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This study presents an approximate method which is based on the continuum approach and one 
dimensional finite element method to be used for lateral static and dynamic analyses of wall-frame 
buildings. In this method, the whole structure is idealized as an equivalent sandwich beam which 
includes all deformations. The effect of shear deformations of walls is considered and incorporated in 
the formulation of the governing equations. Initially the differential equations of this equivalent 
sandwich beam are written; then shape functions and stiffness matrix can be obtained by solving the 
differential equations.  For static and dynamic analysis the lateral forces and masses were applied on 
the storey levels. Angular frequency and modes were obtained by using system mass and system 
stiffness matrices. Finally, numerical examples have been solved using MATLAB to verify the presented 
method. The results of these examples display the agreement between the proposed method existing 
methods. 
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INTRODUCTION 
 
Global analysis, as structural design itself, can be carried 
out at two levels. An “exact” analysis called exact-relies 
on a mathematical model as exact as possible and uses 
a static model which takes into account as many 
structural elements, material properties geometrical and 
stiffness characteristics as possible. Taking everything 
into consideration, however, can result in computational 
problems. Even using a powerful computers, the problem 
can be to handled. However, because of the complexity 
of results for certain problems, they can be difficult to 
interpret (Zalka, 2000). The lengthy and time-consuming 
procedure of handling large data can always be a source 
of inaccuracy and errors. Another disadvantage of this 
approach may be that the importance of the key 
structural elements is sometimes hidden inside the great 
number of input and output data (Zalka, 2000). Therefore, 
approximate methods have been developed for static and 
dynamic analyses of buildings.  The most widely used 
approximate methods are those based on the “continuum 
method”. There are numerous studies in the literature 
dealing with the continuum method e.g (Basu et al., 1979; 
Bilyap, 1979; Balendra et al., 1984; Stafford  and  Crowe, 

1986; Nollet and Stafford, 1993; Zalka, 1994; Li and 
Choo, 1996; Toutanji, 1997; Miranda, 1999; Mancini and 
Savassi, 1999; Hoenderkamp, 2000; Wang et al., 2000; 
Hoenderkamp, 2001;  Swaddiwudhipong et al., 2001;  
Hoenderkamp, 2002; Miranda and Reyes, 2002; Zalka, 
2002; Potzta and Kollar, 2003; Zalka, 2003; Tarjan and 
Kollar, 2004; Savassi and Mancini, 2004; Civalek, 2004; 
Boutin et al., 2005; Reinoso and Miranda, 2005; 
Georgoussis, 2006; Michel et al., 2006; Rafezy et al., 
2007; Civalek, 2007; Kaviani et al, 2008;  Laier, 2008; 
Meftah and Tounsi, 2008; Lee at al., 2008; Bozdogan, 
2009; Zalka, 2009; Savassi and Mancini, 2009) . 

Rosman (1964) proposed a continuum method for a 
pair of high rise coupled shear walls. Heidebrecht and 
Stafford (1973) derived the differential equations of 
system for buildings with uniform stiffness along the 
height and obtained closed-form solutions under a 
uniform and triangular static lateral load distributions. 
Zalka (2001) derived simple expressions for the circular 
natural frequencies of wall-frame buildings. Kuang and 
Ng (2000) considered the problem of doubly asymmetric 
structures, in  which  the  motion  is  dominated  by  shear  
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Figure 1. Sandwich beam: (a) Wall-frame (b) Physical model. 

  
 
 
walls. For the analysis, the structure is replaced with an 
equivalent uniform cantilever whose deformation is 
coupled in flexure and warping torsion. In a recent study 
by Miranda and Taghavi (2005), an approximate method 
for estimating the floor acceleration demands in multi-
story buildings subjected to earthquake ground motions 
has been developed. In their paper, the dynamic 
properties of multistory buildings are approximated by 
using equivalent continuum model consisting of a flexural 
cantilever beam and a shear cantilever beam that are 
assumed to be connected by an infinite number of axially 
rigid members. The dimensionless parameter is pre-
sented which controls the degree of overall flexural and 
overall shear deformations in the simplified model of the 
building. In a different paper by Taghavi and Miranda 
(2005), the accuracy of the methodology is evaluated by 
comparing the results of the approximate method with the 
response computed using detailed finite element analysis 
in the case of the two generic buildings and compared to 
recorded accelerations in the case of the four 
instrumented buildings.  

