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In this paper, the buckling of a functionally graded plate is studied. The material properties of the plate 
are assumed to be graded continuously in the direction of thickness. The variation of the material 
properties follows a simple power-law distribution in terms of the volume fractions of constituents. The 
plates are subjected to be under three types of mechanical loadings, namely; uniaxial compression 
along the x-axis, uniaxial compression along the y-axis, and biaxial compression, two types of thermal 
loading, namely; uniform temperature rise and linear temperature rise. The equilibrium and stability 
equations are derived using the classical plate theory (Kirchhoff theory) and Navier's solution. 
Resulting equations are employed to obtain the closed-form solution for the critical buckling load for 
each loading case. The results are verified with the known data in the literature. 
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INTRODUCTION 
 
In the recent studies on new performance, materials have 
addressed new materials known as functionally graded 
materials (FGMs). These are high performance and heat 
resistant materials able to withstand ultra high 
temperature and extremely large thermal gradients used 
in aerospace industries. Plates are one of the most 
important structures in engineering that are used widely 
in different fields. Buckling of plates especially plates 
made of functionally graded materials have been 
considered by engineers as a new field for researches, 
recently. 

Buckling and postbuckling behaviors are one of the 
main interests in design of structural components such as 
plates, shells and panels for optimal and safe usage. 
Therefore, it is important to study the buckling and 
postbuckling behaviors of FGM plates under mechanical, 
thermal and combined thermo-mechanical loads for 
accurate and reliable design. Some works about the 
stability of FGM structures relating to present study are 
introduced in the following. 

Javaheri and Eslami (2002a, b, c) and Shariat and Eslami 
(2007) reported mechanical and thermal buckling of 
rectangular functionally graded plates by using the 
classical plate theory and higher order shear deformation 
plate theory. They used energy method to derive 
governing equations that analytically solved to obtain the 
closed-form solutions of critical loading. The same 
authors and (Shariat et al., 2005; Shariat and Eslami, 
2006) extended their studies when influences of initial 
geometrical imperfection on the critical buckling loading 
are taken into consideration. Bouazza et al. (2010) used 
the first-order shear deformation theory to derive closed-
form relations for buckling temperature difference of 
simply supported moderately thick rectangular power-law 
(linear, quadratic, cubic, and inverse quadratic) 
functionally graded plates. Buckling analysis of isotropic 
rectangular plates on elastic foundation was carried out 
by Yu (2008). He considered a plate resting on elastic 
foundation with two opposite edges simply supported and 
different boundary conditions along the other edges (Levy  
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Figure 1. Typical FGM rectangular plate. 
 
 
 

solution). It was  concluded that the number of waves of 
the buckling mode increases with stiffness and occurs in 
the direction of the applied stress. Also, increase in the 
plate width or height increases the buckling load for the 
free horizontal edge case, but the effect is the opposite 
for the clamped or simply supported cases. Hosseini-
Hashemi et al. (2008) obtained an exact solution for the 
buckling of isotropic rectangular Mindlin plates. They 
considered a combination of six different boundary 
conditions in which two opposite edges are simply 
supported. Monoaxial in-plane compressive loads on 
both directions were considered as well as equal biaxial 
compressive loads. They presented the non-dimensional 
critical buckling loads and mode shapes for the six cases 
analyzed. Saidi et al. (2009) studied the axisymmetric 
bending and buckling analysis of thick functionally graded 
circular plates. They used unconstrained third order 
shear deformation plate theory for their analysis. An 
approximate method for simultaneous modification of 
natural frequencies and buckling loads was presented by 
Mirzaeifar et al. (2009). They obtained the first and 
second order derivatives of natural frequencies and 
buckling loads with respect to an arbitrary geometrical or 
physical property of a plate. Mohammadi et al. (2009) 
investigated the buckling behavior of functionally graded 
material plate under different loading conditions based on 
the classical plate theory (Levy solution); the governing 
equations are obtained for functionally graded 
rectangular plates using the principle of minimum total 
potential energy. An analytical approach for the elastic 
stability of simply supported rectangular plates under 
arbitrary external loads was proposed by Liu and 
Pavlovic (2008). They considered several cases of 
buckling under direct, shear and bending loads.  

