 
where the principal component is about six.  It can also 
be seen that the first six components contributed towards 
an approximately 83.4% of the total variability in the 
standardised ratings. 
 
 

Biplot 
 
Biplot is also commonly used to visualize the principal 
component coefficients and the principal component 
scores for each observation in a single plot for the first 
two components or the first two columns of Table 1. As 
shown in Figure 2, the two axes represent the first two 
components namely for component one and component 
two, respectively. Each of the coordinates from the first 
two columns of Table 1 is represented by a star and a 
vector. The direction and  length  of  the  vector  indicates  
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Table 1. Principal components coefficient for 15 variables of wind data. 
 

Variables Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 

geo_500 -0.4174 -0.0761 -0.0317 0.1725 -0.3459 -0.0998 0.1041 0.0286 

tempdry_500 -0.2159 -0.0254 0.4658 -0.1290 -0.1068 0.1994 0.0777 -0.0628 

tempddew_500 0.3412 -0.0434 -0.4303 -0.0522 -0.1533 -0.1117 0.0297 -0.1596 

hum_500 0.3205 -0.1440 -0.4825 0.0213 -0.1393 -0.0940 0.0302 -0.0514 

spd_500 -0.0978 0.0836 0.0415 -0.0547 0.4019 -0.6472 0.6220 -0.0054 

geo_850 -0.4080 -0.1267 -0.2760 0.2492 -0.1789 0.0301 0.1248 0.1332 

tempdry_850 0.0073 0.3994 0.0482 0.3587 -0.2513 -0.2601 -0.1912 0.0232 

tempddew_850 -0.0868 -0.4419 0.0793 -0.2641 -0.2136 -0.2859 -0.1628 -0.1641 

hum_850 -0.0676 -0.4865 0.0673 -0.3344 -0.0834 -0.1380 -0.0551 -0.1523 

spd_850 -0.2692 0.0194 -0.0915 0.2917 0.3440 -0.0835 -0.3301 -0.7579 

geo_1000 -0.3507 -0.2454 -0.3092 0.2237 -0.0202 0.1670 0.2055 0.1285 

tempdry_1000 -0.1443 0.3200 0.0036 -0.2266 -0.4418 -0.3905 -0.1740 -0.0172 

tempddew_1000 0.2152 -0.2522 0.2870 0.4311 -0.1355 -0.3157 -0.1269 0.1403 

hum_1000 0.2375 -0.3575 0.2245 0.4255 0.0885 -0.0704 -0.0326 0.1146 

spd_1000 -0.2298 -0.0461 -0.1902 -0.1472 0.4203 -0.2209 -0.5605 0.5242 

         

Variables Column 9 Column 10 Column 11 Column 12 Column 13 Column 14 Column 15 

geo_500 0.0424 -0.3801 -0.6952 0.1353 0.0054 -0.0019 0.0036 

tempdry_500 0.7207 -0.2115 0.2906 0.0944 0.0092 0.0037 -0.0189 

tempddew_500 0.4274 -0.1893 -0.0969 -0.6344 0.0161 -0.0299 0.0084 

hum_500 0.2284 -0.0845 0.1367 0.7264 -0.0291 0.0606 -0.0362 

spd_500 0.0656 -0.0569 0.0585 0.0172 0.0047 0.0098 0.0025 

geo_850 0.0026 0.1778 0.3086 -0.1681 -0.1286 0.6340 -0.1983 

tempdry_850 -0.1993 -0.4958 0.4233 -0.0418 -0.2120 -0.1674 0.0458 

tempddew_850 -0.2485 -0.2032 0.2393 -0.0439 0.6115 0.0609 -0.0224 

hum_850 -0.1373 -0.0356 0.0518 -0.0435 -0.7413 -0.1253 0.0177 

spd_850 0.1108 0.0929 -0.0379 0.0511 -0.0027 0.0059 -0.0011 

geo_1000 0.0338 0.1639 0.2351 -0.0528 0.1160 -0.6624 0.2141 

tempdry_1000 0.1579 0.5366 -0.0288 0.0446 -0.0033 -0.0192 0.3620 

tempddew_1000 0.1563 0.3188 -0.0799 -0.0248 0.0062 -0.2093 -0.5395 

hum_1000 0.0662 -0.0118 -0.0335 -0.0243 -0.0149 0.2509 0.6986 

spd_1000 0.2285 -0.1392 -0.0346 0.0005 -0.0097 -0.0021 -0.0074 
 

Key:  geo_500 (850) (1000) = geo-potential at 500 hp (850 hp) (1000 hp).vtempdry_500 (850) (1000) = Dry Temperature at dry at 500hp 
(850 hp) (1000 hp). hum_500 (850) (1000) = humidity at 500 hp (850 hp) (1000 hp).   spd_500 (850) (1000) = wind speed at 500 hp (850 
hp) (1000 hp). tempddew_500 (850) (1000) = temperature at dew at a 500 hp (850 hp) (1000 hp). 

 
 
 

Table 2. Variance explained for principal components coefficients for 15 variables of wind data. 
 

Components Variances Percentages of variance explained Cumulative percentage of variance 

1 3.7502 25.0012 25.0012 

2 3.1817 21.2115 46.2127 

3 1.8972 12.6480 58.8607 

4 1.4205 9.4699 68.3306 

5 1.1626 7.7509 76.0815 

6 1.0919 7.2792 83.3607 

7 0.7370 4.9130 88.2737 

8 0.6172 4.1147 92.3884 

9 0.5695 3.7968 96.1852 

10 0.3195 2.1302 98.3154 

11 0.1596 1.0640 99.3794 
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Table 2.  Contd. 
 

