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Soft computing methods such as fuzzy logic and artificial neural networks (ANN) have gained 
popularity in solving engineering problems. Particularly, fuzzy logic and especially developments in 
uncertainty assessment, enable us to construct and validate precise geoid models. We investigate three 
different point densities, five variations in the numbers of subsets and five different membership 
functions when forming the fuzzy model to calculate the geoid heights in the Istanbul (Turkey) area. The 
results of the fuzzy model are compared with geoid heights obtained using GPS and leveling. The fuzzy 
model has been verified against the test points. The results indicate that constructing the fuzzy model 
with a point density of at least one point in 25 km2 , carefully selected number of subsets in accordance 
with point density and a Gaussian membership function, gives superior performance. 
 
Key words: ANFIS, fuzzy logic, type of membership function, number of fuzzy subsets, point density, geoid 
height. 

 
 
INTRODUCTION 
 
The geoid is the equipotential surface of the earth's 
gravity field which coincides with mean sea level. The 
geoid provides the reference surface for heights which is 
typically used in surveying and engineering. The 
importance of accurately knowing the geoid has 
increased with the advent of satellite positioning systems, 
such as the Global Positioning System (GPS). GPS pro-
vides ellipsoidal heights, or ellipsoidal height differences, 
relative to a geocentric ellipsoid. In order to convert 
ellipsoidal heights, reckoned along the ellipsoidal normal 
from the ellipsoid to orthometric heights and the reckoned 
along the curved plumb line from the geoid, the geoid 
heights (undulations) must be known. The following well-
known relation exists. 
 
N=h-H                  (1) 
 
Where, N denotes the geoid height, h and H are the ellip-
soidal and orthometric heights, respectively. Orthometric 
heights can be readily computed from (1) if the geoid and 
ellipsoidal height are known. Ellipsoidal heights, or ellip-
soidal height differences, can be derived from GPS more 
economically than orthometric heights. Determination of 
the latter requires time-consuming  leveling. More  details 

can  be  found  in  Wellenhof  and Moritz (2006); 
Featherstone (2001); Engelis et al. (1985); Torge (2001); 
Yilmaz and Arslan (2008).  

Physical geodesy deals with the methods for deter-
mining the geoid and as such the geoid heights. All 
methods require either explicitly or implicitly the use of 
gravity. However, if we have a set of stations with known 
ellipsoidal and orthometric heights, then, we can use the 
difference h-H at these stations to compute N at other 
locations using appropriate interpolation techniques and 
the given ellipsoidal heights at these stations. In this 
study, we compute geoid heights using fuzzy logic by 
means of adaptive network based fuzzy inference 
systems (ANFIS). Specifically, we studied factors that 
affect the outcome of such computations. We used data 
from the region of Istanbul, Turkey.  
 
 
MATERIALS AND METHODS 
 
Materials 
 
This study included 443 points with known latitude, longitude, 
ellipsoidal height and orthometric height in the area of Istanbul, 
Turkey (Ayan et al., 1999). We randomly selected 50, 200  and  393 



 
 
 
 
points (models 1, 2, and 3) to examine the effect of point density in 
ANFIS. In case of model 1, we selected 43 reference (cardinal) 
points and 7 densification points as model points to form fuzzy 
model to compute the geoid heights. Similarly, the distribution of 
reference points and densification points were (44, 156) and (48, 
345) for models 2 and 3, respectively. The points are 
homogenously distributed in the region, resulting in point densities 
of one point in about 100, 25 and 13 km2, respectively.  The data 
covers the region 41° 29´11″ > ϕ > 40° 45´11″ in latitude and 29° 
41´ 50″ > λ > 27° 57´ 36″ in longitude. The orthometric heights vary 
between 1.254 m and 484.981 m. The average standard deviation 
of the ellipsoidal heights after the GPS network adjustment is ± 3.0 
cm. We have selected 50 points which had not been included in the 
fuzzy models (Ayan et al., 1999) to check the results of the 
computations. The distribution of the 50, 200 and 393 model points 
together with the 50 test points is seen in Figure 1 (a-c): Distribution 
of 50, 200, 393 model points (shown as +) and 50 test point (shown 
as +) in Istanbul 
 
 
Methods 
 
Adaptive network based fuzzy inference systems (ANFIS) 
 
The subject of fuzzy logic and ANFIS is extensively treated in the 
literature. We only make a few remarks as related to this 
application, using freely some of the vanacular terminology. ANFIS 
are feed-forward adaptive networks which are functionally 
equivalent to fuzzy inference systems. The basic idea of ANFIS can 
be described as follows: a fuzzy inference system is typically 
designed by defining linguistic input and output variables and an 
inference rule base. However, the resulting system is just an initial 
guess for an adequate model. Hence, its premise and consequent 
parameters have to be tuned based on the given data in order to 
optimize the system performance. In ANFIS, this step is based on a 
supervised learning algorithm (Jyh- Shing, 1993).  