The present article, the equilibrium and stability 
equations for FGM are obtained on the basis of classic 
plate theory and Navier’s solution. Resulting equations 
are employed to obtain the closed-form solutions for the 
critical buckling load. The results are compared with the 
results of previous works in the literature. 
 
 

FUNCTIONALLY GRADED MATERIALS 
 

Consider a case when FGM plate is made up of a mixture 
of  ceramic  and metal as shown in Figure 1. The material  

 
 
 
 
properties vary continuously across the thickness 
according to the following, which are the same as the 
equations proposed by Praveen and Reddy (1998): 
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Where 0  Poisson’s ratio of the plate is assumed to be 

constant through the thickness and subscripts m and c 
refer to properties of metal and ceramic, respectively, and 

)(zV f  is volume fraction of the constituents which can 

mostly be defined by power–law functions (Chi and 
Chung, 2003a, b). For power-law FGM, volume fraction 
function is expressed as: 
 

 kf hzzV 2/1/)(                                      (2)

        

where mmE , and ccE ,  are the Young’s modulus, 

coefficient of and the thermal expansion of the metal and 
ceramic surfaces of the FGMs plate, respectively.  
 
 

GOVERNING EQUATIONS 
 
This theory is based on the Cauchy, Poisson and 
Kirchhoff assumptions which maintain that the normal to 
the midplane before deformation remains normal after 
deformation. Then the displacement field in the (x; y; z) 
reference frame has the following form (Leissa, 1969):  
 

wWzwVzwuU yx  ,,              (3)

       

where WandVU ,  are displacement components of a 

typical point in the plate, and ;u  are in-plane 

displacements at a point of the mid-plane. 
Using the strain–displacement equations of the classical 
plate theory: 
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these kinematical equations can be written as 
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where 
o
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y

0 ε,ε andx are the mid-plane strains, and 

xyx and kk,k y  are the curvatures of the mid-plane 

during deformation. These are given by 
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Hooke’s law for a plate is defined as 
 

 

 

  xyxy

xyy

yxx

E

T
E

T
E





























12

)1(
1

)1(
1

2

2

                     (7) 

   
The forces and moments per unit length of the plate 
expressed in terms of the stress components through the 
thickness are 
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Substituting Equations 1 and 7 into Equation 8, gives the 
constitutive relations as 
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where 
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The equations of equilibrium for the plate are in the 
following form: 
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Using Equations 9 and 10, the equilibrium in Equation 11 
may be reduced to one equation as: 
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To establish the stability equations, the critical equilibrium 
method is used. Assuming that the state of stable 
equilibrium of a general plate under mechanical or 

thermal loads may be designated by 0w . The 

displacement of the neighboring state is 
10 ww  , where 

1w  is an arbitrarily small increment of displacement. 

Substituting 
10 ww   into Equation 12 and subtracting the 

original equation, results in the following stability 
equation: 
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where, 
000 , xyyx NandNN  refer to the pre-buckling force 

resultants. 
 

For the solution of Equation 14, the Navier method is 
used. The displacement function is selected as the 
following Fourier series 
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where m, n are number of half waves in the x and y 
directions, respectively, and c is a constant coefficient. 
 
 

MECHANICAL BUCKLING ANALYSIS 
 

Consider a rectangular plate with the length a and width b 
which is subjected to in-plane loads as shown in Figure 2. 
Therefore, the pre-buckling forces can be obtained using 
the equilibrium conditions as (Mohammadi et al., 2009)  
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where 1P  is the force per unit length, 1 and 2  are the 

load parameter which indicate the loading conditions. 

Negative values for 1  and 2  indicate that plate is 

subjected to biaxial compressive loads. Also, zero value 

for  1   or  2  shows uniaxial loading in x or y directions, 
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Figure 2. The rectangular plate subjected to in plane loads. 