Rafezy and Howson (2008) proposed a global 
approach for the calculation of the natural frequencies of 
doubly asymmetric, three dimensional, multi bay, multi-
storey, wall-frame structures. It is assumed that the 
primary walls and frames of the original structure run in 
two original directions and that their properties may vary 
in a step-wise fashion at one or more storey levels. The 
structure is therefore divided naturally into uniform 
segments between changes of section properties. A 
typical segment is then replaced by an equivalent shear-
flexure-torsion coupled beam whose governing 
differential equations are formulated using continuum 
approach and posed in the form of a dynamic member 
stiffness matrix. Bozdogan (2009) proposed the transfer 
matrix method for  static  and  dynamic  analysis  of  wall- 

frame buildings. However, this study neglects shear 
deformation of the shear walls.  

With the exception of Savassi and Mancini’s (2009), 
Rafezy and Howson’s (2008) and Bozdogan papers 
(2009), none of the studies allows for step changes of 
properties along the height of the structure. 

In this study, a one dimensional finite element method 
is suggested for lateral static and dynamic analysis of 
wall-frame buildings. The following assumptions are 
made in this study: (1) the behavior of the material is 
linear elastic, (2) small displacement theory is valid, (3) 
P-delta effects are negligible, (4) torsional effects are 
ignored, and (5) masses and lateral loads act at the 
storey level for static and dynamic analyses.  
 
 
ANALYSIS 
 
Physical model 
 
High rise buildings, demonstrate neither Timoshenko 
beam behavior, nor Euler-Bernouilli beam behavior under 
the horizontal loads (Potzta and Kollar, 2003). The sand-
wich beam which consists of two Timoshenko beams 
representing the behavior of the high rise buildings may 
demonstrate both of the above mentioned behaviors 
(Figure 1).  

Initially, the differential equation of this equivalent 
shear-flexural beam can be written. The flexural rigidity of 
the w beam is the sum of the flexural rigidity of shear 
walls and columns. The shear rigidity of the w beam is 
the sum of shear rigidity of walls. Meanwhile, the shear 
rigidity of the f cantilever beam is equal to the sum of 
shear rigidities of frames and sum of shear rigidities of 
the connecting beams. The global flexural rigidity of the f 
cantilever beam structural system can be calculated  with  
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Figure 2. Coupled shear wall. 

 
 
 
the help of axial deformation of shear walls and columns.    
 
 
Storey stiffness matrix for the wall-frame  
 
Under the lateral loads acting at the storey levels, the 
equation of i.th storey can be written as (Lee et al., 2008) 
: 
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where yi  is the total displacement function, zi is the 
vertical axis of the ith storey, ψ wi denotes the rotation of 

w beam , ψ fi denote rotations of a f beam, EIi is the total 

bending rigiditiy of shear the wall and columns and Di is 
the global bending rigidity of frame and can be calculated 
using the equation below: 
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where Aj is the cross sectional area of the j-th shear 
wall/column, (n) is the number of columns  and rj is the 
distance of  the j-th shear wall/column from the  center  of 

the cross sections. (GAwi) are the equivalent shear rigidity 
of walls, (GAfi) are the equivalent shear rigidity of the 
storey for framework. For frame elements which consists 
of n columns and n-1 beams, GAfi can be calculated as 
follows (Bilyap, 1979; Murashev at al., 1972): 
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where ∑ ic
hI /   represents the sum of moments of 

inertia of the columns per unit height in i.th storey of the 

ith frame j, and ∑ lI
g

/  represents the sum of moments 

of inertia of each beam per unit span across one floor of 
frame j . For coupled shear walls which consist of n walls 
and n-1 connecting beams,  GAfi can be calculated from  
Equation (6) (Potzta and Kollar, 2003): 
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where, hi is the height of the storey, dj  is the clear span 
lengths of the coupling beam, sj is the jth wall length 
(Figure 2), EIbj and GAbj  represent  the flexural rigidity of 
connecting beam and  the shear rigidity of connecting 
beams, respectively and k is a constant depending on the 
shape of cross-section of the beams (k =1.2 for 
rectangular cross-sections).  

In the operator notation Equations (1), (2) and (3) can 
be written as: 
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Solving these equations, we get 
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After rearrangements, the constants c1, c2 c3, c4, c5 and c6,, 

can be taken as independent constants,  thus  total 
displacement function and rotation angle can be obtained 
as follows:   
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Rwi, and Rfi, can be calculated from Equations (20) and 
(21) as shown below:          
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At the initial point of the storey for zi=0, Equations (17), 
(18) and (19) can be re-written as: 
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At the end point of the storey for zi=hi Equations (17), (18) 
and (19) can be written as: 
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Equation (28) shows the matrix form of Equations (22), 
(23), (24), (25), (26) and (27). 
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With the help of Equations (17), (18) and (19), bending 
moment of the w beam (Mwi), bending moment of the f 
beam (Mfi) and the total shear force (V) can be obtained 
as follows: 
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At the initial point of the storey for zi=0 Equations (29), 
(30) and (31) can be written as: 
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At the end point of the storey for zi=hi Equations (29), (30) 
and (31) can be written as: 
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Equation (38) represents the matrix form of equations 
(32), (33), (34), (35),(36) and (37) as given below. 
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When vector c is solved by implementing Equation (28) 
and substituted in  Equation   (38)   and   (39)   would   be 
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where ki represents the storey stiffness matrix.  For static 
and dynamic analysis the n- storey structure is 
discretized into n storey. 
 