Output membership functions are either linear or constant in 
ANFIS. The Sugeno fuzzy model is called a zero degree model 
when the output membership function is constant; it is called a first 
degree model when the output membership function is a first 
degree polynomial. A first degree Sugeno fuzzy model can be 
defined as follow:  

A two-fuzzy ruled first-degree Sugeno fuzzy model can be 
defined as shown in Figure 2, where, the ANFIS structure was 
taken into account. It is assumed that the rule base contains two 
fuzzy if-then, rules of Takagi and Sugeno’s type (Takagi and 
Sugeno, 1983).  
 
Rule 1: If x is A1 and y is B1, then f1= p1x + q1y + r1 
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2 

 
The symbols A and B denote the fuzzy sets defined for membership 
functions of x and y in the premise parts. The symbols p, q and r 
denote the consequent parameters. With this design, an output 
value can be obtained for every rule. The results in the Sugeno 
fuzzy model can be obtained as first degree polynomial f = px + qy 
+ r or as constant f = r. Studies have shown that the first degree 
polynomial gives better results. Therefore, the fuzzy model is 
formed using the first degree polynomial in this study.  

In our application latitudes and longitudes are divided into 5 
subsets, obtaining 5 × 5 = 25 rules. These rules are graphically 
shown in Figure 3. Some of these rules can be expressed verbally 
as: 
 
If latitude is B1 and longitude is L1 then geoid height is N1 
If latitude is B1 and longitude is L2 then geoid height is N2 
If latitude is B2 and longitude is L3 then geoid height is N8 
If latitude is B3 and longitude is L4 then geoid height is N14 
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If latitude is B4 and longitude is L5 then geoid height is N20 

 
Figure 3, rules obtained when latitude and longitude are divided into 
5 subsets of each. A first degree polynomial is written for each rule. 
For example, an equation can be written for rule number 3 stated 
above as f8 = p8B +q8L +r8 (B = latitude, L = longitude) and rule 
number 4 as f14 = p14B +q14L +r14. The unknown of p, q and r will be 
solved for each of the 25 rules. To do this, model data is used and 
the values of membership functions are determined according to 
latitude and longitude. One or several rules are triggered by the 
data, including the determination of weights (w) and normalized 
weights )w(  . At the end, the first degree polynomial coefficients 
related to this data are obtained.  

We note that the product of normalized weights and first degree 
polynomial coefficients gives geoid heights. The results are 
obtained with 5 layers (Figure 2) in ANFIS. The membership 
functions of inputs are determined in the first layer. The firing 
strength (weight) of each rule is calculated in the second layer. In 
the third layer, the normalized firing strength of each rule is 
calculated. The output for corresponding rules, weighted by its 
normalized firing strength, is calculated in the fourth layer. In the 
last layer, the overall output using the weighted average 
defuzzification is computed. Each fuzzy model consists of these five 
layers. Details about the ANFIS structure and operations done in 5 
layers can be found in Jyh- Shing (1991); Jyh- Shing (1993); 
Akyilmaz et al. (2003); Walid (2005); Yilmaz (2005). 

The hybrid learning algorithm used in ANFIS modeling is the 
combination of least-squares estimation and gradient descent 
method. The advantage of this combined algorithm versus the pure 
gradient descent method is that the rapid convergence to the global 
minimum is guaranteed. The gradient descent is usually slow and 
likely to become trapped in local minima. More information about 
hybrid learning method in ANFIS can be found in Jyh- Shing (1993); 
Jyh- Shing (1995); Takagi and Sugeno (1985); Akyilmaz et al. 
(2003); Goodwin and Sin (1984); Ljung (1987); Strobach (1990). 
 
 
Factors affecting results in ANFIS 

 
In this study, we examine the effect of point density, the number of 
subsets and type of membership function. Therefore, three different 
groups of calculations are performed. In the first group, we vary the 
point density, but use the same number of subsets and the same 
Gaussian membership function. Three different point densities are 
considered in investigating the effect of point density. We use 50 
points (one point per 100 km2), 200 points (one point per 25 km2) 
and 393 points (one point per 13 km2). In the second group of 
calculations, we vary the number of subsets, but use the same 
point density (393 points) and the Gaussian membership function. 
Five different numbers of subsets are used; the numbers are 3, 5, 
8, 10 and 13. Finally, in the third group of calculations the fuzzy 
models are formed in ANFIS with different membership functions, 
but using the same number of subsets and the same point 
densities.   