 
 
 
respectively. Substituting Equation 16 into Equation 14, 
one obtains 
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Substituting Equation 15 into Equation 17, and 

substituting for the buckling load 1P   
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The critical buckling load, crP1 , is the smallest value of 

1P  which is obtained when m = 1 and n = 1. Therefore, 
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THERMAL BUCKLING ANALYSIS 
 
In this section, the thermal buckling behaviors of fully 
simply supported rectangular metal-ceramic plates under 
thermal   environment  are  analyzed. The   thermal   load 

is assumed to be in uniform temperature rise and linear 
temperature rise through the thickness. The effects of 
volume fraction index and geometric parameter (a/b, a/h) 
are investigated in each case. 

To determine the buckling temperature difference crT , 

the pre-buckling thermal forces should be found firstly. 
Solving the membrane form of equilibrium equations 
gives the pre-buckling force resultants (Shariat and 
Eslami, 2007; Shariat and Eslami, 2005; Bouazza et al., 
2010). 
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Substituting Equation 20 into Equation 14, one obtains: 
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Uniform temperature rise 
 

The plate initial temperature is assumed to be iT . The 

temperature is uniformly raised to a final value fT  in 

which the plate buckles. The temperature change is 

if TTT  .  Using   Equations  1,  10, 15 and 21, the  



 
 
 
 
buckling temperature change is obtained as: 
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The critical temperature difference is obtained for the 
values of m, n that make the preceding expression a 
minimum. Apparently, when minimization methods are 
used, critical temperature difference is obtained for m= 
n=1, thus 
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where  
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Linear temperature rise 
 

The temperature field under linear temperature rise 
through the thickness is assumed as: 
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where z is the coordinate variable in the thickness 
direction which is measured from the middle plane of the 
plate. 

Tm is the metal temperature and T is the temperature 
difference between ceramic surface and metal surface, 

that is, mc TTT  . For this loading case, the thermal 

parameter   can be expressed as 
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From Equation 26 one has 
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The critical buckling temperature change, crT , is the 

smallest value of T  which is obtained when m = 1 and 
n = 1. Therefore, 
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VALIDATION OF THE RESULTS 
 
Based on the derived formulation, a computer program is 
developed to study the behavior of FGM plates in 
mechanical and thermal buckling. The analysis is 
performed for pure materials and different values of 
volume fraction exponent, k, for aluminium–alumina 
FGM. The Young’s modulus and Poisson’s ratio for 
aluminium are: 70 GPa and 0.3 and for alumina: 380GPa 
and 0.3, respectively. Note that the Poisson’s ratio is 
chosen to be 0.3 for simplicity. 
 
 
Mechanical buckling  
 
In order to validate the results, a comparison with the 
known previous works has been carried out. In Table 1, 
the non-dimensional critical buckling load is presented in 
order to compare with results  of  Yu (2008) and 
Mohammadi et al. (2009) for an isotropic plate (k=0) with 
different aspect ratios. As table shows, the present 
results have a good agreement with results of Yu (2008) 
and Mohammadi et al. (2009).   

On the other hand, to validate the derived equations, 
the obtained critical buckling load of simply supported 
FGM plates in Table 2 and the results of Mohammadi et 
al. (2009). They are in excellent agreement. 
 
 

Thermal buckling  
 

Uniform temperature rise  
 

To validate the derived equations, the obtained critical 
buckling temperatures of simply supported isotropic 
plates subjected to a uniform temperature increase are 
compared with Boley and Weiner (1960), the results of 
Chen et al. (1991) and the results of Ganapathi and 
Touratier (1997) in Table 3. It can be seen that, for most 
cases the present results agree well with existing results. 
 