12 0.0698 0.4657 99.8451 

13 0.0093 0.0619 99.907 

14 0.0089 0.0591 99.9661 

15 0.0051 0.0338 99.9999 
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Figure 1. Scree plot for 15 variables of wind data. 

 
 
 

how each variable contributes towards the two principal 
components in the plot. The dot shows the coordinates of 
the first two components score for all fifteen variables. 
According to the percentages of total variance explained 
in Table 2, the first two components only represent 
46.21% of the cumulative variance of this analysis. 
 
 
Three-dimensional scatter plot 
 
Alternatively, a three-dimensional scatter plot or three-
dimensional biplot as shown in Figure 3 can be used to 
visualize the first three principal component coefficients 

for each variable and the principal component scores for 
each observation in a three dimensional single plot. This 
plot can be useful if the first two components do not 
explain enough of the variance in the data. 

This plot has three axes which represent the first three 
components. The star and the vectors represent the 
coordinates of first three columns in Table 1 and the dot 
shows the coordinates of the first three components 
score for all the fifteen variables. Similar to the previous 
two dimensional biplot, the three dimensional biplot 
represents the first three components and only accounts 
for about 58.86% of the cumulative variance of this 
analysis and this is considered insufficient. 
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Figure 2. Biplot plot for 15 variables of wind data. 
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Figure 3. Three-dimensional scatter plot for 15 variables of wind data. 
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Figure 4. Loading plot for 15 variables wind data. 

 
 
 

Table 3. Five main components 15 variables of wind data. 
 

Component 1 Component 2 Component 3 Components 4 Components 5 

Geo_ (500) Hum_ (850) Hum_(500) Tempddew_ (1000) Tempdry_ (1000) 

Geo_ (850) Tempddew_ (850) Tempdry_(500) Hum_ (1000) Spd_ (1000) 

Geo_ (1000) Tempdry_ (850) Tempddew_ (500) Tempdry_ (850) Spd_ (500) 

Tempddew_ (500) Hum_ (1000) Geo_ (1000) Hum_ (850) Geo_ (500) 

Hum_ (500) Tempdry_ (1000) Tempddew_ (1000) Spd_ (850) Spd_ (850) 

Spd_ (850) Tempddew_ (1000) Geo_ (850) Tempddew_ (850) Tempdry_ (850) 

Hum_ (1000) Geo_ (1000) Hum_ (1000) Geo_ (850) Tempddew_ (850) 

Spd_ (1000) Hum_ (500) Spd_ (1000) Tempdry_ (1000) Geo_ (850) 
 
 
 

Loading plot 
 
Loading plot as shown in Figure 4 displays how each 
variable contributes towards the loading of each 
component. For the first five principal components 
coefficient in Table 1, the first eight largest magnitudes of 
the coefficient have been rearranged in decreasing order 
in the form of histograms. These five histograms show 
five main components of which the first row shows 
Component 1, the second row shows Component 2 and 
so on. 

In other words, the variances with largest magnitude 
listed in Table 3 are plotted as histograms that give 

coefficient values of the variable as shown in Figure 4. It 
can be seen from loading values of Component 1, three 
variables with largest coefficient are geo_500(-0.4174), 
geo_850(-0.4080) and geo_1000(0.3507) respectively. 
From the plot, one can identify the specific variable of the 
main components which cannot be easily identified in the 
biplot and three dimensional biplot. Perhaps, in further 
analysis such as predicting the weather, the independent 
variable which includes the contribution of the wind factor 
into the model building could take into account the 
significant variables that have been identified in the PCA, 
such as the geo-potential reading at different levels. As a 
comparison, this method has  been  applied  to  the  wind 
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Figure 5. Loading plot for 15 variables of wind data for KLIA. 

 
 
 

data for 121 days in Kuala Lumpur International Airport 
(KLIA) (January, February, July and August 2005, Time = 
0000). The data also contained 15 variables measured at 
three different pressures of 500, 850 and 1000 hpa 
respectively. After calculating the cumulative percentages 
of variances, five components are needed to represent 
more than 77.0% of the total variability in the 
standardized ratings. The loading plot is shown in Figure 
5. It can be seen from both Figures 4 and 5, that some of 
the variables appear as the main components, which in 
turn suggest some similarity between the two datasets.  
From the developed scree plots, biplots and loading 
plots, the results show that six components are needed to 
represent about 83% of the total variance of all 
components in the analysis on datasets at Kuala Lumpur 
International Airport and for the dataset of Bayan Lepas 
Airport, five components represents about 77.0% of the 
total variation. For the Bayan Lepas Airport Station, we 
found some modest negative correlation between the 
variables namely the geo-potential variables. The 
components can be described as the variation of geo-
potential at all levels, relative humidity at all levels and 
variables at 1000 level.  As mentioned earlier, these 
results may have some important implications for a better 
understanding on the weather of some places in 
Malaysia. 

Conclusion  
 
This article describes the development of graphical plots 
for the principal component analysis using the MATLAB 
environment. It is shown that using several plots, a better 
explanation or interpretation can be obtained in 
comparison to the usual numerical output of the principal 
components. The coefficients of the principal components 
are displayed using scree plot, biplot, three-dimensional 
scatter plot and loading plot respectively. It is found that 
the first two principal components can be described as 
the variation of geo-potential values at all levels and 
relative humidity with temperature values at 850 and 
1000 level respectively. 
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