A membership function (MF) is a curve that defines how each 
point in the input space and is mapped to a membership value (or 
degree of membership) between 0 and 1. We use five different 
types of membership functions: triangle (Trimf), trapezoidal 
(Trapmf), generalized bell (Gbellmf), Gaussian (Gaussmf), and the 
difference between two sigmoidal functions (Dsigmf). Brief 
definitions about these membership functions are given thus: 

 
Triangular membership function (Trimf): The triangular curve is 
a function of a vector, x, and depends on three scalar parameters a, 
b, and c, given by:  
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Figure 1. Distribution of 50, 200, 393 model points (+) and 50 test point (+) in Istanbul. 
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x, y : inputs (latitude and longitude)         A, B : fuzzy sets 
w  : firing strength                                      w  : normalized firing strength 
f : final output                                          M : multiplication of incoming signals  
S : summation                                          N       : calculation of the ratio of ith rule’s firing strength  
 
Figure 2. A simple two-input, two-rule and single-output ANFIS structure (Yilmaz, 2005).  

 
 
 

 
 
Figure 3. Rules obtained when latitude and longitude are divided into 5 subsets of each. 
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Table 1. Comparison of point densities (seven subset and Gaussian membership function). 
 

Training data 
Point 

density (km2) 
Minimum 

residual (m) 
Maximum 

residual (m) 
RMSE 

(m) 
Minimum 

residual (m) 
Maximum 

residual (m) 
RMSE   

(m) 
1/100  -0.000 0.000 0.000 -0.238 0.165 0.075 
1/25 -0.088 0.067 0.025 -0.069 0.071 0.034 
1/13 -0.099 0.090 0.026 -0.079 0.075 0.036 
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The parameters a and c locate the "feet" of the triangle and the 
parameter c locates the peak.  
 
 
Trapezoidal membership function (Trapmf): The trapezoidal 
curve is a function of a vector, x, and depends on four scalar 
parameters a, b, c, and d, given by:  
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The parameters a and d locate the "feet" of the trapezoid and the 
parameters b and c locate the "shoulders."  
 
  
Gaussian membership function (Gaussmf): The symmetric 
Gaussian function depends on two parameters � and c as given by:  
 

2

2

2

c)--(x

ec) , f(x; σσ =                                                                    (4) 
 
where, c represents the MF’s center and � determines the MF’s 
width.  
 
 
Generalized membership function (Gbellmf): The generalized 
bell function depends on three parameters a, b, and c as given by 
 

b2

a
c-x

1

1
c) b, a, f(x;

+
=                                                       (5) 

Where, the parameter b is usually positive. The parameter c locates  
the center of the curve.  
(v) Difference between two sigmoidal membership functions 
(Dsigmf): The sigmoidal membership function used here depends 
on the two parameters a and c and is given by   
 

c)-a(x-e1
1

c) a, f(x,
+

=                                                              (6) 

 
The membership function Dsigmf depends on four parameters, a1, 
c1, a2, and c2, and is the difference between two sigmoidal functions 
f1(x; a1, c1) - f2(x; a2, c2). 

In this study we use ANFIS which is available under fuzzy 
toolbox of Matlab. While forming fuzzy model, we can select how 
many inputs and output we have, what kind of membership we will 
use, how we want to obtain the output (either f= px + qy + r, first 
degree Sugeno model or f = r, zero order Sugeno model), and we 
can train the model using model data. 
 
 
RESULTS AND DISCUSSION 
 
The accuracy of the ANFIS approximation method is 
investigated by comparing the computed values with 
results obtained from GPS and leveling, for at all model 
and test points.  While forming the fuzzy model in ANFIS, 
the latitudes and longitudes are input parameters, and 
geoid heights are output parameters. In the first group, 
the calculations are performed using 50 (one point per 
100 km2), 200 (one point per 25 km2) and 393 (one point 
per 13 km2) model points, respectively. The differences 
between geoid heights obtained by GPS/leveling and the 
fuzzy model are summarized in Table 1. Root Mean 
Square Error (RMSE) is calculated with � n

vv , where, v = 

error and n = number of points. Table 1 shows RMSE 
values of 0.000, 0.025 and 0.026 m for model points, and 
0.075, 0.034, and 0.036 m for the test points. The 
respective results obtained using 200 and 393 points do 
not differ significantly. However, for the case of 50 points, 
the results obtained from models and test points differ; 
they also differ compared to the results obtained using 
200 and 393 points. In case of 50 model points, the mini-
mum, maximum and RMSE are 0.000 m for model points, 
they are + 0.165, -0.238 and 0.075 m for the test points. 
The large difference in the results between the model and 
test points clearly shows an inadequacy of the fuzzy mo-
del formed by 50 points. This difference confirms that 50 
points is not enough to characterize the region of interest. 