 

Linear temperature rise 
 

In addition, the buckling loads for simply supported, 
isotropic plates under linear temperature rise are 
calculated and compared in Table 4 with energy method 
results obtained by Kari et al. (1989) and finite element 
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Table 1. Comparison of the non-dimensional critical buckling load )/( 2

1 DaP cr  for an isotropic plate (k=0). 

 

a/b ),( 21   Yu (2008) Mohammadi et al. (2009) Present study 

0.5 (-1,0) 15.42 15.4212 15.4213 

 (-1,-1) 12.33 12.3370 12.3370 

     

1 (-1,0) 39.23 39.4784 39.4784 

 (-1,-1) 19.74 19.7392 19.7392 
 
 
 

Table 2. Comparison of the critical buckling load (MN/m) for a FGM plate (b=1, h=0.01).  
 

 

 

K 

 

 

a/b    

Critical buckling load 

),( 21  =(-1,0) ),( 21  =(0,-1) ),( 21  =(-1,-1) 

Mohammadi et 
al. (2009) 

Present 
study 

Mohamadi et 
al. (2009 

Present 
study 

Mohammadi et 
al. (2009 

Present study 

0 

0.5 2.14655 2.14655 8.58619 8.58619 1.71724 1.71724 

1 1.37379 1.37379 1.37379 1.37379 0.68689 0.686896 

1.5 1.49066 1.61230 0.71658 0.71658 0.49609 0.49609 

        

1 

0.5 1.06993 1.06993 4.27971 4.27971 0.85594 0.85594 

1 0.68475 0.68475 0.6847532 0.68475 0.34238 0.34238 

1.5 0.74300 0.80363 0.35717 0.35717 0.24727 0.24727 

        

2 

0.5 0.83488 0.83488 3.33953 3.33953 0.66791 0.66791 

1 0.53432 0.53433 0.53432 0.53433 0.26716 0.26716 

1.5 0.57978 0.62709 0.27871 0.27871 0.19295 0.19295 

 
 
 

Table 3. Comparison between the present solutions and results of Boley and Weiner (1960), Chen et al. (1991) and 
Ganapathi and Touratier (1997) for an isotropic plate. 
 

Nondimensional critical buckling temperature for a simply supported isotropic plate 

E = 1, a/h = 100, 3.0 , 
6100.1   

a/b Boley and Weiner (1960) Chen et al. (1991) Ganapathi and Touratier  (1997) Present 

0.25 0.686 0.691 0.676 0.6722 

0.50 0.808 0.814 0.798 0.7908 

1.0 1.283 1.319 1.272 1.2653 

1.50 2.073 2.101 2.072 2.0562 

2.0 3.179 3.191 3.176 3.1633 

2.5 4.599 4.601 4.585 4.5868 

3.0 6.332 6.330 6.341 6.3267 

 

 
 

using semiloof element results obtained by Gowda and 
Padalai (1970). They are in excellent agreement. 
 
 

Results 
 

Figure 3 shows the variation of the volume fractions of 

ceramic,  in  the  thickness  direction z for the functionally 

graded plate. The FGM plate considered here consists of 
aluminium and alumina. Figure 4 illustrates the variation 
of the critical buckling load of FGM versus the power of 
FGM, under different types of in-plane mechanical 
loading based on the classical plate theory. The 
thickness -to-side ratio h/a is assumed to be 
0.01(a/b=1.25). It  is  shown  that the critical buckling load  
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Table 4. Critical temperature for isotropic square plates subjected to linear temperature rise  3.0,102,100/ 6   ha . 

 

Temperature distribution Analytical (Gowda and Padalai,  1970) FEM (Kari et al., 1989) Present 

Linear temperature rise 126.54 126.00 126.5334 
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Figure 3. Volume fraction of ceramic along the thickness direction. 
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Figure 4. Critical buckling load for a plate versus the power of FGM. 
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Figure 5. Critical buckling load for a plate versus the power of FGM. 
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Figure 6. Critical buckling temperature of FGM plate under uniform temperature 

rise versus relative thickness of the plate with different values of k , using classic 

plate theory.  
 
 
 

decreases as the power of FGM increases because high 
powers of FGM correspond to high portion of metal in 
comparison with the ceramic part. Also, the variation of 
critical buckling load is more apparent when the power of 
FGM is small. The buckling load of the plate under 
uniaxial compression is greater than the one under 
biaxial compression. 