   
Dynamic analysis  
 
The system stiffness matrix obtained from storey stiffness 
matrices (32) can be used for the dynamic analysis of 
wall-frame structures. The mass system matrix is formed 
by using lumped mass model as: 
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where,  mi is the mass of the i. th storey . 
 
By using K and M matrices, the frequency equation can 
be written as: 
 

{{{{ }}}} 0MK
2 ====−−−− φφφφωωωω ][                                                       (41)                                                                        

 
The boundary conditions of the wall-frame system are: 
1. ybase=0                                                                     (42)        
 
2. ψwbase=0                                                                    (43)  
 
3. ψfbase=0                                                                    (44)  
 
The values of ω, which set the frequency equation to 
zero, are the natural frequencies of the wall-frame 
structure. The angular  frequencies  and  relevant  modes  
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Figure 3. 8 Storey coupled shear wall (example 1). 

  
 
 
 are found with the help of the frequency Equation (41).  
The effective mass  (Mr) and participation factor (Γ) can 
be found as: 
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With the help of the acceleration and the displacement 
spectrums, obtained from an earthquake record or design 
spectrum from codes, the displacement and internal 
forces are found by using the effective mass and the 
participation factor. 
 
 
PROCEDURE OF COMPUTATION 
 
A program that considers the method presented in this study as 
basis, has been implemented in MATLAB and the coding/ 
programming steps are presented below: 
  
1. The equivalent rigidities of each storey are calculated by using 
the geometric and material properties of the structure.  
2. Stiffness matrices are calculated for each storey by using 
equivalent rigidities.  
3. System stiffness matrix is obtained with the help of storey 
stiffness matrices. 

4. For static analysis the lateral displacements can be found by 
using the well known equation: F=KxD  
5.  For dynamic analysis, system mass matrix is obtained using 
Equation (40). 
6. The angular frequencies and mode shapes are found from using 
(Equation 41).  
7. With the help of the acceleration and the displacement 
spectrums, obtained from an earthquake record or design spectrum 
from codes, the displacement and internal forces are found by 
using the effective mass (Equation 45) and the participation factor 
(Equation 46). 
 
 
Numerical examples 
 
Four numerical examples are considered to validate the proposed 
method. The results are compared with those given in the literature.  
 
 
Example 1 
 
A two- dimensional coupled shear wall having eight storey with 4.0 
m height (Figure 3) subjected to lateral loads is analyzed by the 
proposed method and compared with the literature (Paknahad et 
al., 2007). The shear walls with 4.0 m width are connected by rigid 
beams. The height of the connecting beams is equal to 0.8 m and 
the width (thickness) of the system is equal to 0.4 m. The modulus 
of elasticity and Poisson‘s ratio are 20 kN/mm2 and 0.25, 
respectively.  The lateral displacements are calculated and 
compared with those in literature (Paknahad at al., 2007) (Table 1 
and Figure 4).   
 
 
Example 2 
 
A 8-storey wall-frame system (Figure 5) is analyzed as an example. 
The section  properties  of   columns,  shear  walls  and  beams  are 
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Table 1. Comparison of Lateral displacements in example 1.  
 

Floor no. Paknahad et al. (2007) Presented method Diff.  (%) 

2 0.74 0.68 -8.1 
4 1.98 1.85 -6.57 
6 3.28 3.10 -5.49 
8 4.51 4.28 -5.10 
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Figure 4. Lateral displacements (example 1). 

 
 
 

Figure 4 Wall-frame structures 

 
 
Figure 5. Wall-frame structure.                 

   
 
 
given in Tables 2 and 3. The young modulus is E=2.85*107 kN/m2. 
The natural periods in y direction  are calculated by this method and 

compared with those found in the literature (Ozmen et al., 2005) in 
Table 4.   
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Table 2. The section properties of shear wall and columns. 
 

Floor Shear wall thicknes (m) Columns 

6-8 0.25 0.40 m*0.40 m 
3-5 0.25 0.45 m*0.45 m 
1-2 0.35 0.50 m*0.50 m 

  
 
 

Table 3. The section properties of beams. 
 