The second group of calculation uses different  number
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Table 2. Comparison of number of subset (point density is one point in 13 km2 and Gaussian membership function). 
 

Training data 
Number of 

subset 
Minimum 

residual (m) 
Maximum 

residual (m) 
RMSE 

(m) 
Minimum 

residual (m) 
Maximum 

residual (m) 
RMSE 

(m) 
3 -0.157 0.128 0.044 -0.114 0.079 0.050 
5 -0.104 0.091 0.032 -0.094 0.083 0.038 
8 -0.095 0.096 0.025 -0.077 0.071 0.035 

10 -0.088 0.092 0.022 -0.095 0.084 0.037 
13 -0.056 0.072 0.016 -0.127 0.096 0.040 

 
 
 
Table 3. Comparison of different type of membership functions (point density is one point in 13 km2 and 7 subsets). 
 

Training data 
Membership 
type 

Minimum 
residual (m) 

Maximum 
residual (m) 

RMSE 
(m) 

Minimum 
residual (m) 

Maximum 
residual (m) 

RMSE 
(m) 

Trimf -0.094 0.095 0.020 -0.129 0.078 0.041 
Trapmf -0.114 0.083 0.021 -0.118 0.119 0.042 
Gbellmf -0.095 0.077 0.020 -0.120 0.081 0.044 
Gaussmf -0.103 0.089 0.020 -0.096 0.091 0.037 
Dsigmf -0.111 0.083 0.020 -0.108 0.084 0.038 

 
 
 
of subsets. Five different fuzzy models are formed and 
their results are given in Table 2. This table indicates that 
when the number of subsets is increased, the RMSE 
values are getting smaller at model points. However, the 
same can not be said about the test points. The lowest 
RMSE value on test points is obtained when the number 
of subsets is 8. Maximum and minimum residuals are 
obtained from subsets 3 (-0.157, 0.128 m) and subsets 
13 (-0.127 m, 0.096 m) for the model and the test points. 
Increasing the number of subsets also increases the 
number of unknown parameters in the premise and 
consequent parts. Therefore, it is very important to select 
an optimal number of subsets in which the data will be 
divided. The best results are obtained with 8 subsets, 
since the difference between RMSE values of model and 
test points is the smallest. 

Final, the calculation is performed using different mem-
bership functions. We form five different fuzzy models. 
The results are shown in Table 3. The table shows that 
the RMSE vary between ± 0.020 - ± 0.021 m, ± 0.037 - ± 
0.044 m for model and test points. The maximum residual 
is found to be 0.095 m with Trimf membership; the 
minimum residual is found to be –0.114 m with Trapmf 
membership for model points. Similarly, maximum 
residual are 0 119 m for Trapmf membership; the 
minimum residual is - 0.129 m with Trimf membership for 
the test points. 

The RMSE for the model points in Table 3 do not differ 
significantly. However, in case of the test points, the 
Gbellmf gives the highest value (0.044 m). This seems to 
indicate that the model formed by Gbellmf membership 

function is more inconsistent than the other fuzzy models. 
The Gaussmf membership function has given the 
smallest RMSE for the test points. The graphical 
representations of geoid height errors using different 
membership functions in ANFIS at 50 test points is 
shown in Figure 4 (a - e).  
 
 
Conclusions 
 
Some factors effecting results of ANFIS on geoid height 
interpolation were examined.  The factors were point 
density, number of data subset, and type of membership 
function used to form the fuzzy model.  When using 
ANFIS, one has to pay attention to several aspects, e.g. 
the number of parameters (premise and consequent) 
must be less than the number of training data pairs. This 
is to avoid the over fitting phenomenon, which does not 
allow generalization of the established fuzzy inference 
system. According to this study, the point density must be 
at least one point per 25 km2 or higher in order to achieve 
good results.  

Furthermore, the number of subsets used to construct 
the fuzzy model depends on the available data. We 
determined 8 to be the best number of subsets for the 
393 points. Five different membership functions are used 
to form the fuzzy model. The results seem to suggest that 
using Gaussmf as membership function gives superior 
performance compared to other types of membership 
functions. The difference between the RMSE of both 
model and test points must be very small in  order  to  obtain 
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Figure 4. Graphical representations of geoid height errors by using different membership functions in ANFIS at 50 test points. 

 
 
 
obtain meaningful results. Additional studies are needed 
to better understand the selection of the various factors 
that impact ANFIS when applied to geoid interpolation.   
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