Figure 5 shows the critical buckling load crP1 versus the 

power of FGM, under different types of in-plane  
mechanical loading based on the classical plate theory. 
The    thickness-to-side    ratio    h/a   is  assumed  to   be 

0.01(a/b=1.5). Comparing Figure 4 with Figure 5, the 
responses are nearly similar; however, the critical load 
change increases, when the geometric parameter a/b is 
increased. The variation of the critical temperature 
change 

crT  of aluminium-alumina FGM plates under 

uniform temperature rise for different geometric 
parameters and volume fraction index are plotted in 
Figures 6 and 7. The isotropic alumina and aluminium 
cases correspond to fully ceramic plates and fully metallic 
plates, respectively. While the other cases, 5,1,3.0k , are 

for  the  graded  plates  with  two constituent materials. In 
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Figure 7. Critical buckling temperature of FGM plate under uniform temperature rise 
versus relative thickness of the plate with different values of a/b, using classic plate theory. 
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Figure 8. Critical buckling temperature of FGM plate under linear temperature rise versus 

relative thickness of the plate with different values of k , using classic plate theory. 

 
 
 
Figure 6, it is found that the critical temperature change 
of FGM plates is higher than that of the fully metal plates 
but lower than that of the fully ceramic plates. In addition, 
the critical temperature change decreases as volume 
fraction index is increased. This is because for FGM, as 
the volume fraction index is increased, the contained 
quantity of metal increases. In all material cases, the 
critical temperature change increases, when the 
geometric parameter h/a is increased. On the other hand, 

Figure 7 shows the critical temperature change 
increases, when the geometric parameter a/b is 
increased. 

Figures 8 and 9 give the variation of the critical 

temperature gradient crT  of aluminium-alumina FGM 

plates under linear temperature rise. Comparing Figures 
8 and 9 with Figures 6 and 7, the responses are very 
similar;  however,  the  critical temperature gradient under  



1942         Sci. Res. Essays 
 
 
 

0.00 0.02 0.04 0.06 0.08 0.10

0

10000

20000

30000

40000

50000

CPT 

P-FGM 

Linear temperature rises

k=0

T
m
=5°C

 a/b=1

 a/b=2

 a/b=3

 a/b=4

 a/b=5

C
ri
ti
c
a

l 
te

m
p

e
ra

tu
re

 (
°C

)

h/a  
 

Figure 9. Critical buckling temperature of FGM plate under linear temperature rise versus 
relative thickness of the plate with different values of a/b, using classic plate theory. 

 
 
 
linear temperature rise is higher than that under uniform 
temperature rise.    

 
 
Conclusions 

 
The buckling analyses of fully simply supported 
rectangular FGM plates under mechanical and thermal 
environment respectively are investigated by the classical 
plate theory. The mechanical loadings is assumed to be; 
uniaxial compression, and biaxial compression. The 
thermal load is assumed to be in uniform temperature 
rise and linear temperature rise. Based on the numerical 
results, the following conclusions are reached:  

 
1. In the case of mechanical loads, the critical buckling 

mode varies with respect to the load parameter 1 and 

2 or the aspect ratio a/b, 

2. The buckling load of the plate under uniaxial 
compression is greater than the one under biaxial 
compression,   
3. The critical buckling temperature for functionally 
graded rectangular plates are generally lower than the 
corresponding values for homogeneous plates made of 
ceramic. It is very important to check the strength of the 
functionally graded plate due to thermal buckling, 
although it has many advantages as a heat resistant 
material,   
4. Geometric parameter h/a is increased, the critical 
temperature gradient increases rapidly, 
5. Volume fraction index k is increased, the critical 
temperature  gradient  decreases.  This   is   because   as  

volume fraction index is increased, the contained quantity 
of ceramic decreases, 
6. The critical temperature under linear temperature rise 
is higher than that under uniform temperature rise. 
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