Beam bw (m) b (m) t (m) h (m) 
Outer beam 0.25 0.70 0.14 0.60 
Interior beam 0.25 1.00 0.14 0.60 

  
 
 

Table 4. Natural periods for example 2 (s). 
 

Mode Özmen et al. (2005) Proposed method Difference (%) 

1 0.696 0.702 0.86 
2 0.211 0.214 1.42 
3 0.102 0.109 6.86 
4 0.061 0.068 11.48 
5 0.041 0.048 17.07 
6 0.031 0.038 22.58 
7 0.025 0.032 28.00 
8 0.022 0.030 36.36 
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Figure 6. 20 storey coupled shear wall.  

Example 3  
 
A 20-storey coupled shear wall system (Figure 6) is analyzed as an 
example. The numerical data for the coupled shear wall are given in 
Table 5. The first four natural frequencies are calculated by this 
method and compared with those found in the literature 
(Takabatake, 2010) in Table 6. In the literature Takabatake (2010) 
used the finite element program NASTRAN which use the shell 
element in analysis. 
 
 
Example 4 
 
A doubly symmetrical system (Figure 7) is analyzed as an example. 
The building is stiffened in the y direction by solid walls while in the 
z direction by two solid walls at the symmetry plane and by two 
coupled shear walls arranged symmetrically. The geometric and 
material characteristics are given in Table 7.  The first natural 
periods and the seismic base shear force are calculated according 
to Eurocode 8  by this method and compared with those found by 
using continuum model in the literature (Tarjan and Kollar, 2004) 
(Tables 8 and 9). 
 
 
RESULTS 
 
In this study four numerical examples are considered to 
validate the proposed method.  Example 1 results 
compared with the work of (Paknahad et al., 2007) show 
differences greater than 5%. Example 2 shows good 
agreement with those of Ozmen et al. (2005) for  the  first  
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Table 5. The numerical data for the coupled shear wall (example 3). 
 

Geometric and  structural properties of coupled shear wall 

Young modulus 3.6*1010 N/m2 

Mass density 2.4* 103 kg/m3 

Poisson ratio 0.15 
Total storeys 20 
Total height 56 
Thickness of left side wall 0.3 
Width  of left side wall 5.0 
Thickness of Right  Side Wall 0.3 
Width  of Right Side Wall 7.0 
Thickness of Lintel 0.3 
Height of Lintel 0.4 
Length of Lintel 2.0 

  
 
 

Table 6. Natural frequencies for example 3 (rd/s). 
 

Mode NASTRANTakabatake (2010) Proposed method Difference (%) 

1 13.09 13.15 0.46 
2 55.55 56.66 2.00 
3 129.00 133.03 3.12 
4 224.90 231.40 2.89 
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Figure 7. Floor plan of a 28-storey building (example 4). 

  
 
 
and second modes but for the remaining modes 
comparison shows high disagreement. On the other 
hand, the third and fourth examples show good 
agreement with literature. When the number of storey 
increases, the suitability of the method also increasing 
due to the assumptions of the method. 
 
 
Conclusions 
 
In this  study,  an  approximate   method   based   on   the  

continuum approach and one dimensional finite element 
method for lateral static and dyamic analysis of buildings 
is presented. In this method, the whole structure is 
idealized as a sandwich cantilever beam, which includes 
all the deformations. The numerical examples presented 
show that results obtained from the proposed method are 
in a good agreement with the classical finite element and 
the analytical solution developed in literature. The validity 
of the procedure is dependent on the height of building. 
The proposed method is simple and accurate enough to 
be used both at the  concept  design  stage  and  for  final  
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Table 7. Geometric and material characteristics of shear walls (example 1). 
 

Number of  stories 28 
Story height 2.97 m 
Total height 83.2 m 
Mass/unit height 280640 kg/m 
Young’s modulus of walls 1.95*10 7 kN/m 2 
Young’s modulus of beams 2.3*107 kN/m2 
Shear modulus of beams 9.58*106 kN/m2 
Area of beams 0.07 m2 
Moment of inertia of beams 5.79*10-4 m4 
Area of walls 1.4640 m2 
Moment inertia of walls  4.5396 m4 

  
 
 

Table 8.  Natural periods for example 4. 
 

                                                             Natural periods (sec.) 
 ETABS Tarjan and Kollar Presented method 

1.Period of z direction 6.888 7.197 6.991 
  
 
 

Table 9.  Base Shear forces for example 1. 
 

Base shear force (kN) 

 ETABS (Tarjan and Kollar) Tarjan and Kollar Presented method 
Base shear force in z direction 1481.45 kN 1310.30 kN 1438.57 kN 

  
 
 
analyses of high rise buildings and takes less com-
putational time than the classical Finite Element method. 
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